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We present a general, Gaussian spatial mode propagation formalism for describing the generation
of higher order multi-spatial-mode beams generated during nonlinear interactions. Furthermore,
to implement the theory, we simulate optical angular momentum transfer interactions, and show
how one can optimize the interaction to reduce the undesired modes. Past theoretical treatments
of this problem have often been phenomenological, at best. Here we present an exact solution for
the single-pass no-cavity regime, in which the the nonlinear interaction is not overly strong. We
apply our theory to two experiments, with very good agreement, and give examples of several more
configurations, easily tested in the laboratory.

PACS numbers: 42.50.Lc, 42.50.Nn

I. INTRODUCTION

We are on the cusp of a new age of quantum physics
and technology, where multi-spatial-mode beam propa-
gation will play an ever more essential role. Many of the
most important quantum resources are produced during
nonlinear light-matter interactions. It is particularly in-
teresting to study nonlinear effects in response to beams
carrying orbital angular momentum (OAM). For exam-
ple, the Laguerre-Gauss (LG) spatial modes have an az-
imuthal phase dependence of exp[i`φ], which corresponds
to OAM of `~ per photon [1, 2]. The intensity patterns
for several LG modes, with ` 6= 0, are given in Fig. 1,
and a more complete description can be found Sec. II C.
Conservation and storage (via slow and stopped light) of
OAM has been realized in several processes including the
entanglement of OAM modes in parametric down con-
version (PDC) [3, 4], second harmonic generation (SHG)
[5], and four-wave mixing (FWM) in semiconductors [6].
Unlike solid state processes, nonlinear optics in atomic
vapors is highly efficient and requires low-light intensi-
ties. Transfer of OAM into atomic media [7–10], transfer
to frequency converted light [11–17], and amplification
[18] have all been observed in atomic vapors.

It has been observed that the transfer of OAM to
frequency converted light in atomic media is typically
accompanied by a disturbance of the radial component
structure, i.e., frequency converted beams have nonzero
radial index p, even when the pump beams have p = 0
[13, 19, 20]. See Fig. 1 for examples of p mode structure.
These effects may be subtle, or even negligible, when
analysis is limited to comparing images collected with
a charge-coupled device (CCD) camera. However, these
effects can be quite detrimental to quantum processes
such as squeezing [19] and entanglement generation [21–
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24]. Nonlinear processes leading to the production of LG
modes, with nonzero radial index p, can actually contam-
inate the mode structure and degrade the performance of
the process. As for the ` structure, the conservation of
OAM dictates the allowed ` modes of the output beam,
but this is not the end of the story. Transfer to some
of these modes can be quite improbable [13, 16], even
though the interaction would not violate OAM conserva-
tion. Therefore, an analysis simply based on conservation
can be quite misleading. With these concerns in mind,
we develop a relatively simple, yet analytic semiclassi-
cal theory, which predicts the spatial mode structure of

FIG. 1. LG mode intensity profiles for (a) ` = 0 and increasing
p; (b) p = 0 and increasing `; (c) for several superpositions of `
with p = 0, 1, and 2. Due to interference, superpositions with
`′s of opposite sign will have a symmetric petal-like structure
with |`1|+ |`2| petals. See Ref. [2] for an excellent description
of optical OAM origins and behavior.



2

beams created during nonlinear interactions. We show
that the predictions of our theory have excellent agree-
ment with the observations in the foregoing discussion.
Furthermore, the theory allows us to study and optimize
the interaction to enhance performance and output mode
structure. Finally, an accurate description of the mode
structure is a crucial ingredient in the general second-
quantization procedure which we are currently develop-
ing.

II. THEORETICAL BACKGROUND

In the following section, we present an introduction
to spatial mode propagation, properties of the Laguerre-
Gauss modes, and an overview our method for solving the
inhomogeneous wave equation in the paraxial approxi-
mation. An analytic method is preferred, because we
wish to explicitly retain the mode structure of the re-
sulting beam, such that one can use the mode structure,
for example, to perform a second-quantization procedure.
Please see the appendix for full details of our Green func-
tion solution method.

A. Spatial Mode Propagation

The paraxial wave equation and its solutions are cer-
tainly well known, but for completeness we quickly derive
a form useful for our purposes. We investigate the electric
field propagating through a nonlinear medium, which for
simplicity, we treat as lossless and dispersionless. Treat-
ing the light classically, we start with the inhomogeneous
wave equation

∇2Ẽ− 1

c2
∂2Ẽ

∂t2
=

1

ε0c2
∂2P̃

∂t2
, (1)

where the tilde indicates rapidly varying quantities. In-
troducing the field Ẽ(r, t) = E(r)e−iωt and polarization

P̃(r, t) = P(r)e−iωt into Eq. (1), one finds the Helmholtz
equation. Next, we let E(r) = E(r⊥, z)e

ikz, P(r) =
P(r⊥, z)e

ikz, and along with the paraxial approximation
(|k ∂E/∂z| � |∂2E/∂z2|) we transform the Helmholtz
equation into the inhomogeneous paraxial wave equation

(
∂

∂z
− i

2k
∇2
⊥)E =

ik

2ε0
P . (2)

Depending on the scenario, there are several methods
used for deriving the polarization P , and in many cases
our simple phenomenological approach will lead to inter-
esting and accurate results. Regardless of the method
used, the polarization is, in general, a complicated func-
tion of the fields, that is, P = P(E). This makes Eq. (2)
similar in structure to the nonlinear Schrödinger equa-
tion. With this similarity in mind, we make a first order
Born approximation [25], and replace E with the input

beam E0 instead, which establishes a much simpler dif-
ferential equation of the form,

(
∂

∂z
− i

2k
∇2
⊥)E =

ik

2ε0
P(E0) ≡ ℘(E0). (3)

The first born approximation is sufficient when the pump
beam is only slightly modified and the seed or signal fields
are weak compared to the driving fields. Fortunately, the
nonlinear processes that we consider in this article sat-
isfy these conditions. Furthermore, most nonlinear pro-
cesses that involve generation of new fields start with
vacuum modes. For example, in the polarization self-
rotation squeezing scheme [26–28], the seed beam is just
vacuum entering into an empty port. Thus, in the Born
approximation, the optical response of the nonlinear ma-
terial inherent, in ℘(E0), behaves as a source for new
mode components of the field. Regarding the vector na-
ture of the interaction, it must must be noted that in
general, the nonlinear susceptibility governing the inter-
action has a tensor form with, e.g., 81 terms for third-
order nonlinearities. This structure offers a complication,
which can lead to a set of coupled equations that are very
difficult to solve. Fortunately, the majority of nonlin-
ear processes that involve generation of new fields have
symmetry, which vastly reduces the complication of the
problem. This fact, paired with the Born approximation,
is used to simplify the problem to uncoupled differential
equations, which then can be solved using our method.

B. Construction of the initial-value-problem

In the first Born approximation, the right-hand-side of
Eq. (3) is effectively the source of the new beam. Thus,
it is helpful to restate the problem here as an initial-value
problem (IVP) in the compact form,

DE : L̂E = ℘(E0)

IV : E0,
(4)

where L̂ ≡ ∂
∂z −

i
2k∇

2
⊥ and E0 is the input-field ampli-

tude which is assumed to be undepleted. Although this
IVP represents a first Born approximation, the follow-
ing method can be used iteratively for cases when the
nonlinearity and generated fields are stronger. In such
cases, it may be necessary to include an attenuation fac-
tor, on the initial value, which conserves energy. Ideally,
the theory does not require any free parameters for the
source ℘, and can be used directly. In reality, however,
it may be difficult to calculate the strength of the source
if the model used does not capture the full complexity of
the experimental system. Therefore, it maybe convenient
to capture such complexity with an interaction strength
factor that, if necessary, can be used as a fitting parame-
ter. For example, a fitting parameter is quite useful when
simulating the generation of squeezed light in hot atomic
vapor, where the direct calculations are too complex [19].
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C. Laguerre-Gauss Mode Properties

We elect to consider input beams with cylindrical sym-
metry, but we note that the following calculation can cer-
tainly be done in other coordinate systems. In cylindri-
cal coordinates, the homogeneous paraxial wave equation
gives rise to the LG family of solutions [29]:

u`,p(~r) =
C`,p
w(z)

e
− r2

w(z)2 e
− ikr2z

2(z2+z2
R

)
(√2r

w(z)

)|`|
× L|`|p

( 2r2

w(z)2
)
ei`φei(2p+|`|+1) arctan(z/zR),

(5)

where ` is the azimuthal index, p is the radial index for
each mode, C`,p =

√
2p!/π(|`|+ p)! is a normalization

constant, w0 is the beam waist, w(z) = w0

√
1 + (z/zR)2

is the width function of the beam, L
|`|
p are the generalized

Laguerre polynomials, zR = πw2
0/λ is the Rayleigh range,

and k = 2π/λ is the wave number. The LG modes form a
complete orthonormal set and thus can be used as a basis
set to expand an arbitrary paraxial beam B = B(r, φ, z)
in free space. Using the orthogonality relation∫

rdrdφu∗`,p(r, φ, z)uq,n(r, φ, z) = δ`qδpn, (6)

we can write B(r, φ, z) as

B(r, φ, z) =
∑
`,p

c`,p(w0)u`,p(r, φ, z, w0), (7)

where

c`,p(w0) =

∫
rdrdφu∗`,p(r, φ, z0, w0)B(r, φ, z0). (8)

The waist w0 of the basis set is, in general, chosen to
give the best fit and reduce the number of terms in the
expansion, whereas the c`,p coefficients are independent
of the position z0. If we insert Eq. (8) in Eq. (7) and
collect the LG modes we find

B(r, φ, z) =

∫
r′dr′dφ′B(r′, φ′, z0)

∗
(∑
l,p

u∗l,p(r
′, φ′, z0)ul,p(r, φ, z)

)
.

(9)

If we impose z = z0, then we can establish the very
important completeness relation:∑

`,p

u∗`,p(r
′, φ′, z)u`,p(r, φ, z) = δ(r − r′)δ(φ− φ′). (10)

The condition z = z0 simply states that the LG modes
are complete at equal z’s, i.e, when the two z-slices
coincide. Furthermore, we will see that this condition
reemerges as part of the mechanism which introduces the
input beam in the solution of the IVP. Thus, the com-
pleteness relation is instrumental in the Green function
solution method, which we will now discuss briefly.

D. Green Function Solution

The magic of the Green function solution method [30]
is that once the propagator K, and Green function G
are derived, the problem is solved (for full details of the
solution method see the appendix):

E =

∫
r′dr′dφ′K(r | r′)E0(r′) |z=z′

+

∫
dz′
∫
r′dr′dφ′G(r | r′)℘(r′).

(11)

Although we solve this problem in free space, the proper-
ties of the LG modes allow us to utilize a method devel-
oped for fixed boundary conditions. Since the LG modes
are a complete orthonormal set, we can use an eigen-
function expansion. Recalling the completeness relation
in Eq. (10), we define our propagator and Green function
in terms of the LG modes:

K(r, φ, z|r′, φ′, z′) ≡
∑
`,p

u∗`,p(r
′, φ′, z′)u`,p(r, φ, z)

G(r, φ, z|r′, φ′, z′) ≡ Θ(z − z′)K(r, φ, z|r′, φ′, z′),
(12)

where Θ(z − z′) is the Heaviside step function.

At this point the problem is solved. However, we may
further simplify matters by expanding the source ℘ in
terms of the LG modes:

℘(r, φ, z) =
∑
l,p

cl,p(z)ul,p(r, φ, z), (13)

where cl,p(z) =
∫
rdrdφu∗l,p(r, φ, z)℘(r, φ, z). To find the

final form of our solution, we insert Eq. (12) and Eq. (13)
into Eq. (11) and find

E(r) = E0(r) +
∑
l,p

ul,p(r)

∫ zf

zi

dz′cl,p(z
′). (14)

So we see that the final solution is a superposition of the
unmodified pump beam, and a collection of LG modes,
which, referring to Eq. (3), will depend on the speci-
fied polarization P and the spatial structure of the input
beam E0. The cautious reader may be concerned that
we have solved a problem concerning a possibly local-
ized source distribution using a free space Green function
method. We pause to point out that the effects of the
source are totally subsumed in the spacial distribution
of ℘. Furthermore, in most situations a Gaussian pump
beam will be completely encompassed by the interaction
region, effectively making the boundary in r infinite.
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III. SIMULATION OF EXPERIMENT

We start will several simulations which showcase our
theory. First, we focus on experimentally relevant simu-
lations related to PDC and spontaneous FWM. For PDC,
we take the results of the experiment a step further by
suggesting ways to enhance the mode structure of the
generated beam. For FWM, we address an unresolved
problem pertaining to the pathways of OAM transfer in
spontaneous FWM. For each simulation, we will specify
the polarization governing the interaction, along with the
relevant beam and material parameters. Furthermore, all
beam profiles are plotted at z = 0, and are color coded
to match the visible spectrum as closely as possible.

A. Stimulated Down Conversion

A rapidly evolving body of theoretical work is call-
ing for entanglement in quantum systems with higher di-
mensions [31, 32]. Thus, as an exercise, we will study
stimulated PDC as a way to understand the proper-
ties of down-converted twin beams when a cavity is
not present to alter the mode structure. We model a
PDC experiment, in which a 442 nm pump beam inter-
acts with a 845 nm signal beam (in a 3 mm long BBO
crystal) to create a 925 nm idler beam [4]. Due to the
small incident angle of the signal beam and the rela-
tively thin crystal, effects from the non-collinear geom-
etry are negligible (see appendix). The light-matter in-
teraction in the crystal is governed by the polarization
P(ωi)

(2) = ε0χ
(2)Ep(ωp)Es(ωs)∗, depicted in Fig. 2(a). In

this interaction Ep is the pump beam, Es is the signal
beam, and the conjugation of Es corresponds to the cre-
ation of a photon in the input-signal mode. Therefore, we
see how the choice of pump and signal modes tailor the
response of the idler beam; this phenomenon has been
verified experimentally for relatively simple input beams
[4]. The waist of the basis set, used to represent the gen-
erated beam, is set to match the waist of the pump beam.
We will see how the interplay of the waist and Rayleigh
range, of the input beams, effects the mode structure of
the generated beam.

In this simulation, we investigate how to generate a
high-OAM superposition in the idler mode. First, for
reference, we consider that the signal beam is prepared
in the u0,0 mode with a waist that matches the pump
beam. As one can see in Fig. 2(b), the idler beam re-
sponds in ` = ±2 superposition, with a spreading in p
modes, corresponding to the partial overlap of the modes
in Ep(ωp)Es(ωs)

∗. Each histogram depicts the proba-
bilities P`,p of modes being excited, i.e., referring to
Eq. (14), P`,p ≡ |

∫
dz′c`,p(z

′)|2/
∑
`,p |c`,p|2. Next, to

increase OAM in the idler beam, we prepare a signal
beam in the same superposition as the pump, but include
a π phase shift between the two modes in the superpo-
sition, i.e., the signal beam is now u2,0 + eiπu−2,0. In
Fig. 2(c) we see that this combination creates a destruc-

tive interference, which suppresses response at ` = 0, and
produces an idler beam, which responds at ` = ±4 with a
spreading in p modes. More simulations using this tech-
nique can be found in the following section. Again, the
spreading in p modes corresponds, in part, to the poor
overlap of the beams. Therefore, in Fig. 2(d), we show
that one can optimize the signal-beam waist to suppress
the higher order p modes. The narrowing of the signal
beam waist w0 (by ≈ 40%), in Fig. 2(d), corresponds
to a reduction of the Rayleigh range zR ≡ πw2

0/λ. In
effect, the beams now expand closer to the same rate,
which is apparently the optimized beam overlap through
the interaction region. This observation is related to the
Boyd criterion [13], which states that, the nonlinear in-
teraction is strongest when the Rayleigh ranges of the
interacting beams coincide. The effect observed here ex-
tends this observation to include an improvement in the
mode structure. This simulation is very useful, since one
cannot determine the p mode structure experimentally
by simply analyzing the intensity pattern, e.g., differ-
ences in the petal structures of ωi, in Fig. 2(c,d), are not
discernible, even though (c) has a contaminated mode
structure.

FIG. 2. In (a) we depict the simple stimulated-down-
conversion scheme of our simulation. In (b) through (c) we
show the input beam profiles of the pump and signal beams,
a histogram giving the mode structure of the output (idler)
beam, and the spatial profile of the output (idler) beam re-
spectively. In (b) we use a u0,0 signal as a baseline, then in
(c) and (d), we show how the signal beam can be chosen to
tailor a clean higher OAM superposition in the idler mode.
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B. Spontaneous Four-Wave Mixing

Next, we present a simulation for non-degenerate four
wave mixing. In this scheme, two pump beams sponta-
neously create signal and conjugate beams, according to
the polarization P(ωc)

(3) = ε0χ
(3)E(ωp1)E(ωp2)E(ωs)

∗;
depicted in Fig. 3(a). In our other simulations, all of the
fields which generate the new beam are carefully selected
input beams. This simulation is distinct since the signal
and conjugate beams are spontaneously created during
the interaction. Therefore, to predict the mode struc-
ture of the conjugate beam, one must make assumptions
about the spontaneous response creating the signal beam.
The question remains, how do we predict the coupling of
the atoms to the vacuum LG modes at the signal and
conjugate wavelengths?

To investigate this problem, we simulate an interac-
tion, which has been experimentally realized [13]. A
780 nm pump and a 776 nm pump stimulate a nonlinear
interaction in Rb, which is the source of a 5230 nm signal
beam and a 420 nm conjugate beam [see Fig. 3(a)]. In
the experiment, the long wavelength beam remains un-
observed. However unlikely, OAM transfer to this beam
should not be ruled out as a possibility. Rather, the
atoms can couple to any spatial light mode, which obeys
OAM conservation, and thus we should account for each
of these modes in our simulation. Therefore, for the sake
of simulation, we input a signal beam that is a balanced
incoherent superposition of all OAM modes, which obey
OAM conservation, and allow the integral in Eq. (14)
to determine which modes are populated. Thus, we ac-
commodate for the possible OAM transfer to the long-
wavelength beam, and only restrict our analysis to in-
coherent superposition at the signal wavelength. The
last assumption we will impose for this simulation is the
matching of the Rayleigh ranges for all beams, i.e., we
invoke the Boyd criterion [13]. In effect, we judiciously
choose the widths of the beams to maximize the nonlin-
iear interaction.

The results are presented in Fig. 3(b–f). From left to
right, the columns correspond to the profile of the pumps,
a histogram giving the mode structure of the conjugate
beam, the profile of the conjugate beam, and lastly the
experimental data from Ref. [13]. We see excellent qual-
itative agreement, when the signal beam is allowed to
carry OAM. In particular, our simulation appears to take
account of the relative brightness and shape of the lobes
in the experimental data. In each case there are lobes
that are elongated and dimmer than others and, our sim-
ulation agrees with this observation. It is apparent that
the richer mode structure that we predict for the con-
jugate beam can account for the variations in the lobe
brightness, without drastically affecting the lobe struc-
ture. Therefore, we emphasize that a more careful anal-
ysis, such as the one we present here, is necessary when
studying the mode structure of output beams, since a
naive examination of the lobe structure can be very mis-
leading.

FIG. 3. In (a) we depict a non-degenerate four-wave mix-
ing scheme, which occurs in Rb87. In (b) through (f), we
study the result of this interaction for different pump profiles;
from left to right the columns correspond to the profile of the
pump beams, a histogram giving the mode structure of the
conjugate beam, the spatial profile of the conjugate beam,
and lastly an experimental realization from Ref. [13]. A bet-
ter qualitative agreement is observed when ωs is allowed to
take on any mode conserving OAM. This result suggests that,
contrary to previous assumptions, that the long wavelength
signal beam can in fact carry OAM.

IV. PREDICTIVE SIMULATIONS

We now transition from simulations of experiments
which help to validate our theory, to more predictive sim-
ulations. We will show how our theory can be used as a
tool to optimize the mode structure for other OAM addi-
tion, subtraction, and cancellation processes. The theme
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of these simulations is to develop methods which enhance
the mode structure of the generated beams. They also
serve as predictions which can be verified experimentally,
relatively easily.

A. Second Harmonic Generation

First we present a simulation for second harmonic gen-
eration. An 1140 nm pump beam, with waist w0 = 0.1
mm, interacts with a 3 mm long crystal to create a sec-
ond harmonic beam at 570 nm. The waist of the ba-
sis set, used to represent the generated beam, is set to
match the waist of the pump beams. The light-matter
interaction in the crystal is governed by the polarization
P(2ω)(2) = ε0χ

(2)E(ω1)E(ω2), depicted in Fig. 4(a).
We first consider that two photons are annihilated from

a single pump beam in the superposition u1,0+u−1,0, and
the results are given in Fig. 4(b). One can see that along

FIG. 4. In (a) and (c) we depict the two simple second-
harmonic generation schemes of our simulation. In (b) and
(d) we show the input-beam profile, which is supplying the
two pump photons, a histogram giving the mode structure of
the output beam, and the spatial profile of the output beam,
respectively. In (b) both pump photons come from a u1,0 +
u−1,0 superposition. In (c) and (d), a phase shift and a new
geometry is chosen such that destructive interference cancels
the response at ` = 0 [seen in (b)]. The pump photons are
in the far-infrared at 1140 nm, and thus the 2nd harmonic
response is at 570 nm.

with the response at ` = ±2, there is also response at
` = 0, corresponding the cross terms in (u1,0 + u−1,0)2.
One can enhance the OAM transfer by creating a destruc-
tive interference to remove the response at ` = 0. This
can be done by including a second pump beam, according
to the geometry in Fig. 4(c), with a π phase shift in the
superposition, i.e., a rotated profile. The conservation
of linear momentum dictates that, in order to have a re-
sponse at 2ω in the geometry of Fig. 4(c), a photon must
be annihilated from each pump beam. As one can see
in Fig. 4(d), this geometry (along with the phase shift)
suppresses the response at ` = 0 and provides a cleaner
mode structure. This technique can be quite useful and
can be implemented in more complex situations, as we
will show in the following examples.

B. Third Harmonic Generation

Next, we present a simulation for third-harmonic gen-
eration. An 1140 nm pump beam, with waist w0 =
0.1 mm, interacts with a 3 mm long crystal to create a
third-harmonic beam at 380 nm. The light-matter in-
teraction in the crystal is governed by the polarization
P(3ω)(2) = ε0χ

(2)E(ω1)E(ω2)E(ω3), depicted in Fig. 5(a).
As in the previous simulation, we first consider that three
pump photons are annihilated from a single pump beam
in the superposition u1,0+u−1,0, and the results are given
in Fig. 5(b). One can see from the histogram that, along
with the response at ` = ±3, there is also response at
` = ±1, corresponding the cross terms in (u1,0 +u−1,0)3.
To clean up the OAM transfer, one needs to create an in-
terference to destroy the response at ` = ±1. We deploy
the same tactic as in the SHG simulation, but in this case
include three pump beams, two of which have the phase
shift ±2π/3 between the two modes. One can see in
Fig. 5(c,d) that if one photon is annihilated from each of
the three pump beams, that the response at ` = ±1 is de-
stroyed and a clean OAM transfer is established. Again,
as we described in the previous subsection, one could re-
alize this result by judiciously choosing the angles of the
incident beams according to conservation of linear mo-
mentum, such that the generated beam is aligned along
the z−axis. So we see that this can be a very useful
technique for the up-conversion of OAM, especially in
the absence of a cavity, which would naturally clean the
mode structure.

C. Four-wave Mixing

Next, we present a simulation for degenerate four-
wave mixing, in which we demonstrate the addition, sub-
traction, and cancellation of OAM. Two pump beams
and a signal beam interact in a 7 cm long nonlinear
cell to create a conjugate beam according to the polar-
ization P(ωc)

(3) = ε0χ
(3)E(ωp)E(ωp)E(ωs)

∗, depicted in
Fig. 6(a). We now investigate ways to tailor the response
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FIG. 5. In (a) and (c) we depict the two simple third-
harmonic generation schemes of our simulation. In (b) and
(d) we show the input-beam profiles, which are supplying the
three pump photons, a histogram giving the mode structure of
the output beam, and the spatial profile of the output beam,
respectively. In (b) all pump photons come from a u1,0+u−1,0

superposition. In (c) and (d), phase shifts and a new geom-
etry is chosen such that destructive interference cancels the
response at ` = ±1 as seen in (b). The pump photons are
in the far-infrared at 1140 nm, and thus the 3rd harmonic
response is at 380 nm.

of the conjugate beam. In both cases the pump beams re-
main in the form u1,0 +u−2,0 and u1,0 +eiπu−2,0, and we
choose to vary the signal beam. We showed in the pre-
vious two simulations that, when the pump beams are
properly rotated with respect to each other, that cross
terms can be canceled, i.e., response at ` = −1 is sup-
pressed. Therefore, if the seed beam were simply a u0,0,
then the conjugate beam would respond at ` = 2 and
` = −4, as we see in Fig. 6(b). However, suppose we
would prefer the field to respond at ` = ±3, then we
would choose the signal to be in a u−1,0 mode and ef-
fectively add another unit of angular momentum to the
conjugate beam, as seen in Fig. 6(c). This approach can
be taken to the extreme by choosing the seed to be in
a u2,0 mode, and effectively subtracting two units of an-
gular momentum from the conjugate beam, as seen in
Fig. 6(d). In this case, response at ` = 0 and ` = −6 are
the two modes allowed by OAM conservation. However,
we see that response at ` = −6 is naturally suppressed.
This is because even though ` = −6 is a potential OAM
pathway, the mode overlap is so poor that exciting this
mode is extremely unlikely. Thus, we expose one more, of
possibly many ways, to completely suppress OAM trans-

FIG. 6. In (a) we depict the simple degenerate four-wave
mixing scheme of our simulation. In (b) through (d) we show
the pump-beam profiles, the signal-beam profile, a histogram
giving the mode structure of the output (conjugate) beam,
and the spatial profile of the output (conjugate) beam respec-
tively. In (b) the pump beams are of the form u1,0 + u−2,0

and u1,0 + eiπu−2,0 and the signal beam is a u0,0 mode. In
(c) the pump beams remain the same and the signal beam is
a u−1,0 mode. In (d) the pumps stay the same but the signal
beam is changed to u2,0. This is a degenerate scheme and all
beams are 650 nm.

fer into unwanted modes.

V. CONCLUSION

We report a general theory for calculating the spa-
tial mode structure of beams generated during nonlinear
interactions. We accomplish this by making a first or-
der Born approximation to the inhomogeneous paraxial
wave equation. Therefore, it is akin to the weak scat-
tering problem of the nonlinear Schrödinger equation.
The theory is general in the sense that, it may be im-
plemented for any complete orthonormal set of spatial
mode functions. We use the theory to simulate orbital
angular momentum transfer in several nonlinear optical
processes, with an emphasis on analyzing and tailoring
the resulting mode structure for optimal performance.
This includes the processes of orbital angular momen-
tum addition, subtraction, and cancellation in harmonic
generation, parametric down conversion, and four-wave
mixing.

The first order Born approximation has limitations. In
general, it is only valid for input light which is sufficiently
weak, such that the nonlinearity is small. Additionally,
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it may only be adequate for thin slabs and dilute vapors
of nonlinear media, and for scenarios in which the pump
beams are assumed to be undepleted, and the spatial
structure unaltered. However, we describe how successive
iterations of the Born approximation can be performed
using our theory. Although this theory is based on a
first order approximation, we show that it can model the
mode structure of experimental data remarkably well.

In doing so we are able to show that a naive analysis of
the lobe structure in intensity patterns can be very mis-
leading. One may be tempted to assume, based on lobe
structure, that OAM transfer is limited to certain path-
ways. However, our analysis shows that the rich mode
structure resulting from a more complete consideration
of all the pathways, actually accounts for symmetries in
the resulting beam pattern. On a final note, this valida-
tion of the theory is assurance that the theory is accu-
rately predicting the classical mode structure, which can
in turn be used for second-quantized treatments of these

interactions.
To make our theory even more robust, future work

will involve analyzing the efficiency of tailoring the
mode structure, e.g., the ability to suppress higher or-
der modes, and fine tune the methods we have suggested
based upon the strength of the nonlinearity, the inten-
sity of the input light, the angle of incidence, etc. Ad-
ditionally, for the case of stimulated nonlinear processes,
we have shown that the waists of the input beams can
be chosen to tailor the mode structure of the generated
beam. Thus, it would also be worthwhile to analyze the
efficiency of this method as well, and elucidate whether
there are trade offs that degrade the performance.

This research was supported by the Air Force Office
of Scientific Research grant FA9550-13-1-0098. In addi-
tion, RNL, ZX and JDP acknowledge additional support
from the Army Research Office, National Science Foun-
dation, and Northrop Grumman Corporation. The au-
thors would also like to thank Sonja Franke-Arnold and
her group for sharing the data appearing in Fig. 3.
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Appendix A

1. Green Function Solution Method

In Sec. II, we introduced our spatial mode propagation
equation and constructed an IVP to restate the problem
in a compact form. The first step in solving our inhomo-
geneous IVP [Eq. (4)] is to solve the homogeneous IVP
in free space, i.e., for ℘ = 0:

DE : L̂E = 0

IV : E0.
(A1)

Using a Green function method [30], we search for a prop-
agator K defined by

L̂ K(r | r′) = 0 (z > z′) (A2a)

K(r | r′) = δ(r − r′)δ(φ− φ′) (z = z′) (A2b)

K → 0 (r →∞), (A2c)

such that when K is known, the homogeneous problem
is solved:

Ehom =

∫
r′dr′dφ′K(r | r′)E0(r′) |z=z′ . (A3)

The z = z′ restraint is a standard condition placed by the
boundary conditions which define the propagator, i.e.,
Eq. (A2b).

Proof. We check our solution Eq. (A3) by operating the

differential operator L̂ and find

L̂Ehom =

∫
r′dr′dφ′

(
L̂ K(r | r′)

)
E0(r′)

=

∫
r′dr′dφ′

(
0
)
E0(r′)

=0.

(A4)

The second line follows trivially since the propagator K
obeys Eq. (A2a). Thus we see Ehom is a solution to
Eq. (A1).

To proceed, we recognize the property in Eq. (10)
and explicitly define our propagator in terms of the LG
modes:

K(r, φ, z|r′, φ′, z′) ≡
∑
`,p

u∗`,p(r
′, φ′, z′)u`,p(r, φ, z).

(A5)
Inserting Eq. (A5) into Eq. (A2), we verify our choice of
the propagator:

L̂ K =
∑
`,p

u∗`,p(r
′)
(
L̂ u`,p(r)

)
= 0 (z > z′) (A6a)

K(r | r′) = δ(r − r′)δ(φ− φ′) (z = z′) (A6b)

u`,p → 0 =⇒ K → 0 (r →∞). (A6c)

Therefore, the homogeneous problem is solved, and we
can turn our attention back to the inhomogeneous prob-
lem Eq. (4).

To solve the inhomogeneous problem, again in free
space, we need a Green function G defined by

L̂ G(r | r′) = δ(r − r′)δ(φ− φ′)δ(z − z′) (A7a)

G(r | r′) = 0 (z < z′) (A7b)

G→ 0 (r →∞), (A7c)

such that when G is known, the inhomogeneous problem
is solved:

E =

∫
r′dr′dφ′dz′G(r | r′)℘(r′). (A8)

Proof. We check our solution Eq. (A8) by operating the

differential operator L̂ and find

L̂E =

∫
r′dr′dφ′dz′

(
L̂G(r | r′)

)
℘(r′)

=

∫
r′dr′dφ′dz′ δ(r− r′)℘(r′)

= ℘(r).

(A9)

The second line follows from our definition of the Green
function, Eq. (A7a), and the third line follows trivially
from the definition of the Dirac delta function. Thus we
see E is a solution to Eq. (4).

Building on the method for solving the homogeneous
problem, we explicitly define our Green function G in
terms of the LG modes

G(r, φ, z|r′, φ′, z′) ≡ Θ(z − z′)K(r, φ, z|r′, φ′, z′), (A10)

where Θ(z − z′) is the Heaviside step function. Next,
inserting Eq. (A10) into Eq. (A7), we verify our choice
of Green function:

L̂ G = (
∂

∂z
− i

2k
∇2
⊥)Θ(z − z′)K(r, φ, z|r′, φ′, z′)

= K
∂

∂z
Θ(z − z′) + Θ

∂

∂z
K −Θ

i

2k
∇2
⊥K

= Kδ(z − z′) + Θ(z − z′) (
∂

∂z
K − i

2k
∇2
⊥K)

= Kδ(z − z′) + Θ(z − z′) L̂K
= δ(r − r′)δ(φ− φ′)δ(z − z′),

(A11)

and thus we see that Eq. (A7a) is satisfied, secondly,
Eq. (A7b) is satisfied since we know G|z<z′ = 0, by defi-
nition of the Heaviside function, and lastly, Eq. (A7c) is
satisfied since r → 0 =⇒ ul,p → 0 =⇒ G→ 0. Therefore,
we have derived a valid propagator and Green function
and can now write the final solution by combining our
two previous solutions Eq. (A3) and Eq. (A8). However,
we would first like to simplify the notation in Eq. (A8). It
is likely that the source ℘ doesn’t contribute until some
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position z′ = zi, and for z > z′ = zi, the Heaviside func-
tion reduces to 1, leaving only the propagator K. Fur-
thermore, the source likely only contributes up to some
position zf and thus we may safely modify the dz inte-
gral. With these final considerations, we can write the
complete solution to Eq. (4):

E =

∫
r′dr′dφ′K(r | r′)E0(r′) |z=z′

+

∫ zf

zi

dz′
∫
r′dr′dφ′K(r | r′)℘(r′)

= E0

+
∑
l,p

ul,p(r)

∫ zf

zi

dz′
∫
r′dr′dφ′ u∗l,p(r

′)℘(r′).

(A12)

Although the problem is solved, we can further employ
the LG modes to simplify our calculations. Suppose we
expand the nonlinear source in terms of the LG modes,
i.e.,

℘(r, φ, z) =
∑
l,p

cl,p(z)ul,p(r, φ, z), (A13)

where cl,p(z) =
∫
rdrdφu∗l,p(r, φ, z)℘(r, φ, z). One should

notice that, in contrast to expanding an arbitrary Gaus-
sian beam in terms of the LG modes, the expansion coef-
ficients for a nonlinear source distribution are not inde-
pendent of the position z. Thus, each infinitesimal slice of
the source contributes to the new field E in the following
way. We insert Eq. (A13) into Eq. (A12) and invoke the
orthogonality of the LG modes one last time to arrive at

E(r) = E0(r) +
∑
l,p

ul,p(r)

∫ zf

zi

dz′cl,p(z
′). (A14)

This result corresponds to Eq. (14) from the main text.
Lastly, we emphasize the z-dependence of the cl,p coef-

ficients, which represent the amplitudes of the new mode
structure of the beam. On one hand, these coefficients
allow one to study how the new beam evolves during
the interaction in the nonlinear medium. On the other,
in the case that the first Born approximation does not
hold, one can use this theory for successive iterations.
For example, if the pump beam is known to be modified
by the nonlinear material, then one can model this by a
propagation equation for the pump, and use the solution
as a second Born approximation for the new frequency
components of the field, i.e.,

℘(E0)→ ℘(E1) = ℘
(
E0 + cl,p(z)ul,p(r)

)
, (A15)

where in this case, cl,p are the result of a propagation
equation for the pump.

2. Noncollinear Beam Geometry

We restrict our problem to only consider beams which
are separated by some angle θ, yet lie in the same plane
and have focal points which coincide. One beam, typi-
cally the generated beam, will define the reference frame
and the coordinates of the rotated beam will be trans-
formed into this frame (see the geometry in Fig. 7). The
electric field at P is described by a slice of the reference
beam at z, and a slice of the tilted beam at z′. One can
easily deduce the form of r′, φ′, and z′, in terms of r, φ, z,
and θ, using this geometry. However, the transformations
make for cumbersome calculations. Therefore, since θ is
small in our simulations, we expand around θ and keep
only the first-order correction for each transformed coor-
dinate:

r′ = r + θ × r sinφ | cosφ|
φ′ = φ+ θ × cosφ | cosφ|
z′ = z + θ × r cosφ sign(z).

(A16)

These corrections made no significant changes in our cal-
culations, for which all beams interact at θ ≤ 2 degrees.

FIG. 7. Geometry of the two-beam coordinate systems, which
are separated in the x−z plane by the angle θ. Any point
P can be described by the cylindrical coordinates (r, φ, z)
or (r′, φ′, z′). We associate the generated beam with the
un-primed coordinate system, and the input beam with the
primed coordinate system; then using geometry we deduce
the form of r′, φ′, z′ in terms of r, φ, z, and θ.
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