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The damped driven nonlinear Schrédinger equation (NLSE) has been used to understand a range
of physical phenomena in diverse systems. Studying this equation in the context of optical hyper-
parametric oscillators in anomalous-dispersion dissipative cavities, where NLSE is usually re-
ferred to as the Lugiato-Lefever equation (LLE), we are led to a new, reduced nonlinear oscillator
model which uncovers the essence of the spontaneous creation of sharply peaked pulses in opti-
cal resonators. We identify attracting solutions for this model which correspond to stable cavity
solitons and Turing patterns, and study their degree of stability. The reduced model embodies
the fundamental connection between mode synchronization and spatiotemporal pattern formation,
and represents a novel class of self-synchronization processes in which coupling between nonlinear
oscillators is governed by energy and momentum conservation.

PACS numbers: 05.45.Xt, 05.65.+b, 42.65.Re, 42.65.Sf, 42.65.Tg

I. INTRODUCTION

Self-organization is an intriguing aspect of many
nonlinear systems far from equilibrium, which leads to
the emergence of coherent spatiotemporal structures
[1]. Many such nonlinear systems have been modeled
by the externally driven damped nonlinear Schrodinger
equation (NLSE). Examples include such diverse systems
as Josephson junctions, charge-density-waves, quantum
Hall ferromagnets and ferromagnets in microwave fields,
RF-driven plasmas, shear flows in liquid crystals, and
atmospheric and ocean waves [2]. The NLSE admits
spatiotemporal sharply peaked solutions (e.g., dissipa-
tive solitons), but a central mystery remains: while
it is understood that such solutions occur because of
phase locking, no formal model is currently available to
explain the underlying self-synchronization mechanism.
In this paper, we introduce a reduced phase model
which captures the fundamental connection between
mode synchronization and pulse formation. While the
results presented here are generic from the mathematical
perspective, considering them within a specific physical
system allows a more lucid presentation and interpre-
tation of the results. Consequently, we consider the
damped driven NLSE in the context of frequency combs
based on dissipative optical cavities [3-5].

A high-Q (quality-factor) optical resonator made of
Kerr-nonlinear material and pumped by a continuous
wave (CW) laser forms a hyper-parametric oscillator
based on nonlinear four-wave mixing (FWM) [6, 7],
and can generate an optical frequency comb: an array
of frequencies spaced by (an integer multiple of) the
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resonator free spectral range (FSR). The generation of
a frequency comb with equidistant teeth is, however,
not enough; temporal pulse generation requires also the
mutual phase locking (synchronized oscillation) of the
frequency comb teeth. Unlike pulsed lasers, pulsation
in dissipative optical resonators requires neither active
nor passive mode locking elements (e.g. modulators or
saturable absorbers) [5, 8]. Rather, pulsed states arise
naturally from a simple damped driven NLSE, in this
context commonly called the Lugiato-Lefever equation
(LLE) [2, 4, 9-13]. Two categories of stable pulsed solu-
tions have been identified for the LLE: stable modulation
instability (also called hyper-parametric oscillations or
Turing rolls) and stable cavity solitons [10-12, 14-16].
Owing to their stability, these phase-locked combs have
been used to demonstrate chip-scale low-phase-noise
radio frequency sources [17] and high-speed coherent
communication [18, 19].

Phase locking in optical microresonators has been
studied in terms of the cascaded emergence of phase-
locked triplets [20] and injection locking of overlapping
comb bunches [21]. Additionally, few-mode models have
explained the phase offset between the pumped mode
and the rest of the comb teeth [22, 23], and have shed
light on the temporal evolution of comb harmonic phases
[24]. More recently, Wen et al. [25] have emphasized the
link between oscillator synchronization—most famously
described by the Kuramoto model—and the onset of
pulsing behavior.  However, while stable ultrashort
pulses have been demonstrated in a variety of platforms
[7, 13, 26, 27], their underlying phase locking mechanism
is still unknown. The reduced model introduced in
this paper reveals the underlying nonlinear interactions
responsible for the spontaneous creation of pulses in
optical resonators with anomalous dispersion. The
modal interactions in the LLE are the result of the
cubic (Kerr) nonlinearity and their specific form reflects



conservation of energy and momentum. Consequently,
the phase couplings in our model are ternary (i.e., they
involve three-variable combinations) rather than binary,
as in typical phase models [28]. Our model admits
attracting solutions which correspond to stable cavity
solitons and Turing rolls. We show that the phase
stability of steady-state LLE solutions in the strong
pumping regime can be studied easily using this model.
Moreover, our model sheds light on the role of MI and
chaos in the generation and stability of Turing rolls and
solitons.

II. REDUCTION OF THE LUGIATO-LEFEVER
EQUATION

Creation of sharply peaked solutions in dissipative op-
tical cavities relies on the establishment of a fine bal-
ance between nonlinearity, dispersion (or, in the case of
spatial cavities, diffraction), parametric gain, and cavity
loss [29]. The dynamics of this complex interaction is
described by the LLE, which is a nonlinear partial dif-
ferential equation with periodic boundary conditions for
the intra-cavity field envelope in a slow and a fast time
variable [9, 11] or, equivalently, in time and the azimuthal
angle around the whispering-gallery-mode resonator [12].
The cubic nonlinear term in the LLE leads to a rich inter-
play between the power and phase dynamics of the comb
teeth. To uncover the self-synchronization mechanism
leading to phase locking in this equation, as will become
clear in this section, we make experimentally-motivated
assumptions on the power spectrum. This simplification
allows us to separate the evolution of the power spec-
trum from that of the phase and arrive at a reduced
model (a phase model) which embodies the fundamen-
tal phase locking mechanism enabled by the nonlinearity
in the LLE.
In normalized form, the LLE reads
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where ¢(6, 7) and F(6, 7) are the field envelope and pump
amplitude respectively, both normalized to the sideband
generation threshold,  and ds are the pump-resonance
detuning and second-order dispersion coefficient, each
normalized to the half-linewidth of the pumped reso-
nance, and 7 is the time normalized to half of the cav-
ity photon lifetime [12] (d2 < 0 for anomalous dis-
persion). As noted earlier, the LLE has stable dis-
sipative soliton and Turing roll solutions. If a phase
locking mechanism exists in the LLE, when one of its
phase-locked steady-state solutions, e.g. a single soliton,
is used as initial condition for propagation with time and
its phase spectrum is randomized, we would expect the
phase locking mechanism to recover the soliton phase af-
ter some time; see Fig. 1. Because of the interplay of the
power and phase dynamics, more than one local peak

may appear after randomizing the phase profile as seen
in Fig. 1(a). To appreciate the influence of separating
power and phase dynamics, it is possible to enforce the
power spectrum of a single-soliton solution in every step
of integration of the LLE when propagating the solu-
tion in time. Then, the system converges to the simpler
phase-locked state of a single soliton, as can be seen in
Fig. 1(b). The difference between the smooth (before
randomizing the phases) and striped (after pulse recov-
ery) phase profile (lower panel) in Fig. 1(b) stems from
the linear added phase due to the shift of the recovered
soliton peak and wrapping of the phase between —m and
7. The slope of the linear phase profile, as we will show,
depends on the initial random phase profile when the
locking process kicks in and its arbitrary character is a
result of the rotational symmetry of the resonator; see the
discussion about the zero eigenvalue in Section IV. The
phase profile (lower panel) of the recovered multi-soliton
state of Fig. 1(a) is constant with time after the fourth
peak appears but, in contrast to the single-soliton phase
profile of the lower panel in Fig. 1(b), does not have a
regular pattern repeating with the mode number. It is
worth noting that we have used a very extreme phase
randomization in Fig. 1, i.e., random phases chosen from
a uniform distribution over (—m, 7). If, instead, a normal
distribution with standard deviation equal to a fraction
of the period (e.g., w/4) is used, a single soliton, rather
than multiple solitons, is more likely to be recovered even
without enforcing the single soliton power spectrum.

Figure 1 suggests that a phase-locking mechanism does
indeed underlie pulse formation in the LLE. To under-
stand this mechanism, we consider comb generation in
the frequency domain. Discrete-time Fourier transform
of Eq. (1) (with the azimuthal angle # and comb mode
number 7 as conjugate variables [30]), yields an equiva-
lent set of coupled nonlinear ordinary differential equa-
tions (ODEs) [31],

da ;
T = (i) + 1Y it Gy + By (2)
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for the temporal evolution of the complex comb teeth
amplitudes @, (with magnitude |@,| = a, and phase
Zay = ¢,) which make up the spatiotemporal field en-
velope through ¢(0,7) = Zf;/:_N anexp(ind). In this
picture, each comb mode is a nonlinear oscillator and
one of the coupled ODEs follows the temporal evolution
of its complex amplitude. In Eq. (2), oy, = o — don? /2
is the detuning of comb tooth 7 from its neighboring
resonance, 0p, (for integers p and ¢) is the Kronecker
delta, nypn = | — m + n, and [, m, and n are inte-
gers; modes are numbered relative to the pumped mode
for which n = 0. We consider CW pumping for which
F,, = 6o, Fp exp(i¢p), Fp being proportional to the pump
magnitude and ¢p representing its phase.

The LLE defines a grid in the frequency domain (dot-
ted lines in Fig. 2) where the spacing between the grid
sites is equal to the resonator FSR (D1, see Appendix A
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FIG. 1. Phase locking after randomizing the phase profile of a single-soliton LLE solution. A dissipative soliton is propagated
in time under the LLE. The soliton phase profile is suddenly randomized at 7 = 1. (a) Integration of the LLE is continued
normally after phase randomization. As a result of the interplay between power and phase evolution, the single-soliton state is
lost but multiple solitons may appear, pointing at the existence of a phase locking mechanism. (b) To suppress the influence of
comb power evolution on the phase recovery, the power spectrum of a single soliton is enforced in every integration step after
phase randomization, and the single soliton peak is seen to be recovered. The upper panels illustrate the temporal evolution
of the intra-cavity waveform by color density, while the middle and lower panels shows the frequency comb power and phase

profiles, respectively.

and [12]) at the pumped mode. The standard LLE [12]
is written in a rotating reference frame such that in its
derivation a term D101 /06 is removed from the equation
to yield Eq. (1). In the frequency domain, this change
translates into removing a term inD; from each of the
coupled ODEs with n # 0, which, in turn, amounts to
removing the spacing between the grid sites by folding
Fig. 2(a) such that all the dotted lines coincide. Because
of the resonator modal dispersion, the modal resonances
(green) will not all fall at the same position. Before phase
locking, the different comb harmonics (teeth) may be at
any spectral position around their corresponding reso-
nance. Phase locking is established when all of the comb
lines align with the pump and, additionally, oscillate syn-
chronously. The phase profile ¢, of the comb teeth com-
plex amplitudes a,, in Eq. (2) captures both the alignment
and the synchronized oscillation of the comb teeth.
Experimentally, Turing rolls arise from the intra-cavity
equilibrium field through modulation instability of vac-
uum fluctuations and correspond, in the frequency do-
main, to combs that usually have multiple-FSR spac-
ing between their adjacent teeth. Solitons, on the other
hand, are coherent combs with single-FSR spacing. Ex-
perimental and theoretical studies have suggested that
solitons are not accessible from the CW intra-cavity field
without seeding [32, 33], changing the pump frequency
or power [13, 15, 34, 35], or a suitable input pulse [36].
In the model introduced here, we treat solitons and rolls
in a unified manner. For solitons, n € {0,+1,...,+N}

while for rolls € {0, +u, +2u,...,=Nu}, where N is a
positive integer and the integer ¢ > 1 is the mode num-
ber at which MI gain peaks (the first pump sidebands are
generated) [16, 24, 37].

Experiments and numerical simulations suggest that
for stable solutions, the power of the pumped mode is
much larger than the other modes (the strong pumping
regime) and that in the absence of third- and higher-order
dispersion [38], the power spectrum of these solutions is
symmetric with respect to the pumped mode [13, 16, 26]
(see, e.g., the inset curves a% vs. mode number in Fig. 4).
Therefore, we exploit the symmetry of the power spec-
trum, adopt a perturbative approach (with a,, for n # 0
as the small parameters), and retain terms with at least
one contribution from the pumped mode ag in the triple
summations in Eq. (2). Equations of motion for the mag-
nitudes a, and phases ¢, can readily be found by using
an = anexp(ig,) in the resulting truncated equations,
dividing by exp(i¢,), and separating the real and imag-
inary parts (see Appendix A for details). Our approach
follows that of Ref. [25], with the generalization that here
the comb teeth magnitudes are not required to be equal.

The magnitude and phase equations for the pumped
mode include no linear contributions from @, and read

d F
E h’l(ao) = ai(F)) COS((bP - ¢0) -1 (3&)
¢o = %P sin(¢p — ¢o) — a + ag. (3b)
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FIG. 2. Frequency-domain interpretation of the LLE. The
LLE, Eq. (1), defines a grid (dotted lines) with spacing equal
to the resonator FSR at the pump frequency, D1, and is writ-
ten in a rotating reference frame, [12]. In the frequency do-
main, moving to the rotating frame translates into removing
the spacing between the grid sites by folding the schematic
of panel (a) such that all the dotted lines coincide. Because
of modal dispersion, the modal resonances (green) will not
all fall at the same position. Before phase locking, the differ-
ent comb teeth may be at any spectral position around their
corresponding resonance. Phase locking is established when
all of the comb teeth align with the pump and, additionally,
oscillate in synchrony. o, o « is the dimensional detuning
of comb tooth 7 from its nearest resonance.

The solutions settle on a fast time scale to the equilibrium
intra-cavity field ¢, = agexp(igg) [24]; subsequently, ag
and ¢g can be treated as constants to first order in a,o.

Equations of motion for the centered phase averages
¢y = by — o, where the phase average ¢, = (¢, +d_,)/2
is centered to the pumped mode phase ¢, can be found
using the phase equations for ¢_,, ¢.,, and ¢g. This
equation, to lowest non-zero order in a,g, takes the form

d 1 Fp .
o= §d2n2 + ad[1 + cos(2¢,)] — w sin(¢p — ¢o),
(4)
and can be integrated directly to give
tan ¢, = 'C;_ tanh[/|C(C + 2)|a3(T — 10)]. (5)

Here C' = dan?/2a% — Fpsin(¢p — ¢o)/ag, and 79 ac-
counts for constants of integration (or initial conditions).
Equation (5) holds when |2a% — a + dan? /2| < a2, a con-
dition that is automatically satisfied when MI gain ex-
ists (see Appendix A). Because the hyperbolic function
approaches unity as 7 — oo, ‘577 reaches the same con-
stant irrespective of the initial conditions. Since ¢, is
fixed, each pair of phases ¢4, must take values symmet-
rically located relative to the constant average. We will

refer to this as phase “anti-symmetrization”, following
the terminology of [25]. Once established, phase anti-
symmetrization means each centered phase average ¢,
can be treated as a constant to first order in a;,o.

The equations of motion for the phase differences
(PDs) defined by A, = (¢, — 0—y)/2,

%_aoz

are found by combining the phase dynamics equations for
each +n mode pair (see Appendix A). Here, K(I,7) =
ay taray {250 (G — G-+ Q) +sin(Gy — Gy — G) } is the
coupling coefficient for the pump—non-degenerate inter-
action of comb teeth labeled 0, [, n — I, and 7. Equation
(6) shows that the particular value of the pumped mode
power a3 only amounts to a re-scaling of time. This set
of equations is the model which governs the long time
evolution of phases in the system, and in particular
provides insight as to how it displays spatiotemporal
pulse formation. On the one hand, it is a phase model,
and in this sense is a member of a familiar family of
models, like the Adler equation [39] or the Kuramoto
model [40], used to study spontaneous synchronization.
On the other hand, Eq.(6) is unfamiliar, involving
ternary phase interactions rather than binary ones. In
the remainder of this paper, we will study solutions of
this reduced phase model, compare them with solutions
of the LLE, and analyze their stability.

K(l,n)sin(A;+ A,y — 4y),  (6)

III. REDUCED EQUATION FIXED POINTS

It can readily be verified, through direct substitution,
that a family of fixed point solutions of Eq. (6) is
A, = son + km, where sq is an arbitrary constant and
k is an integer. These solutions imply that the phases
have aligned: the slope of the line passing through the
phases of any pair of comb teeth n and —n will be the
same and equal to so, i.e., (¢, — ¢_;)/2n = sp.
Numerical integration of Eq. (6) confirms the exis-
tence of the family of solutions found analytically. Our
numerous runs of numerical integration, for different
comb spans (N from 3 to 1000) with random initial
PDs taken from a uniform distribution over (—m,]
always lead to PDs lying on straight lines. The slope
of the line depends on the initial conditions. In Fig. 3,
we show two examples, in blue (dark gray) and
red (light gray), for a comb with 201 teeth and with
two different sets of initial conditions. Figure 3(a)
shows the initial conditions while Fig. 3(b) depicts the
steady-state PDs at the end of the simulation time vs.
mode number. The results shown in Fig. 3 are for a
triangular power spectrum given by a, o exp(—ko|n|),
with ko = 0.05. This profile assumes a linear decay (in
logarithmic scale) of the comb teeth power spectrum [41]
with slope ox —20ky dB per increasing mode number by
unity. We found that the model is robust and addition
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FIG. 3. (Color online) Numerical solutions of Eq. (6). (a) Two examples of the phase differences (PDs) at the onset of
integration (initial conditions). These initial PDs have uniform probability density over (—m,w]. (b) Steady-state PDs for
the initial conditions shown in (a). It is seen that the final PDs lie on straight lines irrespective of the initial conditions, but
different initial values lead to different slopes for these lines. The upper blue (dark gray) line corresponds to the blue
(dark gray) initial values, while the lower red (light gray) line corresponds to the red (light gray) initial values
in (a). We verify the linearity of the final PDs through fitting a straight line to them (equations on the plot) and calculating
the coefficient of determination (R-squared). R? = 1 shows that the PDs do indeed lie on straight lines.
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FIG. 4. Phase alignment in (a) solitons and (b) Turing rolls in the steady-state solutions of Eqgs. (1) and (2). The inset curves
in red (top corners) show the spatiotemporal waveforms and those in black (bottom corners) are the frequency spectra. For
both solitons and rolls the phases lie on straights lines of arbitrary slope (see Fig. 3). Parameter values are (a) a = 2, d2
—0.0124, F = 1.41, and (b) a =0, d2 = —0.0124, F = 1.63. The phase profile has been unwrapped in (b).

of static randomness of modest relative size to the power method for a typical microresonator. In practice, the

spectrum and coupling coefficients K (I,7n) will still lead
to aligned PDs. Also, through numerical integration
of Eq. (6), we found that phase alignment occurs for a
variety of power spectrum profiles so long as the powers
of the sidebands are smaller than the pumped mode
power. Additionally, we observe that specific features
like cusp points or isolated sharp peaks in the power
spectrum envelope lead to step-like signatures in the
distribution of the steady-state PDs; this effect is a topic
of ongoing investigations and will be reported elsewhere.

The phase alignment predicted by the reduced phase
model of Eq. (6) is observed in the phase-locked solutions
of the LLE. Figure 4 shows two examples, in solitons
and Turing rolls, where Eq. (1) has been integrated
numerically using the split-step Fourier transform

random initial phases arise from vacuum fluctuations
that seed modulation instability or from the passage of
the system through the chaotic state while changing the
pump laser power or frequency. We note that the phase
offset between the pumped mode and the rest of the
phases emerges to counter dissipation [22, 25].

IV. STABILITY OF THE FIXED POINTS

Next, we consider the linear stability of the solutions
of Eq. (6). This analysis shows that the comb
power spectrum profile significantly affects its
stability properties [16, 42]. We note that the



analysis presented here is based on the reduced phase
model and does not consider instabilities caused by comb
power fluctuations. For the case of Turing patterns
with multi-FSR spacing between adjacent comb teeth,
in general cavity modal resonances not hosting comb
power can also contribute to comb instability. However,
because parametric gain for these modes is absent or
small (depending on parametric gain bandwidth and
the spectral distance of such modes from power-hosting
modes), and since stronger comb teeth dominate the
FWM process, such instabilities are less likely to grow.
In fact, unless pump power and detuning values
place the system close to the boundary of Turing
roll and soliton existence regions in the power
vs. detuning plane [16, 42], Turing rolls are
monostable, in the sense that, unlike solitons, for the
same system parameters and independent of system
history or initial conditions only one Turing pattern
with a unique number of peaks around the resonator
will be realized [18].

For simplicity, we take k = 0. (Stability analysis for
k # 0 follows in a similar way.) We consider a frequency
comb with 2N + 1 phase-locked teeth and temporarily
ignore the dependence of the comb teeth magnitudes on
mode number, i.e., as in [25], we take a,+0 = a < ao.
(The effect of the mode number dependence will be
included shortly.) After phase locking, the centered
phase averages (, reach a steady-state value independent
of mode number 7 (since the phases ¢, lie on a straight
line). Therefore, the coupling coefficients are all equal,
ie, K(I,n) = K > 0. Setting A, = son+¢,, we linearize
Eq. (6) to get € = J - €, where € = (e1,€2,...,enx)T, and
the Jacobian J and its eigenvalues can be expressed in
closed form for any N (see Appendix B). Except for one
zero eigenvalue, all of the eigenvalues are negative and
real, indicating asymptotic stability of the synchronized
state. The zero eigenvalue (corresponding to the Gold-
stone mode associated with the translational invariance
of the system in the real space [43, 44]) is forced by the
rotational symmetry of the LLE. In other words, the
choice of origin for the azimuthal angle 8 is arbitrary and
leads merely to an added linear phase. This confirms
the physical intuition that the slope of the phase profile
of a soliton or Turing roll, determined by random initial
conditions, is indeed arbitrary. Figure 5(a) shows the
non-zero eigenvalues of the equilibrium for increasing
comb span for the case of uniform sideband power
profile. It is seen that the eigenvalue closest to zero
(black curve) grows more negative with increasing comb
span. The stability of the fixed points for each comb
span is determined by the negative eigenvalue of smallest
size. Hence, for the case of constant comb amplitudes, a
wider comb is expected to demonstrate superior phase
stability.

The model introduced in Eq. (6) allows the compari-
son of the phase stability properties of frequency combs
with different power spectra. Because the coupling co-
efficients K (I,n) depend on the comb teeth magnitudes,

the power spectrum profile of a steady-state solution
is expected to influence its stabiity. To investigate the
effect of a non-constant comb power spectrum, we use a
triangular comb power profile given by a, o« exp(—ko|n]|)
[41]. Though not analytically tractable, we find numeri-
cally that again, except for a single zero eigenvalue forced
by symmetry, the eigenvalues of J all have negative real
part. Figure 5(b) shows the eigenvalue spectrum vs.
increasing comb span for the triangular power profile.
Note that as the comb span increases, the eigenvalue
of smallest magnitude becomes bounded and almost
independent of N (black curve in Fig. 5(b)). Therefore,
the phase stability of the comb does not improve or
degrade with increasing comb span when the natural
mode number dependence of the comb teeth magnitudes
is taken into account. Pfeifle et al. [18] showed that
in the presence of pump power and frequency noise,
Turing rolls are more robust than solitons in the same
microresonator with comparable pump powers. They
attributed this finding partially to the smaller number
of comb teeth in Turing rolls compared to solitons (see
the Supplementary Material of [18]). The reduced phase
model of Eq. (6) is derived with the assumption that
there is a priori non-zero power in the comb teeth and
therefore does not explicitly include the role of MI
gain. Hence, our analysis here separates the influence
of phase instabilities and shows that so far as phase
fluctuations are concerned, a smaller number of comb
teeth does not enhance comb stability. Combined with
the results of Ref. [18], this study suggests that MI gain
and comb teeth power fluctuations significantly influence
the stability of Turing rolls.

V. DISCUSSION

The existence of a self-synchronization mechanism
explains soliton generation by both through-chaos
[13, 34, 45] and chaos-avoiding [35] trajectories in the
power-detuning plane. In either case, the parameter
sweep creates a comb with single-FSR spacing. Sweep-
ing through chaotic states provides a diverse pool of
initial conditions which increases the odds of achieving
phase-locked clusters (i.e., peaks) that subsequently
grow into solitons; however, even without passing
through chaos, the self-synchronization mechanism can
generate solitons. It is worth noting that while we
have focused on the phase-locked solutions of the LLE,
this equation displays chaotic behavoir as well [16, 46].
Bifurcation to chaos in the reduced model of Eq. (6) can
be understood through randomly oscillating coupling
coefficients. While the model is robust and addition
of static randomness of modest relative size to the
coupling coefficients K (I,n) will still lead to aligned
PDs, our numerical simulations show that rapid random
fluctuations of the comb teeth amplitudes (and therefore
the coupling coefficients) hinder convergence of the
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FIG. 5. Non-zero eigenvalues of the equilibrium (the Jacobian matrix J) vs. comb span for Eq. (6) for (a) uniform and (b)
mode-number—dependent comb teeth magnitude profile of a,, o exp(—ko|n|), (ko = 0.1). The N distinct eigenvalues for each
comb span are plotted with points of the same color excepting the negative eigenvalue of smallest magnitude, which is shown
in black. The closest eigenvalues to zero for different spans form the black curves. Because these eigenvalues are dominant in
determining stability, the black curves show that as the comb widens its stability improves for constant power spectrum, as
seen in (a). For the realistic magnitude profile, on the other hand, the stability is not expected to improve, as is shown in (b).
The stability of a steady-state solution of the LLE is, therefore, affected by its power profile. The effect of amplitudes can be

taken into account through the coupling coefficients in Eq. (6).

phases toward a fixed point of the system. As a result,
the phases will continue to wonder chaotically around
without reaching a steady-state. Studying the behavior
of this model in the presence of noise is an ongoing work
and will be discussed elsewhere.

Phase measurements of stable optical frequency combs
have shown that apart from combs with aligned phases
(Fig. 4), phase spectra with 7 and 7/2 jumps can also
arise in microcombs [47]. We note that phase alignment
governed by the reduced model is not contradictory to
these phase jumps; combs with phase jumps have been
constructed numerically as a sum of multiple solutions
of the LLE (e.g., interleaved combs [47] or solitons on an
equally-spaced grid around the resonator with one soli-
tion removed or slightly shifted away from its location on
the equidistant grid points [48]) and their power spectra
are more complicated than the smooth spectra of a
Turing roll or soliton (as depicted in the insets in Fig. 4)
considered in this work. It has been noted that avoided
mode crossings [49] far from the pump are necessary
for the experimental demonstration (through tuning the
CW pump laser) and stabilization of such combs [48, 50].

VI. SUMMARY AND OUTLOOK

In summary, we have introduced a reduced model for
phase locking and the emergence of coherent spatiotem-
poral patterns in the damped, driven NLSE. This novel
model underscores the fundamental link between spa-
tiotemporal pulse formation and mode synchronization,
and embodies the conservation of energy and momen-
tum through ternary phase couplings. We have found
attracting solutions of this phase model corresponding
to dissipative solitons and Turing rolls and studied their

stability, highlighting the significance of frequency
comb power spectrum profile on it stability prop-
erties.

Although we have compared our results with micro-
resonator-based optical frequency combs, they should ap-
ply to mode-locked laser systems as well. Gordon and
Fisher’s statistical mechanical theory describes the on-
set of laser pulsations as a first-order phase transition,
treating the modes as the elementary degrees of free-
dom [51]. Their ordered collective state is analogous to
our synchronized dynamical attractor. The same control-
ling nonlinearity appears in both Eq. (6) and the master
equation for passive mode locking based on a saturable
absorber [8], which approximates the absorber with a
cubic nonlinearity [52]. We therefore expect the same
dynamical mechanism to be responsible for the creation
of sharp pulses in passively mode-locked lasers, despite
different physical sources of optical gain (population in-
version and stimulated emission versus parametric ampli-
fication). What matters is the fundamental link between
spatiotemporal pulse formation and mode synchroniza-
tion.
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Appendix A: Derivations

This Appendix details derivations leading to the equa-
tions in Sec. (II).

The intra-cavity spatiotemporal field envelope ¥(6, 7)
and the complex-valued comb teeth amplitudes a,,
n€{0,£1,4+2,43,...}, are discrete-time Fourier trans-
form pairs related through the following equations

Y(0,7) = Z an(7) et (A1)
and
ay () = % /_ﬂ df (6, T)e 7, (A2)

J

The summation in Eq. (Al) is truncated and oo is re-
placed by the positive integer N [30]. Using these equa-
tions and exploiting [*_ d6 expli(n — 1')6] = 278y, it
is straightforward to find the equivalent coupled non-
linear ordinary differential equations of Eq. (2) from
the LLE. In the strong pumping regime and after using
4y = ayexp(ig,) in the nonlinear ODEs, the equations
for the magnitudes a, and phases ¢,, can be separated to
yield

d _ . F
dr In(ay) = -1+ u“% sin(¢y + -y — 20) + = cos(op — ¢n)doy (A3)
T an an
- X ai{2ay418i0(do — 1 + y1 — dy) + an—isin(dr — do + dy—1 — ¢n)},
mo
d 1 _ B
d—gb,, = 2a3 —a+ —don® + a—"ag cos(2¢9 — ¢y — P—p) + -F sin(¢p — ¢,))doy (A4)
T 2 ay ay

+ Zfo > ar{2ay11008(b0 — G1 + 41 — by) + an-1 cos(é1 — Go + Gyt — by)}-
T

Using Eq. (A4) and considering the symmetry of the power spectrum, the equations of motion for the centered phase
averages ¢, = (¢, + ¢—)/2 — ¢o and phase differences A, = (¢, — ¢_,)/2 can be found,

d

1 Fp .
6 = 5dan® + af[1+ cos(2G,)] — —sin(p — dy)doy (A5)
T 2 ay
ag
+ - Z aray—; cos(A; + Ay — Ap){2cos(Cy—1 — Gy — G1) + cos(Cp—t — Gy + G) }s
T
d a . . .
A= ai > wan {25 (Gyr — Gy — G) + (Gt — Gy + Q)Y sin(A; + Ay — Ay). (A6)
T
[

Equations (A3, A4) for n = 0 lead to Eq. (3a, 3b) of  Eq. (4). This equation is separable, i.e.,
the main text, and Eq. (A6) is the same as Eq. (6) in
the main text, where the coupling coeflicient K (I,n) was Cn(T) d¢, 5 [T &
Si'eﬁned. W.e note t{l&t the normaliz_ed chromatic disper- /Cn(To) 1+ C(n) + cos(2Gy) =ag /TO T,
sion coefficient ds is defined by dy = —2Ds/Awg, where
Awg is the linewidth of the pumped mode and Dy is and can be integrated directly to give
the second-order dispersion parameter found from the
Taylor expansion of the cavity modal frequencies w,, in ) & ¢ (7)
the mode number 7 at the pumped mode wy through tan~—! tan — a2 — 7).
wy = wo + Din + LDon? + £D3n® + ... . In the lat-  /C(C +2) Vo+2 () . o7 = 7o)
ter expression, D; is the resonator FSR (in rad/s) at the e (A7)

pumped mode.

To lowest non-zero order in a,-¢, Eq. (A5) becomes

In these equations C' = dan?/2a2 — Fp sin(¢p — ¢o)/ad,
and 7y accounts for constants of integration (or initial



conditions). The latter equality can be written as

tan[(, (7)] =4/ C; 2 tan[y/C(C + 2)61(2)(7' —15)], (A8)

where 7{) accounts for the constants of integration on both
sides of Eq. (A7). The parameter C appears in two com-
binations, C/(C + 2) and C(C + 2); if —2 < C < 0,
then both expressions will be negative and the tangent
on the right of Eq. (A8) changes to a hyperbolic tangent.
Therefore, one arrives at Eq. (5) in the main text.

It is straightforward to show that the gain of modula-
tion instability (MI) for the LLE of Eq. (1) is given by
[16, 37

2
1
I' = Re —1+\/a§—(a—2d2n2_2ag) ,

where Re{-} denotes real part. For this expression to be
|

positive, the following inequality should hold

1 2
ag—1> (a - 5dgnz - 2a3) > 0. (A9)

It can simply be shown that the condition —2 < C' < 0 on
C is equivalent to a3 > |a — dan?/2 — 2a2|, which is guar-
anteed to hold in the presence of MI gain, cf. Eq. (A9).

Appendix B: Linear stability analysis

In this Appendix, we review the stability analysis of
the reduced phase model and introduce the generic form
of the Jacobian matrix J and its eigenvalues for the case
of uniform comb amplitudes.

We consider Eq. (6) in the main text for a comb with
2N + 1 phase-locked teeth. For all the indices appearing
in this equation to be in the range [— N, N|, the summa-
tion should run from —(N —17) to N, ie.,

dA, N .

4 =0 Zl:—(N—n) K(l,n)sin(A; + Ay — Ay).
As explained in the main text, the coupling coefficients K
will be the same for uniform comb magnitude spectrum
(where a,£0 = a < ap).

If each phase ¢,, is perturbed from its steady-state value by e,, the phase difference A, = son will change to son+e,,
where €, = (e, — e_,)/2. Plugging into the above equation (Eq. (6) of the main text) and linearizing in €,, we find

the matrix equation € = J - €, for the perturbation vector € = (e, €9, ...,

en)T. For a,zo = a < ag the Jacobian J

and its eigenvalues can be expressed in closed form for any integer N. For N an odd integer

2N 0 ... 0 0 0 0 2
0 —-2N+1 ... : : : 2 2
0 0 0 0 0 2 2
0 0 ... 2N -—1+]|N/2] 0 2 2 2
J=1: : 0 ~N+1—|N/2] 2 U S
0 0 2 2 ~N+2—|N/2] ... 2 2
0 0 2 2 2 . 2 2
0 2 : : : ... =N 2
L 2 2 2 2 2 oo 2 —=N+41]
and its eigenvalues are 0,—N — 1,-N — 2,...,—N +1— |N/2|,—-N — |[N/2],-2N — 2 + |[N/2|,—2N — 3 +
[N/2],...,—2N,—2N — 1 (where |-] is the floor function). For even N, the Jacobian takes the following form
[—2N 0 0 0 .0 2 ]
0 —-2N+1 ... : : e 2 2
0 0 0 0 e 2 2
y—| : : ... =2N — 1+ N/2 2 U :
0 0o ... 2 ~N+2-N/2 ... 2 2
0 0 2 2 . 2 2
0 2 : : ... =N 2
2 2 .. 2 2 o 2 =N+1

The eigenvalues of this matrix are 0,—N —1,—-N —-2,..., —N+2—-N/2,—-N+1—-N/2,—2N -2+ N/2,—2N — 3+



N/2,...,—2N,—2N — 1.

It is noted that there will always be a zero eigenvalue
enforced by symmetry, and all other eigenvalues are neg-
ative. The negative eigenvalue of smallest size (—N — 1)
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determines the stability of the fixed points. These eigen-
values for different comb spans (2N + 1) are plotted in
black in Fig. 5(a).

[1] H. Haken, Synergetics: Introduction and Advanced Top-
ics (Springer-Verlag, 2004).

[2] See I. V. Barashenkov and E. V. Zemlyanaya, Journal
of Physics A: Mathematical and Theoretical 44, 465211
(2011) and references [1-18] therein.

[3] N. Akhmediev and A. Ankiewicz, Dissipative Solitons,
Lecture Notes in Physics, Vol. 661 (Springer, 2005).

[4] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209
(1987).

[5] T. J. Kippenberg, R. Holzwarth, and S. Diddams, Sci-
ence 332, 555 (2011).

[6] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken,
R. Holzwarth, and T. Kippenberg, Nature 450, 1214
(2007).

[7] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solo-
matine, D. Seidel, and L. Maleki, Phys. Rev. Lett. 101,
093902 (2008).

[8] H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173
(2000).

[9] M. Haelterman, S. Trillo, and S. Wabnitz, Optics Com-
mun. 91, 401 (1992).

[10] A.Matsko, A. Savchenkov, W. Liang, V. Ilchenko, D. Sei-
del, and L. Maleki, Opt. Lett. 36, 2845 (2011).

[11] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo,
Opt. Lett. 38, 37 (2013).

[12] Y. K. Chembo and C. R. Menyuk, Phys. Rev. A 87,
053852 (2013).

[13] T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev,
M. Gorodetsky, and T. Kippenberg, Nat. Photon. 8,
145 (2014).

[14] 1. V. Barashenkov, M. M. Bogdan, and V. I. Korobov,
Europhys. Lett. 15, 113 (1991).

[15] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Sei-
del, and L. Maleki, Phys. Rev. A 85, 023830 (2012).

[16] C. Godey, I. V. Balakireva, A. Coillet, and Y. K.
Chembo, Phys. Rev. A 89, 063814 (2014).

[17] W. Liang, D. Eliyahu, V. Ilchenko, A. Savchenkov,
A. Matsko, D. Seidel, and L. Maleki, Nat. Commun.
6 (2015).

[18] J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler,
C. Weimann, W. Freude, I. V. Balakireva, L. Larger,
C. Koos, and Y. K. Chembo, Phys. Rev. Lett. 114,
093902 (2015).

[19] J. Pfeifle et al., Nat. Photon. 8, 375 (2014).

[20] A. Coillet and Y. Chembo, Opt. Lett. 39, 1529 (2014).

[21] P. Del'Haye, K. Beha, S. B. Papp, and S. A. Diddams,
Phys. Rev. Lett. 112, 043905 (2014).

[22] W. Loh, P. Del’Haye, S. B. Papp, and S. A. Diddams,
Phys. Rev. A 89, 053810 (2014).

[23] H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi,
in Frontiers in Optics 2015 (Optical Society of America,
2015) p. JW2A.12.

[24] H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi,

IEEE Photonics Journal 9, 1 (2017).

[25] Y. H. Wen, M. R. E. Lamont, S. H. Strogatz, and A. L.
Gaeta, Phys. Rev. A 94, 063843 (2016).

[26] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem,
A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson,
and A. L. Gaeta, Opt. Express 21, 1335 (2013).

[27] X.Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Va-
hala, Optica 2, 1078 (2015).

[28] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: a universal concept in nonlinear sciences (Cam-
bridge University Press, 2003).

[29] P. Grelu and N. Akhmediev, Nat. Photon. 6, 84 (2012).

[30] For the Fourier pairs we have used the following equations
and sign convention:

() = % /_w d0(0,7) exp(—ind),

and
N

G(0,7) = Y an(r) exp(+ind),

n=—N

where, N is an integer. In the formal definition of the
discrete-time Fourier transform, N is replaced with oo.
For functions of interest to this work, the comb span IV,
although possibly large (e.g., a few thousands), is finite.
See Sec. 2.7 of A. V. Oppenheim and R. W. Schafer,
Discrete-time signal processing (New Jersey, Printice
Hall Inc, 1989).

[31] Y. K. Chembo and N. Yu, Phys. Rev. A 82, 033801
(2010).

[32] H. Taheri, A. Eftekhar, K. Wiesenfeld,
IEEE Photon. J. 7, 1 (2015).

[33] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen,
Opt. Lett. 40, 4755 (2015).

[34] M. R. Lamont, Y. Okawachi, and A. L. Gaeta, Opt. Lett.
38, 3478 (2013).

[35] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E.
Leaird, and A. M. Weiner, Opt. Express 23, 9618 (2015).

[36] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit,
and M. Haelterman, Nat. Photon. 4, 471 (2010).

[37] Y. K. Chembo, D. V. Strekalov, and N. Yu, Phys. Rev.
Lett. 104, 103902 (2010).

[38] C. Bao, H. Taheri, L. Zhang, A. Matsko, Y. Yan, P. Liao,
L. Maleki, and A. E. Willner, JOSA B 34, 715 (2017).

[39] R. Adler, Proceedings of the IRE 34, 351 (1946).

[40] S. H. Strogatz, Physica D 143, 1 (2000).

[41] N. Akhmediev, A. Ankiewicz, J. Soto-Crespo, and J. M.
Dudley, Physics Letters A 375, 775 (2011).

[42] P. Parra-Rivas, D. Gomila, M. A. Matias, S. Coen, and
L. Gelens, Physical Review A 89, 043813 (2014).

[43] J. Goldstone, A. Salam, and S. Weinberg, Physical Re-
view 127, 965 (1962).

and A. Adibi,



[44] P. W. Anderson, Basic notions of condensed matter
physics (Benjamin-Cummings, 1984).

[45] S. Coen and M. Erkintalo, Opt. Lett. 38, 1790 (2013).

[46] A. Coillet and Y. K. Chembo, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 24, 013113 (2014).

[47] P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp,
and S. A. Diddams, Nat. Commun. 6 (2015).

[48] E. S. Lamb, D. C. Cole, P. Del’'Haye, K. Y. Yang, K. J.
Vahala, S. A. Diddams, and S. B. Papp, in Conference on
Lasers and Electro-Optics (Optical Society of America,
2016) p. SW1E.3.

11

[49] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Li-
hachev, M. L. Gorodetsky, and T. J. Kippenberg, Phys.
Rev. Lett. 113, 123901 (2014).

[50] H. Taheri, A. B. Matsko, and L. Maleki, The European
Physical Journal D 71, 153 (2017).

[61] A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901
(2002).

[62] Comparison of Eq. (16) in [8] with the LLE reveals their
close similarity. In the LLE, there is an extra detuning
term and the gain term is replaced by an external drive.



