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Abstract

We present a new paradigm for truly long-range propagation of high-power laser pulses through

strong atmospheric turbulence. A form of nonlinear self-channeling is achieved when the laser

power is close to the self-focusing power of air and the transverse dimensions of the pulse are

smaller than the coherence diameter of turbulence. In this mode, nonlinear self-focusing counteracts

diffraction, and turbulence-induced spreading is greatly reduced. Furthermore, the laser intensity is

below the ionization threshold so that multiphoton absorption and plasma defocusing are avoided.

Simulations show that the pulse can propagate many Rayleigh lengths (several kilometers) while

maintaining a high intensity. In the presence of aerosols, or other extinction mechanisms that

deplete laser energy, the pulse can be chirped to maintain the channeling.
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I. INTRODUCTION

Much of our understanding of optical propagation through random media, such as at-

mospheric turbulence, is based on theoretical and experimental studies where the medium

responds linearly to the optical field[1]. The randomness of the medium causes incoherence

in the field that, on average, increases the diffractive spreading. As a result, the focus-

ing of light over atmospheric paths with strong turbulence is extremely difficult; even with

adaptive optics the beam becomes highly scintillated with a spot size much larger than the

diffraction limit[2].

With the advent of laser pulses exceeding gigawatts of peak power, nonlinear self-focusing

in air and laser filamentation became possible. Numerous studies have shown that filamen-

tation can produce extended optical and plasma structures in air[3–7]. Filamentation allows

the laser pulse to propagate many vacuum Rayleigh lengths at high intensity due to a bal-

ancing of nonlinear self-focusing, plasma defocusing or harmonic generation, and nonlinear

dispersion. Because of the laser intensity and power required for filamentation, the radius of

the optical field of a filament at IR wavelengths (e.g., 800 nm) is typically a few hundred mi-

crons, so that the Rayleigh length is short (several meters). Furthermore, the filamentation

process is highly dynamic, and unsustainable over very long distances because of ionization

losses and/or generation of new frequencies. For instance, IR filaments limited to lengths

≈ 200m have been observed[8, 9], and more recent work suggests that mid-IR filaments can

persist for up to several hundred meters with reduced ionization losses[10].

Previous studies have investigated the effect of turbulence on filamentation and nonlinear

self-focusing[11–20]. The majority of these studies investigated cases where the peak laser

power is larger than the self-focusing power of air. Recent experiments have also demon-

strated filament formation at kilometer ranges[21]. Here, we present a new paradigm for truly

long-range nonlinear atmospheric propagation through strong turbulence without filamen-

tation and plasma formation. We will demonstrate that a form of nonlinear self-channeling,

i.e., highly collimated propagation over many Rayleigh lengths, is achieved when the laser

power is close to the self-focusing power of air and the transverse dimensions of the pulse

are smaller than the coherence diameter of turbulence. Because the coherence diameter

and laser spot size are centimeters in scale, and because there are no ionization losses, the

channeling can persist for several kilometers through strong turbulence. In some parameter
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regimes, we show how the coherence of the nonlinearly channeling beam can be described

quantitatively using simple expressions derived for linear propagation, but with an effective

Rayleigh length that is dependent on the laser power. Furthermore, with extinction mech-

anisms that deplete laser energy, we show that a chirped pulse can be used to maintain the

channeling. Although our study is focused on propagation in atmospheric turbulence, non-

linear channeling can occur in any optical Kerr medium in which there are random refractive

index perturbations.

II. NONLINEAR CHANNELING CONCEPT

The distribution of scale sizes in atmospheric turbulence can be modeled by the Tatarskii

spectrum[1] for refractive index fluctuations, i.e., the Fourier transform of the covariance

of refractive index fluctuations is Φn(κ) = 0.033C2
nκ
−11/3 exp(−0.03κ2`20), where κ is the

wavenumber of the fluctuation, C2
n is the structure constant, and `0 is the inner scale that

characterizes the smallest turbulent eddy size. It is assumed that the outer scale is much

larger than the beam size and its effects can be neglected. As a wave propagates through

turbulence, its optical coherence is degraded. The transverse coherence radius of a plane

wave with wavenumber k that propagates a distance L through Kolmogorov turbulence, i.e.,

where effects of the inner and outer scales can be neglected, is given by ρ0 = (1.46k2C2
nL)−3/5.

The Rytov variance σ2
R = 1.23C2

nk
7/6L11/6 and the dimensionless constant Λ = 2L/(kW 2)

parameterize the regimes of weak and strong optical fluctuations, with σ2
R > 1 or σ2

RΛ > 1

denoting the regime of strong optical fluctuations[22]. W denotes the beam spot size at

distance L in the absence of turbulence, and is usually calculated using vacuum Gaussian

optics.

In principle, a beam with a diameter smaller than `0, which typically varies from 1 mm

to 1 cm, will undergo wander with very little turbulence-induced spreading[1]. However,

maintaining such a small spot size is not possible when the laser power P is much less or

much greater than the nonlinear self-focusing power of air PNL = λ2/(2πn0n2), where λ is the

laser wavelength, and n0 and n2 are the linear and nonlinear refractive indices, respectively.

For >psec pulses with λ = 1µm, n2 = 3 × 10−19 cm2/W, PNL ≈ 5 GW. A collimated,

Gaussian beam with P << PNL will spread due to diffraction with a characteristic scale

length ZR, while for P >> PNL, turbulence can seed a filamentation instability[17].
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Self-channeling requires an initially collimated pulse with a peak power comparable to

PNL.The balancing of diffraction and nonlinear self-focusing, to lowest order, is an unsta-

ble equilibrium that limits the distance over which the pulse can propagate without ei-

ther spreading or collapsing into a filament. In the absence of turbulence, the spot size

of an initially collimated Gaussian beam evolves according to[23] W (z) = W0[1 + (1 −
P/PNL)(z/ZR)2]1/2, for P ≤ PNL, where ZR = kW 2

0 /2, and W0 is the initial Gaussian

spot size. This suggests that the effective Rayleigh length is ZR/
√

1− P/PNL, and when

P = PNL, diffraction is cancelled by nonlinear focusing. This expression assumes that the

beam profile remains Gaussian. The self-focusing length is more accurately described in Ref.

[24]. In reality, the beam profile evolves even when P = PNL, but for P slightly less than

PNL, the beam can propagate for many Rayleigh lengths and retain a significant fraction of

its energy within a radius equal to its original spot size. Additionally, the spot size must be

small enough to maintain coherence[19].

There are two parameter regimes to consider. The first regime, characterized by W0 <

(`0, ρ0), produces long-range channeling in which the beam power contained within a radius

W0 remains relatively constant over distances > 10ZR. In this regime, the smallest phase

distortions imprinted by the turbulence are larger than the beam spot size. Hence the beam

refractively wanders through the turbulence but is held together by nonlinear focusing. Since

the inner scale of atmospheric turbulence can be as small as 1 mm, the Rayleigh length and

channeling distance in this regime is small from a practical point of view. For example, for

W0 = 1 mm and λ = 1µm, a channeling distance of 15 ZR, which is typically observed in

our simulations, is only 47 m. In the second regime, `0 < W0 < ρ0, phase perturbations

that are small compared with the beam spot size scatter energy out of the beam, resulting

in an increase of the RMS spot size. However, the center of the beam remains collimated

and a significantly larger fraction of its power propagates within a radius W0, compared to

a low-power beam. Coherence lengths in a typical atmosphere with C2
n = 5 × 10−15 m−2/3

at several kilometers range are approximately 1-3 cm. Hence, assuming the beam radius is

1 cm, a channeling distance of 15 ZR0 corresponds to 4.7 km. When W0 >> ρ0, the effect

of nonlinear focusing is negligible and the beam spreads like a low-power beam.
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III. CHANNELING SIMULATIONS

We simulate the propagation of a high-power laser pulse through turbulence using the

HELCAP code [23, 25], which solves the paraxial equation for the laser electric field envelope

A:

[
2ik

(
∂

∂z
+ α

)
− kβ2

∂2

∂τ 2
+∇2

⊥

]
A = −2k20δnA, (1)

where δn = δnT + n2I, z is the axial propagation coordinate, τ = t − z/vg, vg is the

pulse group velocity, α is the atmospheric extinction coefficient (e.g., due to aerosols and

air molecules), β2 = 0.22 fsec2/cm is the group velocity dispersion (GVD) coefficient at

λ ≈ 1µm, and δnT is the refractive index due to turbulence, which we model as a series

of random phase screens with Tatarskii spectral characteristics. To simulate propagation

over approximately 15 Rayleigh lengths with adequate resolution, we solve Eq. (1) on a

Cartesian grid with 512x512 transverse points, 400 steps in the propagation coordinate z,

with 40 uniformly spaced turbulence phase screens along the beam path. Ensemble-averaged

quantities are obtained using 103 turbulence realizations. The propagation dynamics for

finite duration pulses in extinctive environments are complex as we will show in our time-

dependent simulations. For now, to illustrate the basic physics of nonlinear channeling, we

retain only the terms in Eq. (1) related to transverse focusing, nonlinearity, and turbulence,

i.e., we model a beam with no temporal variation (∂/∂τ = 0).

A. Propagation without turbulence

Figure 1 shows the fractional power contained within a radius W0, of an initially colli-

mated Gaussian beam propagating in the absence of turbulence. By definition, a Gaussian

beam initially contains 0.86P within a spot size W0. As the beam propagates, the power

within W0, denoted by PW0 , changes depending on the ratio of P/PNL. P << PNL charac-

terizes linear propagation, in which PW0 decreases over a scale distance ZR. As P increases

and becomes comparable to PNL, the beam retains more of its power within W0 as it prop-

agates. For P = 0.945PNL, PW0 is almost constant over 15 ZR; although not shown in the

figure, PW0/P > 0.5 for up to 30ZR. However, increasing the power to 0.95 PNL results in

over-focusing that leads to filamentation. At z = 8ZR, the beam has collapsed to a dimen-

5



sion that is not sufficiently resolved in the simulation and, beacuse plasma effects are not

included in these simulations, artificial numerical diffraction occurs. Note the very sensitive

nature of the channeling to beam power, where a 1.6% change in P/PNL changes PW0 by a

factor of 2 after 15ZR.

P
<

<
P

N
L

0.945 
0.95 P/PNL =

FIG. 1: Simulation results showing fractional power, PW0/P contained within a radius W0 (the

initial beam radius) as a function of propagation distance z (in units of the Rayleigh length, ZR)

for various powers P (in units of the nonlinear power PNL). The initial beam is collimated and

has a Gaussian intensity profile.

B. Propagation in turbulence

We compare the channeling of the beam through turbulence for 3 cases: (1) W0/`0 << 1,

(2) W0/`0 ' 1, and (3) W0/`0 >> 1, and consider a scaled propagation distance L = 15ZR

with σ2
R = 3.0, and P = 0.945PNL.

Figure 2 illustrates the channeling by plotting isosurfaces of normalized beam intensity for

a number of representative simulation ensembles. The isosurface plotted is the 0.5 contour

of the beam intensity normalized to its peak value at a given z, i.e., the diameter of the

surface is the beam’s full-width-half-max. The surfaces show that for most cases the beams

wander but their radius is relatively constant along the entire path. In a few of the cases

shown, the beams either spread, or focus to a filament before propagating the entire path.
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z = 0 

z = 15 ZR 

propagation direction 

FIG. 2: Simulation results showing isosurfaces of 0.5 times the normalized beam intensity as

a function of transverse postion and scaled propagation distance for a representative ensemble

of turbulence realizations. The initial beam is collimated with a Gaussian intensity profile and

P = 0.945PNL.

Figure 3 plots the channeled power PW0 as a function of propagation distance in the

various regimes. In regime (1) turbulence has little effect on the channeling of the beam,

i.e., over the entire propagation path, PW0 is almost unchanged relative to its value in the

absence of turbulence. As the inner scale is made comparable to (case 2), and then smaller

(case 3) than W0, PW0 decreases. However, even for case 3, the fractional power channeled is

much larger than for a low-power beam without nonlinear focusing. Because the turbulence

spectrum has an exponential decay near the inner scale, there is little difference between

cases (2) and (3). In calculating the ensemble-averaged fractional power that is channelled,

we neglect cases where the beam collapses (forms a filament) before propagating the entire

range of 15 ZR. The probability of the beam propagating the entire path without filamenting

is approximately 0.86 in case (1), and 0.98 in case (3).

Figure 4 shows the probability distributions of the beam spot size at z = 15ZR along

with the corresponding ensemble-averaged intensity profiles (with the centroid displacement

removed). The standard deviation of the distribution in regime (1) is ≈ 0.5W0, while in

regime 2 it is larger at ≈ 2.5W0.

We calculate the coherence radius of the beam, ρ0, numerically from the degree of coher-

ence (DOC) using Eq.(56) of Ref.[1], i.e., the coherence radius ρ0 is the transverse distance

|~r − ~rc| at which the degree of coherence (DOC) function decreases to 1/e of its peak

value, where DOC(~rc, ~r, z) = |Γ2(~rc, ~r, z)| [Γ2(~rc, ~rc, z)Γ2(~r, ~r, z)]−1/2, ~rc is the position vec-

tor of the beam centroid, ~r is an arbitrary position in the transverse plane of the beam,

Γ2(~r1, ~r2, z) = 〈A(~r1, z)A
∗(~r2, z)〉, and the 〈〉s denote an ensemble average over many re-

alizations of turbulence. The DOC is defined with respect to the beam centroid with the
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(1) 

(2) 

(3) 

no turbulence 

P
<

<
P

N
L

FIG. 3: Ensemble-averaged fractional power, PW0/P , as a function of propagation distance, z (in

units of the Rayleigh length, ZR), for σ2R = 3, P = 0.945PNL, and (1) W0/`0 = 0.1, (2) W0/`0 = 1,

and (3) W0/`0 = 10. Curves representing the case of no turbulence (solid red curve) and diffraction

in vacuum (dotted black curve) are shown for comparison.

wander contribution removed. This definition is more appropriate for the describing the

physical role of coherence in the channeling process.

Figure 5 plots the coherence radius, the spot size W =
√

2WRMS (WRMS is the root-

mean-squared radius), and full-width-half-max (FWHM) of the beam as a function of scaled

propagation distance in the regimes `0 >> W0 (Fig. 5a) and `0 << W0 (Fig. 5b). The

coherence radius of the channeling beam in both regimes decreases with propagation distance

and is well-described by the coherence radius of a low-power plane wave, which is also plotted

for comparison. Note that a collimated, low-power Gaussian beam has a larger coherence

radius than a plane wave because as the beam diffracts, the small scale incoherent structures

created by turbulence expand. For a channeling beam, however, the beam has near-planar

phase fronts, hence its coherence radius is similar to that of a plane wave. Self-focusing

becomes less effective as ρ0 becomes comparable to W . In the case of Fig. 5(a), the

coherence radius is larger than W for L < 10ZR, i.e., the beam remains mostly coherent,

and both W and the FWHM are significantly smaller than a diffracting beam. There is

a slight increase in the FWHM when the coherence radius becomes smaller than W . The
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(1)

(3)

0
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FIG. 4: Ensemble-averaged probability density versus spot size, W (in units of the initial spot size,

W0), after propagating a distance 15 ZR with σ2R = 3 and P = 0.945PNL for cases (1) W0/`0 = 0.1

and (3) W0/`0 = 10 corresponding to Fig. 3. Insets show ensemble-averaged normalized intensity

contours for each case. Beam wander has been subtracted to illustrate short-time profiles.

same qualitative behavior is seen in Fig. 5(b) in the regime where `0 << W0, i.e., the

FWHM remains relatively constant until the coherence length becomes comparable to W

at L ≈ 5ZR, at which point the FWHM spreads more rapidly. In both regimes, the beam

remains much smaller than the diffraction limit.

In the absence of turbulence, self-channeling of a Gaussian beam produces a non-Gaussian

beam profile with a small, central spot, characterized by the FWHM, that is supported by

an energy “reservoir” around the beam. In the presence of turbulence, the coherence of

this energy reservoir is degraded as the coherence length becomes smaller than the RMS

spot size. The central spot holds together while a larger, mostly incoherent “halo” develops,

and spreads. As this energy reservoir diffracts away, the central spot starts to spread and

channeling is lost. When the inner scale is smaller than the beam radius, the disruption of

channeling occurs sooner than when the inner scale is large.

The centroid displacement (wander) of a beam while undergoing nonlinear channeling is

shown in Fig.(6) in the parameter regimes W0/`0 << 1 and W0/`0 >> 1. The theoretically

predicted wander, Wc = (2.42C2
nL

3W
−1/3
0 )1/2, for a low-power (P << PNL), collimated
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(a)	

(b)	

⇢0

⇢0

FWHM

FWHM

W

W

FIG. 5: Ensemble-averaged coherence radius ρ0 (yellow dots), spot size W =
√

2WRMS (dashed

red curve), and full-width-half-max (FWHM, dotted gray curve) vs. propagation distance, z (in

units of the Rayleigh length, /ZR), for σ2R = 3, and P = 0.945PNL, with (a) W0/`0 = 0.1 and (b)

W0/`0 = 10. Theoretical low-power plane wave coherence radii for W0/`0 = 0.1 (black curve) and

W0/`0 = 10 (blue curve) are also plotted for comparison.

Gaussian beam in the weak turbulence limit, with W0/`0 >> 1, and Λ << 1, is also

shown for comparison. Note that the theoretical curve, which is valid for the regime Λ < 1

at low-power, adequtely describes the wander of the nonlinearly channeling beam in the

regime Λ > 1 because the collimation provided by nonlinear focusing results in a larger

effective Rayliegh length, i.e., small Λ. The same cannot be said of the regime W0/`0 << 1.

The ensemble-averaged wander in this regime for low-power propagation is described by

Wc/W0 = 0.89(L/ZR)W0/(ρ
5/6
0 `

1/6
0 ). If this expression were plotted in Fig.(6), the curve

would be very close to the theoretical curve for W0/`0 >> 1. The simulations, however,

predict a smaller value of Wc for W0/`0 << 1 compared with linear theory.

IV. CHANNELING WITH ATMOSPHERIC EXTINCTION

So far, we have neglected the temporal dynamics of the pulse. For a pulse in which the

peak power P ≈ PNL, the leading and trailing edges will diffractively spread. Additionally,
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FIG. 6: Ensemble-averaged RMS centroid displacement (wander) versus propagation distance,

z (in unit of the Rayleigh length, ZR), in the regimes W0/`0 << 1 (yellow dashed curve) and

W0/`0 >> 1 (blue dashed curve). The solid black curve denotes the theoretical wander of a

low-power (P << PNL), collimated Gaussian beam in the regime W0/`0 >> 1, Λ << 1.

in any realistic atmosphere, molecules and aerosols deplete energy from the pulse through

absorption and scattering. Given the sensitivity of the self-channeling process to laser power,

the pulse must be chirped so that, as energy is lost, it compresses due to the dispersion of

air at a rate that preserves the condition P ≈ PNL. The optimal chirp causes the pulse

duration, T , to vary as ∂T/∂z = P−1NL(∂E/∂z), where E is the pulse energy. For a chirp

where the frequency varies linearly in time, it is not possible to satisfy this condition along

the entire propagation path since the energy decays exponentially with distance, while the

pulse duration is, to lowest order, given by[23] T (z) = T0
[
(1 + β0z/ZT )2 + (z/ZT )2

]1/2
,

where β0 = ZT/LT characterizes the chirp, ZT = T 2
0 /(2|β2|), LT is the location of

the longitudinal focus, and the initial laser pulse envelope is assumed to have the form

A(0) = A0 exp [−r2/W 2
0 − (1 + iβ0)τ

2/T 2
0 ]. For propagation distances L << α−1, chan-

neling requires LT ≈ PNLT0/(2αE0), where E0 is the initial pulse energy. In principle, a

nonlinear chirp can be used to increase the channeling distance to something comparable to

the extinction length.

Even without turbulence, the evolution of the chirped pulse profile is complicated. For
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pulses with finite duration, the leading and trailing edges would diffract away, but the region

of peak power should be able to channel for many ZR and be easily observable. An example

of this behavior is shown in Fig. 7 which shows the longitudinal and transverse intensity

distribution of the laser pulse in the absence of turbulence.

r/
W

0
r/

W
0

r/
W

0

(t � z/vg)/T0

(a) z = 0

(b) z = 10 ZR

(c) z = 13 ZR

normalized	intensity

FIG. 7: Simulation result showing laser intensity contours versus radial coordinate, r (in units of

the initial spot size, /W0), and axial coordinate, t− z/vg (in units of initial pulse duration, T0), for

(a) z = 0, (b) z = 10ZR, and (c) z = 13ZR. Simulations use a negatively chirped Gaussian pulse

with scaled input parameters LT /ZR = 13.2, P/PNL = 0.8, αZR = 0.053, n2I0 = 4.8× 10−10, and

ZR/ZT = 2× 10−3

In the presence of turbulence, Fig. (8) shows the result of using a negatively chirped

Gaussian pulse (W0 = 1.4 cm) with the scaled turbulence parameters W0/`0 = 1 and

σ2
R = 1.5. The temporal compression of the pulse keeps the power relatively constant

over 6 ZR. Near the temporal focus at z = 10ZR, the power increases to 5PNL, but the

beam continues to channel with a relatively constant FWHM for at least 12ZR. The radius

(
√

2WRMS) increases steadily and the fractional power PW0/P decreases with z but remains

well above that of a diffraction-limited beam even though the beam has lost ≈ 55% of its
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energy after 12ZR. The increasing RMS spot size apparent is due to the rapidly diffracting

leading and trailing edges of the pulse, as in Fig. (7).

P
W

0 /P

FWHM

W

(a) 

(b) 

T
RM

S /T
0

P/PNL

P
W

0 /P
(vac)

FIG. 8: Panel (a): RMS pulse duration, TRMS , in units of initial pulse duration, T0, (red dashed

curve) and peak power P/PNL (blue curve) vs. propagation distance, z (in units of the Rayleigh

length, ZR). Panel (b) radial FWHM (gray curve), beam radius W =
√

2WRMS (dashed red curve),

fractional power within radius W0 (dashed blue curve), and fraction power for vacuum propagation

(dotted black curve) vs. propagation distance z. Simulations use a negatively chirped Gaussian

pulse with the same input parameters as in Fig. 7, and with σ2R = 1.5, W0/`0 = 1, ρ0/W0 = 1.9 at

z = 15ZR.

V. CONCLUSIONS

In conclusion, we have investigated a new paradigm for transmitting small spot size, high-

intensity laser pulses through strong turbulence over many Rayleigh lengths (potentially

kilometers). The channeling mechanism relies on 1) using the self-focusing of a collimated

pulse with peak power P ≈ PNL to overcome diffraction, and 2) a spot size small compared

to the coherence length or inner scale of the turbulence to reduce spreading. In the presence

of atmospheric extinction, the pulse can be chirped to maintain self-channeling.

Nonlinear channeling can be more effective than using conventional optics to produce a

small spot size pulse over long distances in the atmosphere. For example, the long-time-
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averaged RMS spot size of a beam focused at a range L in strong turbulence is given by[1]

WLT = W
√

1 + 1.63(σ2
R)6/5Λ. Consider a situation where the scaled parameters are the

same as in Fig. 8. For a low-power beam focused at range L = 7.2km, with W0 >> ρ0, and

σ2
R = 1.5, we obtain a highly scintillated beam at range L with WLT = 0.72(σ2

R)3/5
√
Lλ ≈ 8

cm and FWHM = 13 cm. Note that for these parameters, a larger W0 will not result in a

smaller focal spot, and that beam wander is a small fraction of WLT . Our results indicate

that self-channeling can produce a spot with WRMS = 5.2 cm and FWHM = 1.4 cm at

range, using smaller optics (W0 ≈ 1.4 cm) in strong turbulence.

Acknowledgements

The authors acknowledge useful discussions with Drs. A. Schmitt-Sody and J. Elle. J.

Penano and M. Helle are supported by the Office of Naval Reserch, J. Palastro and G.

DiComo are supported by the High Energy Laser Joint Technology Office, and B. Hafizi is

supported by the NRL Base Program.

Appendix

It is useful, for future experimental validation, to examine the sensitivity of the nonlinear

channeling mechanism to variations in power and for beam profiles characteristic of a real

laser system. Present-day short pulse laser systems are characterized by near-diffraction-

limited beam quality (M2 ≈ 1.2) and pulse-to-pulse energy stability of ≈ 3%. Here, we

simulate nonlinear channeling of such a beam.

We measured the transverse intensity profile of a pulse generated by the Astrella laser,

a Ti:Sapphire-based ultrashort pulse laser that can output a 1 kHz train of 7 mJ, 40 fsec

pulses. The laser intensity profile is well-represented by the sum of two Gaussians, i.e.,

the initial pulse envelope is modeled as A(z = 0) = [a1 exp(−2r2/r21) + a2 exp(−2r2/r22)]
1/2.

Setting a1/a2 = 1.47, r1/r2 = 0.7 results in excellent agreement with the experimental

profile of Fig. 9. For comparison, a best-fit Gaussian is also plotted. The residual error

resulting from the two-Gaussian fit is five times smaller than for the single Gaussian fit. The

experimentally measured M2 is 1.2. With a perfectly planar phase front, the bi-Gaussian

profile has M2 = 1.04. Simulation results using this profile with planar phase fronts are
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FIG. 9: Measured intensity of laser pulse from Astrella laser (dots) vs. transverse position. A

Gaussian best-fit (black curve) and two-Gaussian fit (red curve) are shown for comparison.

markedly similar to those of Fig. 3. To increase M2 to the experimentally measured value,

we imposed a quartic radial variation of the phase. The high-wavenumber noise seen on the

experimental profile is an artifact of speckle resulting from the measurement in which the

beam is scattered from a rough surface.

We simulated nonlinear channeling of the bi-Gaussian laser profile through turbulence

and varied the turbulence inner scale and laser power to observe how channeling is affected.

Figure 10 shows the results of plotting the fractional power contained in spot size W0 versus

propagation distance. Results are plotted for various inner scale lengths and for two differ-

ent laser powers which differ by 3%, corresponding to the experimentally observed energy

variance.

Comparing the two red curves in panels 1 and 2, the results show a high sensitivity to

beam power in the absence of turbulence. At a power of 1.06 PNL, the fractional power

contained in W0 first decreases as the beam expands, and then increases as nonlinear self-

focusing focuses the beam so that the fractional power after propagating 15 ZR is approx-

imately equal to its initial value. However, for a power that is 3% lower, self-focusing is

not as effective and the fractional power in W0 after 15 ZR decreases by a factor of 4, i.e.,

the effective spot size increases by a factor of 2. A qualitatively similar result is seen for

turbulence in which the inner scale is large compared to the spot size (yellow curves). Then

15



the inner scale is comparable to or smaller than the spot size, the sensitivity to power is

decreased. For both powers plotted, the effective spot size increases by a factor of 2-3 over

15 ZR. The beam is still significantly more collimated that the diffraction-limited case in

which the spot size increases by a factor of 21.

[1] L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, Second

Edition (SPIE Press Monograph Vol. PM152) (SPIE Publications, Bellingham, Washington,

2005), 2nd ed., ISBN 0819459488.

[2] J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New

York, NY, 1998), ISBN 9780195090192.

[3] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Optics letters 20(1), 73 (1995).

[4] A. Couairon and A. Mysyrowicz, Physics Reports 441, 47 (2007).

[5] S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, Optics

express 15(6), 2779 (2007).

[6] J. Palastro, T. Antonsen Jr, and H. Milchberg, Physical Review A 86(3), 033834 (2012).

[7] N. Jhajj, E. Rosenthal, R. Birnbaum, J. Wahlstrand, and H. Milchberg, Physical Review X

4(1), 011027 (2014).

[8] B. La Fontaine, F. Vidal, Z. Jiang, C. Chien, D. Comtois, A. Desparois, T. Johnston, J.-C.
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(a)

(b)

FIG. 10: Ensemble-averaged fractional power contained within the initial beam radius W0 as a

function of propagation distance, z (in units of the Rayleigh length, ZR), for (a) P = 1.06PNL, and

(b) P = 1.03PNL. The Rytov variance σ2R = 3 at z = 15ZR. Curves represent W0/`0 = 0.1 (yellow

dashes), (2) W0/`0 = 1 (green dashes), and W0/`0 = 10 (shorter dashes). Curves representing the

case of no turbulence (solid red curve) and diffraction in vacuum (dotted black curve) are shown

for comparison.
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