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Quantum number-path entanglement is a resource for super-sensitive quantum metrology and in
particular provides for sub-shotnoise or even Heisenberg-limited sensitivity. However, such number-
path entanglement has thought to have been resource intensive to create in the first place — typi-
cally requiring either very strong nonlinearities, or nondeterministic preparation schemes with feed-
forward, which are difficult to implement. Recently in [Phys. Rev. Lett. 114, 170802 (2015)] it was
shown that number-path entanglement from a BosonSampling inspired interferometer can be used
to beat the shot-noise limit. In this manuscript we compare and contrast different interferometric
schemes, discuss resource counting, calculate exact quantum Cramér-Rao bounds, and study details
of experimental errors.

I. INTRODUCTION

A substantial fraction of the efforts of theoretical com-
puter science and physics is now invested in the dis-
covery of post-classical devices to demonstrate quantum
supremacy. Much still remains unknown about the fun-
damental limits and complexity of quantum computing.
One well-known example of a device, which exhibits a
quantum advantage over its classical counterpart, came
about as a result of the discovery of the Hong-Ou-
Mandel effect, enabling interferometers to estimate un-
known variables with improved sensitivity [1]. It was sub-
sequently shown that bosonic NOON states could achieve
asymptotically better sensitivities, than a comparable de-
vice using only classical techniques, with an increasing
number of probe photons N [2]. Like universal quantum
computers, however, at present the experimental over-
head for producing NOON states is prohibitive, making
practical implementation infeasible [3, 4]. And although
much is now known about metrology using two-mode in-
terferometers, far less is known about larger multi-mode
networks [5].

Recently, the advent of post-classical devices, like
BosonSampling [6, 7], has drawn new interest to the
capabilities of potentially more practical passive linear-
optical networks. These networks generate complicated
number-mode entanglement across an exponentially large
state space. If such an optical network is fed with uncor-
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related single photons, the output probabilities in the
multimode Fock basis are given by complex matrix per-
manents, known to be #P-hard to compute exactly, and
strongly believed to be computationally intractable quan-
tities to estimate accurately [8, 9]. Already, BosonSam-
pling has attracted much experimental interest as a sim-
ple approach for performing the first truly post-classical
computation [10–14].

Recently, the sensitivity of a passive linear optical
setup, consisting of single photons fed into a specific
multi-mode interferometer and photodetection at the
output, was investigated [15, 24]. In this manuscript,
we study a much larger class of devices, and further,
show how the sensitivity can be maximized in this sce-
nario given realistic constraints on the unknown phase.
We show that the device achieving this optimality is not
only more sensitive than the one proposed in Ref. [15],
but also far easier to construct. We achieve this by us-
ing the Fisher information (FI) formalism, which pro-
vides insight into the role of each different component
of the interferometer and aids an explicit calculation of
the phase sensitivity for the optimal network—a result
that was only postulated in Ref. [15]. Additionally, we
provide an analytic calculation of the phase sensitivity
for the optimal network from matrix permanents, which
is an improvement on the conjectured result of Ref. [15].
Our main result shows that for n < 7 photons we achieve
sub-shot-noise limited sensitivity with a passive multi-
mode linear optical device with O(n) optical elements.
We believe that this work is experimentally achievable
with the current temporal infrastructure from Ref. [14].

Although previous models for supersensitive quantum
devices have shown better theoretical scaling in the limit
of larger average photon number, many of these schemes
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admit a more pessimistic scalability from an engineer-
ing perspective. These devices generally are not robust
enough under noise models, require nonlinear compo-
nents, have a large overhead in state preparation, or
employ measurement schemes that are difficult to im-
plement [20, 25]. For instance, an MZI with a two-mode
squeezed vacuum input and parity detection performs ex-
tremely well in the noiseless regime, but degrades quickly
under dephasing and loss, and requires high efficiency
number resolving detectors whose ranges must scale with
the average photon number [30].

This manuscript is organized as follows: First, in Sec. II
we describe our generalized architecture, and discuss
quantum Fisher information and quantum Cramér-Rao
bounds. Second, in Sec. III, we investigate the choice
of measurement interferometer in relation to the state
preparation interferometer. In this section we also dis-
cuss various phase strategies for Φ̂ and find the optimal
phase strategy. Third, in Sec. IV, we describe how dif-
ferent choices of V̂1 and V̂2 affect device sensitivity and
find their optimal structure. Finally, in Sec. V, we in-
vestigate how loss and dephasing errors affect the device
performance.

II. ARCHITECTURE AND QUANTUM
CRAMÉR-RAO BOUNDS

To begin, let us consider the Quantum Fourier Trans-
form Interferometer (QuFTI) architecture, as shown in
Fig. 1, invented by Motes, Olson, Rabeaux, Dowling, Ol-
son and Rohde (MORDOR). A QuFTI consists of three
particular components: One, an input state |ψin〉 = |1〉⊗n
of n single photons; Two, an n-mode interferometer with
a transfer matrix V1 which performs the operation V̂1,
followed by a generalized linear phase evolution Φ̂ which
encodes the unknown phase ϕ, and a second interfer-
ence with a transfer matrix V2 (enacting the transforma-

tion V̂2); Three, coincidence photodetection at the out-
put. We will let the phase-evolved state be defined as

Φ̂V̂1|ψin〉 ≡ |ψϕ〉 where Φ̂ = exp
(
i
∑
j n̂jfj · ϕ

)
, and n̂i

being the number operator for mode i. We define the
measurement to be a second evolution with a transfer
matrix V2 followed by an array of on-off (non-number re-
solving) photodetectors (see Fig. 1) [15]. The most com-
pelling aspect of the MORDOR architecture is that it is
composed of single-photon inputs, passive linear optics,
and on-off detection, all of which can be implemented on
an integrated photonic chip [16]. These simplifications
forego many of the technical challenges required to gen-
erate NOON states [4], and is experimentally scalable,
though only provides sub-shotnoise sensitivity for a small
number of modes.

The interferometers V̂1, V̂2, and Φ̂ can be varied with-
out jeopardizing the scalability of the device (see Fig. 1).
Hence, the question arises, what are the optimal choices
of V̂1, V̂2 and Φ̂ that yield maximum phase sensitivity?

In this work we answer this question.

FIG. 1: A generalized architecture for the quantum Fourier
transform interferometer. We consider optimizations over
V1, V2 ∈ SU(n) and phase strategies Φ̂, together with single
photon inputs and photodetection in each mode. The MOR-
DOR architecture can be restored when V2 = V †1 , where
V1 is the n-mode Quantum Fourier Transform (QFT) and
fj = (j − 1) with j being the mode number.

To evaluate the phase sensitivities of different architec-
tures, we utilize the quantum Fisher information (QFI)
formalism, which we will briefly summarize. Once an un-
known parameter ϕ has been encoded onto a quantum
state ρϕ, the QFI F(ρϕ) bounds the achievable precision
to which ϕ can be estimated, with an unbiased estimator,
through the quantum Cramér-Rao bound (QCRB) [17],

F(ρϕ) ≥ 1/∆2ϕ, (1)

where ∆2ϕ is the variance in the estimate of ϕ. The
QCRB can be saturated when one can measure multi-
ple copies of ρϕ in an optimal basis [18]. As such, the
QFI is one way to quantify the information content of
a quantum state related to an unknown parameter. If ϕ
has been encoded into a pure probe state |ψ0〉 by a uni-

tary operator, |ψϕ〉 = eiĤϕ|ψ0〉, then the QFI is given by

F(|ψϕ〉) = 4(〈Ĥ2〉0−〈Ĥ〉20), where 〈•〉0 = 〈ψ0| • |ψ0〉 [18].

III. PHASE STRATEGIES

We begin evaluating the MORDOR framework by in-
vestigating the role of V̂2. We note that we measure
|ψϕ〉 = Φ̂V̂1|ψin〉 by sending it through the inverse opti-

cal network V̂2 = V̂ †1 and detecting it using single-photon
detectors is an optimal measurement strategy around
ϕ = 0. This measurement strategy projects |ψϕ〉 onto
a basis containing |ψϕ=0〉. Projecting onto this basis was
shown to be an optimal measurement in Ref. [18]. To see
this more directly, we can compute the probability P for
the observable event Ô = (|1〉〈1|)⊗n of detecting a pho-

ton at each output of the full interferometer V̂2Φ̂V̂1 to be
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P = 1− ϕ2F(|ψϕ〉)/4 +O(ϕ4) when V̂2 = V̂ †1 , as shown
in Appendix A. This allows us to directly compute the
phase sensitivity ∆ϕ obtained from the error propagation
formula in terms of QFI,

∆ϕ =

√
〈Ô2〉 − 〈Ô〉2

|d〈Ô〉dϕ |

=1/
√
F(|ψϕ〉) +O(ϕ2).

(2)

Thus, for ϕ ' 0, the error propagation formula satu-
rates the QCRB, and hence, the measurement choice of

V̂2 = V̂ †1 is optimal; this is one of the primary results of

this manuscript. Note that when V̂2 = V̂ †1 , as the preci-
sion calculated by the error propagation formula can be
obtained by computing the QFI, the problem of maxi-
mizing the phase sensitivity of the device is equivalent to
maximizing F(|ψϕ〉).

We turn now to the choice of fi’s, which is a partic-
ular choice of phase strategy as shown in Fig. I. As has
been noted before, by passing a probe state through an
unknown phase shift k times, the effect of the phase shift
is magnified [19]. If the total phase shift kθ applied to a
mode can be measured to a given precision ∆2(kθ) = α,
then the precision to which θ is measured is increased
by a factor of k2, so that ∆2θ = α/k2. This effect can
be used to increase the precision of any procedure, in-
cluding those comprised entirely of classical techniques.
Therefore, in order to compare different quantum strate-
gies fairly, we impose the normalization condition,∑

i

fi = 1, (3)

i.e., we assume they all utilize the same total accumu-
lated phase. Now we show that, given this normalization
condition, the highest QFI can be achieved using a single
phase strategy, i.e. fj = δj,1. Analogous to the MOR-
DOR framework, the unknown phase is encoded by the

unitary, Φ̂ = exp
(
i
∑
j n̂jfj · ϕ

)
. It follows that,

1

4
F(|ψϕ〉) =

∑
j,k

fjfk Cov0(n̂j , n̂k)

≤
∑
j,k

fjfk Var0(n̂h)

= Var0(n̂h),

(4)

where the covariance is Cov0(A,B) ≡ 〈AB〉0−〈A〉0〈B〉0,
for commuting operators A,B and mode h is taken to be
the one with the largest photon number variance. If the
phase shift was only put in mode h, then the QFI would
simply be 4 Var(n̂h). We conclude that distributing the
phase shift between two or more modes leads to a QFI,
which is less than or equal to the QFI obtained if the
phase shift is only in mode h. If we assume that the
variance is largest in mode 1, which can be ensured by the
choice of V̂1, the optimal phase distribution is fj = δj,1.

Sub-linear f sub
j =

√
j

Linear f lin
j = j − 1

Quadratic fquad
j = j2

Exponential fexp
j = 2j

Delta fδj = δj,1

TABLE I: Functions representing trial phase strategies. Note
that many of the strategies are not normalized to satisfy
Eq. (3), but can easily be made so by dividing each by∑n
j=1 fj .

To illustrate the performance of differing phase strate-
gies, we consider a range of functions representing trial
strategies (Table I). For each phase strategy, we can use
the result of Ref. [8] to numerically compute the phase

sensitivity ∆ϕ using matrix permanents of V1ΦV †1 . This
technique is summarized in Appendix B, and the result
is plotted in Fig. 2. From this figure, it is apparent that
there is no improvement in phase sensitivity by distribut-
ing the phase throughout the modes, and restricting ϕ to
one mode is most effective. This result is consistent with
the conclusions by Berry et al. as shown in Ref. [21].

♢

♢

♢

♢
♢ ♢ ♢

○

○

○

○

○

□

□

□

□ □
□ □

□
□

◇

◇

◇

◇

◇

◇

◇

△ △ △ △ △ △ △ △ △

♢ Sublinear
○ Linear

□ Exponential
◇ Quadratic

△ Delta

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 2: The phase sensitivity scaling of different phase strate-
gies for the QuFTI suggests that widening the “phase gap”
between modes improves the phase sensitivity. The shot-noise
limit used for comparison here is defined to be 1/

√
n, which is

the best possible classical scheme for n photons and any num-
ber of modes greater than two. The region where the sensitiv-
ity falls below one indicates super-sensitivity. It is apparent
that the delta phase strategy is optimal.

With this in mind, we would like to now compare the
architecture described in the original MORDOR work to
the new phase strategy described above that optimizes
the QuFTI. However, we have already made this compar-
ison, since MORDOR possesses the linear phase strategy
fj = j − 1, whose normalized strategy is plotted against
the optimal strategy in Fig. 2. This is contradictory to
the preliminary results in MORDOR, which showed that
for all n, the phase sensitivity of MORDOR beats the
shotnoise limit. This is because MORDOR used a differ-
ent resource counting technique called ordinal resource
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counting (ORC). The ORC strategy found in MORDOR
did not obey the normalization condition on the phase
shifts that we have imposed here in Eq. (3). For that
reason, the comparison in MORDOR with the classical
strategy chosen to represent the shot noise limit was un-
fair. The subsequent errata of Ref. [15] is indeed con-
sistent with the normalized result here. Thus, when the
normalization condition of Eq. (3) is imposed, the linear
phase strategy used in MORDOR is sub-optimal.

In Fig. 4 we show the phase sensitivity of the QuFTI
with the delta phase strategy and compare it to the shot-
noise limit and the Heisenberg limit. We see that we do
better than shot-noise for n ≤ 6 photons, which is well
above what is experimentally achievable today, suggest-
ing that this type of quantum metrology might be the
best route forward in the medium-term.
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FIG. 3: Phase sensitivity of the optimal QuFTI, which con-
sists of the delta phase strategy for Φ̂, V̂2 = V̂ †1 , where V̂1

is the n-mode Quantum Fourier Transform (QFT), compared
to the shot-noise limit and the Heisenberg limit.

IV. THE OPTIMAL UNITARY

In this section, we investigate the effect that V̂1 has on
the phase sensitivity, when using the previously found

optimal components V̂2 = V̂ †1 and fi = δ1,i, the best
phase strategy. In Sec. III it was shown that when
the phase shift is placed in the first mode i.e. fi =
δ1,i, then F(|ψϕ〉) = 4 · Var0(n̂1). For an initial state

of single photons |1〉⊗n fed into V̂1, we can explicitly
compute, as shown in Appendix C, that F(|ψϕ〉) =
8
(
1−

∑n
i=1 |V1,i|4

)
, where V1,i is the ith element in the

top row of V1. Physically, this means the Fisher informa-
tion is dependent only on the coupling between the input
modes and and the first output mode. This is perhaps to
be expected, since only the first mode contains the phase
to be interrogated. Additionally, we can compute the QFI

when k photons |k〉⊗n are fed into each mode of V̂1 to be,

F(|ψϕ〉) = 4

(
1−

n∑
i=1

|V1,i|4
)
k(k + 1), (5)

which is maximized for V1 with |V1,i| = 1/
√
n for all ele-

ments on the top row. Note that while the QuFTI satisfies
this constraint, it does not do so uniquely. To be as gen-
eral as possible, then, we consider any unitary with this
structure to be “uniform” and any interferometer with
these unitaries to be a Quantum Uniform Multi-mode
Interferometer (QUMI). A QuFTI is hence a special case
of a QUMI. Remarkably, because the phase sensitivity
of the device relies only on the values of the first row of
the matrix V1, a network can attain the maximum sensi-
tivity with only O(n) beamsplitters—this is a significant
improvement over the MORDOR architecture’s QuFTI,
which requires O(n2) beamsplitters to implement. A sim-
ple implementation of the new architecture is shown in
Fig. 4, where the reflectivity amplitude of the beamsplit-
ter acting on modes 1 and k should be 1/

√
k. Setting

|V1,i| = 1/
√
n gives,

Fmax(|ψϕ〉) = 4k(k + 1) (1− 1/n) . (6)

This reduces to the result of Holland and Burnett when
n = 2 modes [22]. Members of our team have shown that
it is possible to make k-photon Fock input states from
only single photons using more advanced devices, such
as reliable quantum memory, which is beyond current
experimental techniques [23].

For an input state of single photons the optimal preci-
sion obtainable is therefore,

∆ϕ = 1/
√

8(1− 1/n). (7)

One can also arrive at the same result by an explicit

calculation of matrix permanents when V = V1 = V †2 ,
which we provide in Appendix D.

To investigate the sensitivity of a device in which

V̂2 = V̂ †1 but wherein V̂1 is not optimal, we computed
the phase sensitivity of 10,000 random unitaries in SU(n)
(for each n), and plotted the best phase sensitivity (i.e.
minimum ∆ϕ) and average phase sensitivity of this set
against the phase sensitivity of the optimal QUMI (see
Fig. 5). It is now clear that the best strategy is to use
the delta phase function and the QUMI. We call this
overall best strategy, which has the optimal delta phase
shift, combined with the uniform weighted first row of the
unitaries, the optimal QUMI. Note that, although an ex-
perimental implementation of the QuFTI is not optimal
for QUMIs, we use the QuFTI for analytic calculations
and numerics, since the matrix itself has useful symme-
tries and still produces the same output statistics as any
QUMI.
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FIG. 4: A simple architecture which maximizes the phase sen-
sitivity of our scheme. Subscripts on the kets denote mode
number. The beamsplitters (grey boxes) should be adjusted
so that V1 is a QUMI, namely, the transmissivity amplitude t
of the beamsplitter acting on mode 1 and mode k should be
1/
√
k.
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FIG. 5: The Quantum Fourier Transform (QFT) is optimal
for the delta phase strategy. However, it is not uniquely so
– we know that any uniform unitary is also optimal for this
strategy.

V. EXPERIMENTAL ERRORS

Quantum states such as single photons are notoriously
difficult to manipulate. It is therefore important to con-
sider how various errors affect the quality of metrology
protocols. In particular we look at loss and dephasing.
Particularly, such effects generate mixed states for which
the QFI is very difficult to calculate. In addition, the QFI
is not practically instructive if you cannot perform an op-
timal measurement due to technological limitations.

For example, when loss has been applied to a quantum
state, the optimal measurement strategies can require ex-
otic techniques such as non-demolition measurement and
feed-forward [25]. Therefore calculating the QFI is not
necessarily a good indicator of the performance of a prac-
tical strategy. Because of these issues, we study the per-
formance of the architecture by directly calculating the
sensitivity of specific measurement outcomes from imple-
mentable measurement techniques.

A. Loss Analysis

Loss is a considerable issue to overcome in any exper-
iment utilizing single photons. One hurdle when consid-
ering photon loss in the scheme presented here is that,
if the device relies solely on bucket photon detectors,
a loss event is indistinguishable from a photon collision
event. Hence, for small ϕ, it may be the case that the loss
dominates the number of perceived collision events and
one is unable to obtain any useful information about ϕ.
Employing limited photo-resolution (i.e. detectors with
the capability of distinguishing between one and two or
more photons) can partially solve this issue, though pho-
ton losses corresponding to one of the photons in a col-
lision event will still continue to degrade the signal. Of
course, the advantage of being able to employ simple pho-
todetectors is lost in the case that you retain the exact
architecture previously presented. However, it is possi-
ble to implement pseudo-number-resolving detectors for
small numbers of photons by simply coupling the out-
put modes with one or more additional vacuum modes
via beamsplitters; the output of these additional modes
then can use the simpler photodetector. Members of our
team have also done an exhaustive calculation of loss in
the context of BosonSampling in [27, 28], where both
spatial and temporal losses are considered.

If enough is known about the error profile beforehand,
one can still extrapolate information about ϕ despite the
noisy data. For example, if each photon has an indepen-
dent and equal chance of being lost, then the sensitivity
∆ϕ degrades continuously according to the photon fi-
delity `. Suppose P (ϕ) corresponds to the probability of
measuring the |1〉⊗n outcome. If at most a single pho-
ton is lost, the probability of detecting an unambiguous
collision event becomes,

Pr(collision) = (1− P )[`n + (n− 2)(1− `)`n−1]. (8)

This can then be substituted into the error propagation
formula of Eq. (2) to give the sensitivity ∆ϕ (see Fig. 6).

Recent experimental advancements have shown that
linear optical networks, particularly for networks of the
size considered here, can be constructed with very low
loss. Networks (with even more modes and optical el-
ements than we consider here) have been demonstrated
with up to 99% efficiency [32]; additionally, single photon
detectors have achieved up to 93% efficiency [33]. Given
the rapid advances in engineering optical networks, pho-
ton loss may soon be a negligible source of error for the
devices considered in this manuscript.

B. Dephasing Analysis for the Optimal QuFTI

Another type of error often present in optical networks
is dephasing. Here we will analyze dephasing in the op-
timal QuFTI architecture and compare them to NOON
states in a standard Mach-Zehnder interferometer.
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FIG. 6: Sensitivity of lossy 3- and 6-photon QUMIs (solid
lines) compared to their respective shotnoise limits (dashed
lines) at ϕ = 0.001. The probability on the x-axis corresponds
to the loss rate for each photon independently in the device.
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FIG. 7: Dephasing with the optimal QuFTI for ϕ = 0.1. This
is compared to the shot-noise limit, the Heisenberg limit, and
the NOON state with dephasing [29]. The shaded regions rep-
resent the dephasing regime of 0 ≤ ∆χ ≤ 0.005 for both the
optimal QuFTI and NOON states.

Dephasing with a single phase shift is modeled with
dephasing only occurring on the mode with the unknown
phase. In the rest of the interferometer, dephasing can
be made very close to zero. We insert a random phase
shift χ to the single mode, which is a Gaussian random
variable of zero mean 〈χ〉 = 0 but nonzero second order
moment 〈χ2〉 = ∆χ,

e±iϕ 7→ e±i(ϕ+χ). (9)

When both ϕ, χ� 1, the approximate form of P derived
in Appendix D becomes,

P = 1− 2n− 2

n
(ϕ+ χ)2 +O(ϕ4), (10)

and correspondingly,

〈P 〉 ≈ 1− (2n− 2)(ϕ2 + ∆χ)

n
, (11)

which is then substituted into Eq. (2) to derive the phase
sensitivity. Using this result, we numerically plot the
phase sensitivity with dephasing in Fig. 7 for 0 ≤ ∆χ ≤
0.005 and ϕ = 0.1. We see that, in the sub-shotnoise
regime, the optimal QuFTI interferometer is comparable
in dephasing with the NOON state in an MZI—another
well-known metrological scheme.

It is important to note that when ∆χ is close to or
larger than the value of

√
ϕ, the estimator P is very poor

because it is unable to differentiate between a positive or
negative value of (ϕ+χ). Indeed, for ϕ = 0,∆χ 6= 0, the
formula in Eq. (2) does not converge since 〈P 〉ϕ=0 6= 1.
A straightforward solution is to use a known, controlled
phase to shift the average phase far enough away from
the peak of P so that, together with the noise, the phase
is predominantly positive or negative.

VI. CONCLUSION

We have considered a variety of different phase and
unitary strategies for implementing a passive, single-
photon input multi-mode metrological scheme. We have
shown that the optimal architecture for n single photons
is a QUMI, which equally couples each mode to a single
phase resource in one of the arms of the interferome-
ter, followed by the inverse of the QUMI. For n < 7, the
sensitivity of the optimal QUMI is sub-shotnoise. In the
asymptotic limit of n photons, the sensitivity approaches
a constant. This limit, however, assumes all n photons
are used in a single experiment. The scheme can always
be made to beat the shotnoise limit asymptotically by
choosing an architecture with n < 7 modes and repeat-
ing the experiment many times.

Perhaps the most attractive feature of our proposed
device is that it can be implemented with only passive
linear optics, single photon sources, and on-off detectors.
In addition, it does not require any of the complicated
phase arrangements from the scheme in Motes, Olson,
Rabeaux, Dowling, Olson and Rohde. The technology to
implement the optimal architecture is essentially identi-
cal to that of BosonSampling, and is achievable with
experiments that have already been implemented. For a
discussion on how this compares to quantum metrology
using squeezed light, see Appendix E.
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Appendix A: MORDOR Uses Optimal Measurement

Here we link the analysis in MORDOR to the quan-
tum Fisher information formalism and point out that the
measurement strategy employed is optimal. To start, we
calculate the probability that all photons exit the same
mode that they enter,

p(k, . . . , k)

=
∣∣∣〈k|⊗m|V̂ −1[I + iϕĤ − ϕ2Ĥ2/2− iO(ϕ3)]V̂ |k〉⊗k

∣∣∣2
=
∣∣∣1 + iϕ〈Ĥ〉 − ϕ2〈Ĥ2〉/2− iO(ϕ3)]

∣∣∣2
= 1− ϕ2

(
〈Ĥ〉2 − 〈Ĥ2〉

)
+O(ϕ4)

= 1− ϕ2F(|ψ〉)/4 +O(ϕ4),

(A1)

where we have denoted the unitary performed by the lin-
ear optical network as V̂ . Entering p(k, . . . , k) into the
error propagation formulae,

∆ϕ =

√
P 2 − P∣∣∣∂P∂ϕ ∣∣∣ , (A2)

and evaluating at ϕ = 0 gives,

∆ϕ =
1√
F(|ψ〉)

. (A3)

Hence, this measurement basis is optimal as the Quan-
tum Cramér-Rao bound is saturated.

In fact, in a footnote in Ref. [18] it was noted that
a measurement strategy, which projected onto the state
exp(iϕĤ)|ψ〉, would indeed be optimal. This is effectively
the measurement, which is being performed in the MOR-
DOR framework making an explicit calculation, as shown
here, somewhat redundant.
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Appendix B: Connection Between ∆ϕ and Matrix
Permanents

Here, we summarize how matrix permanents can be
used to compute the phase sensitivity ∆ϕ of an inter-
ferometer of the form of Fig. 1. We wish to numerically
compute the probability P of measuring a single pho-
ton in each mode, which is the observable 〈Ô〉 by which
we obtain an estimate of ϕ. Since the input state and
measurement is fixed across every strategy, we can use
the result of Ref. [8] to compute P = |perm(Û)|2 =

|perm(V̂ Φ̂V̂ †)|2, where perm(·) refers to the matrix per-
manent given by the equation,

perm(Û) =
∑
σ∈Sn

n∏
i=1

ui,σ(i) , (B1)

Sn being the symmetric group of degree n. The phase
sensitivity ∆ϕ is then found by applying the formula for
standard error propagation as in Eq. (2), which can be
rewritten in terms of P as,

∆ϕ =

√
P − P 2

|dPdϕ |
. (B2)

Appendix C: Optimal State Preparation

Here we calculate the QFI for the MORDOR setup
with k photons entering each mode and the phase shift

confined to a single mode. As before, let V̂ = V̂1 = V̂ †2 .
Putting the phase shift in the first mode, the QFI can
be calculated using the Heisenberg picture. Labelling the
modes in between V̂ and V † as bi, where i = 1, 2, . . .m,

then the generator of the phase shift is Ĥ = b̂†1b̂1. By

utilising b̂†i =
∑
j Vi,j â

†
j [31], it is clear that only the top

row of V is important. Now we evaluate,

〈ψ|b̂†1b̂1b̂
†
1b̂1|ψ〉

=
∑
i,j,q,l

V1,iV̄1,jV1,qV̄1,l〈k|⊗mâ†i âj â
†
qâl|k〉⊗m

=
∑
q,l,q 6=l

|V1,q|2|V1,l|2〈k|⊗mâ†l âqâ
†
qâl|k〉⊗m

+
∑
q,l

|V1,q|2|V1,l|2〈k|⊗mâ†l âlâ
†
qâq|k〉⊗m

=
∑
q,l,q 6=l

|V1,q|2|V̄1,l|2k(k + 1) + k2

=
∑
q

(
1− |V1,q|2

)
|V̄1,q|2k(k + 1) + k2

=

(
1−

∑
q

|V1,q|4
)
k(k + 1) + k2,

(C1)

and similarly,

〈ψ|b̂†1b̂1|ψ〉 =
∑
q,l

V1,qV̄1,l〈k|⊗mâ†qâl|k〉⊗m

=
∑
q

|V1,q|2〈k|⊗mâ†qâq|k〉⊗m (C2)

= k.

The QFI is,

4

(
1−

∑
q

|V1,q|4
)
k(k + 1). (C3)

So to maximise the QFI,
∑
q |V1,q|4 should be minimized,

which is achieved for |V1,q| = 1/
√
m giving a QFI of,

4
(
1− 1/m)k(k + 1). (C4)

When the number of modes equals two this reduces to
the case studied by Holland and Burnett [22]. We note
that the only part of V , which played a role in this cal-
culation was the magnitudes of the elements in the top
row. Therefore, instead of a QFT circuit, a series of m−1
beamsplitters will also be optimal.

Appendix D: Derivation of ∆ϕ from Matrix
Permanents

In order to derive the analytic form of ∆ϕ from
Eq. (B2), we first need the matrix entries of the entire

network Û = V̂ Φ̂V̂ †. For a single unknown phase shift ϕ
in the first mode, Φ̂ has the matrix form,

Φj,k = δj,k(eiϕ)δj,1 . (D1)

Although any choice of uniform V̂ , such that |Vj,1| =
1/
√
n, should be optimal for sensitivity, for this deriva-

tion we will choose V̂ to be the n-multi-mode Quantum
Fourier Transform Interferometer (QuFTI), which shares
this property. The matrix entries of the entire network
become,

Uj,k = (V ΦV †)j,k

=

n∑
l,m=1

Vj,lΦl,mV
†
m,k

=

n∑
l,m=1

1√
n
ω(j−1)(l−1)
n︸ ︷︷ ︸
Vj,l

δl,me
iϕδl,1︸ ︷︷ ︸

Φl,m

1√
n
ω(m−1)(1−k)
n︸ ︷︷ ︸
V †
m,k

=
1

n

[
eiϕ +

n∑
l=2

ω(j−1)(l−1)
n ω(l−1)(1−k)

n

]
=

1

n

[
eiϕ +

n∑
l=2

(ω(j−k)
n )(l−1)

]
=

1

n

[
eiϕ +

n−1∑
l=1

(ω(j−k)
n )l

]
(D2)
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=


1

n

[
eiϕ + n− 1] j = k

1

n

[
eiϕ − 1

]
j 6= k

=
1

n

[
eiϕ + (δj,k)n− 1

]
. (D3)

For j = k, it is easy to see the sum in Eq. (D2) should
be n− 1 since each term is simply 1l = 1. For j 6= k, the
result follows from the fact that the sum of all nth roots
of unity is zero,

0 =

n∑
l=1

ωln. (D4)

The proof for the above follows directly from the geomet-
ric series, and it easy to see that it extends to a sum over

ω
(j−k)
n as well.
Now that we have the matrix entries of the network,

we can compute the permanent of Û = V̂ Φ̂V̂ † which is,
by definition,

perm(Û) =
∑
σ∈Sn

n∏
j=1

1

n

[
eiϕ + (δj,σ(j))n− 1

]
=

1

nn

∑
σ∈Sn

n∏
j=1

[
eiϕ + (δj,σ(j))n− 1

]
. (D5)

Suppose σk is some permutation with k fixed points, re-
calling that a fixed point of a permutation σ is a value
j ∈ {1, .., n} such that σ(j) = j (also referred to as a
partial derangement), then the product

∏n
j=1 in Eq. (D5)

corresponding to σk is,

n∏
j=1

[
eiϕ + (δj,σk(j))n− 1

]
= [eiϕ + n− 1]k[eiϕ − 1]n−k.

(D6)

The sum in Eq. (D5) can now be rewritten in terms of
a sum over the number of fixed points in a permutation,
whose coefficient Dn,k enumerates all permutations in Sn
with k fixed points. The quantities Dn,k are referred to
as the rencontres numbers,

Dn,k =
n!

k!

n−k∑
j=0

(−1)j

j!
. (D7)

The permanent is thus,

perm(Û) =
1

nn

n∑
k=0

Dn,k[eiϕ + n− 1]k[eiϕ − 1]n−k.

(D8)

We are mostly interested in the behavior of perm(Û) for
small ϕ, where the phase sensitivity is optimal. To sim-
plify the remaining calculations, we focus our attention

on the Taylor expansion of Fn[ϕ] = perm(Û) around the
point ϕ = 0, up to second order,

Fn[ϕ] ≈ Fn[0] + F ′n[0]ϕ+
1

2
F ′′n [0]ϕ2. (D9)

We can find Fn[0] easily by noting that, because of the
product with [eiϕ − 1]n−k the only non-zero term in
Eq. (D8) corresponds to k = n,

Fn[0] =
1

nn
Dn,n · [1 + n− 1]n = 1. (D10)

Similarly, the only non-zero terms in F ′n[0] must be
derivatives of either k = n or k = n−1. Since Dn,n−1 = 0,
we need only concern ourselves with the derivative of the
k = n term. Applying the chain rule gives,

F ′n[0] =

[
1

nn
Dn,n[eiϕ + n− 1]n

]′
ϕ=0

=

[
1

nn
Dn,nn[eiϕ + n− 1]n−1ieiϕ

]
ϕ=0

(D11)

=

[
1

nn
· 1 · n[1 + n− 1]n−1 · i

]
(D12)

=
nn

nn
· i

= i. (D13)

Evaluating F ′′n [0] is only marginally more difficult. The
k = n term can be evaluated by straightforward appli-
cation of the product rule to Eq. (D11). Also, although
the second derivative of the k = n− 2 term may be non-
zero and contains a product, it is only so for the second
derivative of [eiϕ−1]2—the other terms originating from
the product rule are zero. Hence, F ′′n [0] has only three



10

non-zero terms,

F ′′n [0] =

[
1

nn
Dn,nn[eiϕ + n− 1]n−1ieiϕ

]′
ϕ=0

+

[
1

nn
Dn,n−2[eiϕ + n− 1]n−2[eiϕ − 1]2

]′′
ϕ=0

=

[
1

nn
Dn,nn(n− 1)[eiϕ + n− 1]n−2(ieiϕ)2

]
ϕ=0

+

[
1

nn
Dn,nn[eiϕ + n− 1]n−1(ieiϕ)2

]
ϕ=0

+

[
1

nn
Dn,n−22[eiϕ + n− 1]n−2(ieiϕ)2

]
ϕ=0

= −

[
1

nn
(n− 1)nn−1

]
−

[
1

nn
nn

]

−

[
1

nn
2Dn,n−2n

n−2

]

= −
[n− 1

n
+ 1 +

2Dn,n−2

n2

]
= −

[n− 1

n
+ 1 +

n(n− 1)

n2

]
= −

[2n− 2

n
+ 1
]

= −3n− 2

n
. (D14)

Thus, Eq. (D9) becomes the simple expression,

perm(Û) ≈ 1 + iϕ−
(

3n− 2

2n

)
ϕ2. (D15)

Recall that the probability of observing n photons, each
exiting individual ports, is P = |perm(Û)|2. For small ϕ,
then,

P =
∣∣∣1 + iϕ−

(
3n− 2

2n

)
ϕ2
∣∣∣2

=
(

1 + iϕ−
(

3n− 2

2n

)
ϕ2
)(

1− iϕ−
(

3n− 2

2n

)
ϕ2
)

= 1 + iϕ− iϕ− 2

(
3n− 2

2n

)
ϕ2 − i2ϕ2 +O(ϕ4)

= 1− 2n− 2

n
ϕ2 +O(ϕ4). (D16)

Finally, ∆ϕ becomes,

∆ϕ =

√
P − P 2

|∂P∂ϕ |

=

√
1− 2n−2

n ϕ2 − 1 + 4n−4
n ϕ2

4n−4
n ϕ

=

√
2n−2
n ϕ2

2 · 2n−2
n ϕ

=
1

2
√

2 ·
√

n−1
n

, (D17)

which is in agreement with Eq. (7). The ratio between ∆ϕ
and the shotnoise-limited phase sensitivity for n photons
is then,

∆ϕ

1/
√
n

=

√
n2

8(n− 1)
, (D18)

which is greater than one (i.e. gives an advantage over
shotnoise) for 2 ≤ n ≤ 6. This is more photons than
what is experimentally available today.

Appendix E: Comparison to Metrology with
Squeezed Light

Let us compare our digital approach to metrology here
to the more analog approach of coherent light mixed with
single-mode squeezed vacuum in a balanced MZI [38].
The phase uncertainty ∆ϕξ for that scheme can be writ-
ten as [37],

∆ϕξ = [n̄ξexp(2r) + 2n̄ξ(n̄ξ + 1)]−1/2 (E1)

Here n̄ξ is the mean number of photons in the squeezed
state and r is the usual squeezing parameter [39]. We have
also taken n̄ξ = n̄α, the latter being the mean number of
photons in the coherent state, which is where the scheme
is optimal [35]. This expression clearly has Heisenberg
scaling in the limit of infinite squeezing (or equivalently
as n̄ξ = sinh2(r) goes to infinity).

To compare with experiments we use the handy for-
mula [39],

r =
1

2
ln[10(dB/10)] (E2)

which allows us to plot ∆ϕξ as a function of dB,the latter
of which is the typical experimental number for determin-
ing the amount of squeezing (see Fig. 8).

As we can see ∆ϕξ always remains below the shotnoise
limit, and in fact remains below the Heisenberg limit,
approaching it from below asymptotically as ∆ϕξ → 1

2n̄ξ
,

which we call Heisenberg scaling. (It is now well known
that the Heisenberg limit can be beaten with squeezed
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vacuum [30].) The record squeezing for optics in the lab
is 15 dB (n̄ξ = 7.4), but 10 dB (n̄ξ = 2.03) is more typical
[36].

Hence 10 dB corresponds to a mean photon number
of only 2.0 in the squeezed-vacuum-mixed-with-coherent-
state scheme. If we then compare this result to our
scheme here in Fig. 2 for n = 2, our interferometer
also reduces to a MZI with a twin photon input, and
the result is well known to be Heisenberg limited with
∆ϕ = 1/2 = 0.5. For the comparable photon number in
the squeezed plus coherent state MZI, ∆ϕξ = 0.21, which
is slightly better but assumes that the squeezed vacuum
input is in a pure state; this assumption is very rarely the
case. The real issue here is that while our current single
photon scheme has poor scaling at high photon num-
ber, the squeezing scheme cannot experimentally reach
the high mean photon numbers required to approach the
Heisenberg limit in the asymptotic regime.

Lest we be led astray, the point of our paper here
is to demonstrate that the deterministic entanglement
produced in a linear interferometer via the generalized
HOM effect (the same effect that generates number-path
entanglement in boson sampling) can indeed provide a
metrological advantage, even if small, for this particu-
lar class of interferometers. Given that groups around
the world are rapidly developing optical interferometers
with deterministic on-demand single photon sources, as
well as detectors, all on chip, it is reasonable to predict
that systems with 100s of single photon inputs will soon
be available. Such a chip would produce an exponen-

tially huge amount of number-path entanglement, as has
been show in the context of boson sampling [34]. If an-
other scheme, such as multi-parameter estimation or even
super-resolving imaging, can be found to take advantage
of this entanglement, it would mean a breakthrough in
quantum metrology, since only single photons, linear op-
tics, and photon on-off detection is required.

Whereas for the squeezed vacuum approach, squeezed
vacuum states with n̄ξ = 100 will likely never be made
in the lab, and the device that produces the squeezed
vacuum in the first place requires a strong optical non-
linearity, and the detection scheme typically requires ho-
modyning, all of which is difficult to implement on chip.

FIG. 8: Phase sensitivity of a squeezed vacuum mixed with
coherent light on an MZI.
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