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Within the emergent eigenstate solution to quantum dynamics [Phys. Rev. X 7, 021012 (2017)],
one can construct a local operator (an emergent Hamiltonian) of which the time-evolving state is an
eigenstate. Here we show that such a solution exists for the expansion dynamics of Tonks-Girardeau
gases in optical lattices after turning off power-law (e.g., harmonic or quartic) confining potentials,
which are geometric quenches that do not involve the boost operator. For systems that are initially
in the ground state and undergo dynamical fermionization during the expansion, we show that they
remain in the ground state of the emergent local Hamiltonian at all times. On the other hand, for
systems at nonzero initial temperatures, the expansion dynamics can be described constructing a
Gibbs ensemble for the emergent local Hamiltonian (an emergent Gibbs ensemble).

I. INTRODUCTION

Nonequilibrium dynamics in isolated quantum systems
generally result in states in which observables can be
described using equilibrium statistical mechanics (they
“thermalize”) [1]. Nevertheless, there are many exam-
ples of intriguing outcomes of quantum dynamics. Some
are the result of designing controllable dynamical proto-
cols to create states of matter that do not exist in equi-
librium, e.g., long-lived nonequilibrium states after short
photoexcitation pulses [2, 3] and Floquet states [4, 5].
Others are the result of having current-carrying states.
Within the latter, recent studies have aimed at clarifying
the role of (quasi-)local conserved quantities in transport
in integrable systems [6–13], and generating interesting
current-carrying states in closed quantum systems using
inhomogeneous initial states [14–31]. Other remarkable
dynamical phenomena that have recently attracted much
attention are dynamical phase transitions [32–36] and
discrete time crystals [37–39].

Also departing from the traditional thermalization sce-
nario, it was pointed out in Ref. [40] that, for certain
classes of quantum quenches involving pure states, there
exist a local operator (an emergent local Hamiltonian) of
which the time-evolving state is an eigenstate. Namely,
there exists an emergent eigenstate solution to the quan-
tum dynamics. Whenever the time-evolving state is the
ground state of the emergent local Hamiltonian, one can
understand why ground-state-like correlations, such as
those observed in Refs. [16, 41], can occur far from equi-
librium. On the other hand, the emergent eigenstate
solution offers promising tools to engineer many-body
states with ultracold atoms. Related ideas have been
recently explored in the context of integrable Floquet dy-
namics [42] and counter-diabatic driving [43].

In the quantum quenches studied in Ref. [40], the ini-
tial states were eigenstates of Hamiltonians that con-
tained the so-called boost operator (an operator that is
used in integrable models to generate conserved quan-
tities). While such Hamiltonians could potentially be
engineered in optical lattice experiments, they are not
directly relevant to current experiments. Our first goal

in this Rapid Communication is to show that the emer-
gent eigenstate solutions also exist for quenches that do
not involve the boost operator. Our second goal is to
formalize the numerical observation in Ref. [44] that the
emergent local Hamiltonian can be used to understand
the dynamics of thermal states after a quench. We jus-
tify analytically, and show numerically, the applicability
of an emergent Gibbs ensemble (a Gibbs ensemble for the
emergent local Hamiltonian) for quenches starting from
Gibbs states.

We study bosons in the Tonks-Girardeau regime (hard-
core bosons) [45–48] in one-dimensional (1D) lattices,
and consider systems that are initially at zero and
nonzero temperatures confined in power-law traps (har-
monic traps are the ones relevant to current experi-
ments). The physical phenomenon that will be central
to our discussions is the dynamical fermionization of the
quasimomentum distribution function during the expan-
sion after suddenly turning off the trap [17, 18, 44, 49].
In closing, by comparing results for power-law traps with
even and odd exponents (for spectra that is bounded and
unbounded from below, respectively), we show that dif-
ferent emergent local Hamiltonians can be used to de-
scribe dynamics of the same states, and that the target
eigenstates can be ground states or highly excited states
of such Hamiltonians.

II. EMERGENT EIGENSTATE SOLUTION

We first review some key elements of the emergent
eigenstate solution to quantum dynamics introduced in
Ref. [40]. We consider a quantum quench from the ini-

tial Hamiltonian Ĥ0 to the final Hamiltonian Ĥ, with the
initial state |ψ0〉 being an eigenstate of Ĥ0 (Ĥ0|ψ0〉 =

λ|ψ0〉). The time-evolving state |ψ(t)〉 = e−iĤt|ψ0〉 is an

eigenstate M̂(t)|ψ(t)〉 = 0 of the operator

M̂(t) ≡ e−iĤtĤ0e
iĤt − λ , (1)

which is in general nonlocal and therefore of no particular
interest (we set ~ = 1). However, there are physically rel-
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evant cases for which M̂(t) is a local operator, i.e., an ex-
tensive sum of operators with support on a finite number
of lattice sites [40]. We say that the emergent eigenstate

solution to quantum dynamics exists whenever M̂(t) can

be replaced by a local operator Ĥ(t) that we call the

emergent local Hamiltonian. Since Ĥ(t)|ψ(t)〉 = 0, in-
stead of time-evolving the initial state one can solve for
the dynamics by finding a single eigenstate of Ĥ(t). Re-

markably, Ĥ(t) is time independent in the Heisenberg

picture [〈ψ(t)|Ĥ(t)|ψ(t)〉 = 0]. Hence, Ĥ(t) is a local con-
served quantity even though it does not commute with
the physical Hamiltonian that governs the dynamics.

The conditions for Ĥ(t) to exist become apparent from
the expansion of Eq. (1) in power series

e−iĤtĤ0e
iĤt = Ĥ0 +

∞∑
n=1

(−it)n

n!
Ĥn , (2)

where Ĥn = [Ĥ, ...[Ĥ, [Ĥ, Ĥ0]]...] is an n-th nested com-
mutator of the final Hamiltonian with the initial Hamil-
tonian. An emergent local Hamiltonian exists if: (i) Ĥn
vanishes at some finite n0, or (ii) if the nested commuta-
tors close the sum in Eq. (2).

III. EMERGENT GIBBS ENSEMBLE

One can generalize the emergent eigenstate solution
of quantum dynamics to initial thermal states. For

an initial density matrix ρ̂0 = e−βĤ0/Z0, where Z0 =

Tr{e−βĤ0} and β = T−1 is the initial inverse tempera-
ture (we set kB = 1), the time-evolving density matrix
is

ρ̂(t) = Z−10 e−iĤte−βĤ0eiĤt

= Z−10

∞∑
n=0

(−β)n

n!
e−iĤt

(
Ĥ0

)n
eiĤt , (3)

where, in the second line, the operator e−βĤ0 was ex-

panded in a power series. Writing e−iĤt(Ĥ0)neiĤt =

(e−iĤtĤ0e
iĤt)n yields

ρ̂(t) = Z−10 exp
(
−β
[
e−iĤtĤ0e

iĤt
])

. (4)

In Eq. (4), one can introduce the operator M̂′(t) ≡
e−iĤtĤ0e

iĤt such that the time-evolving density matrix
ρ̂(t) is a Gibbs density matrix of M̂′(t). M̂′(t) is in gen-
eral nonlocal and, hence, of no particular use. However,
whenever M̂′(t) is local [M̂′(t) ≡ Ĥ′(t)], Eq. (4) repre-
sents a physically meaningful emergent Gibbs ensemble

Σ̂(t) = Z−10 e−βĤ
′(t) . (5)

Note that the temperature in Σ̂(t) is that of the initial
state, only the emergent local Hamiltonian changes with
time. The expectation value of any observable Ô during
the dynamics can be computed as 〈Ô(t)〉 = Tr{Σ̂(t)Ô}.
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FIG. 1. Initial site occupations and validity of the emer-
gent eigenstate solution. (Insets) Initial site occupations in
harmonic (top inset) and quartic (bottom inset) traps at zero
and nonzero temperature. Results are shown for a character-
istic density ρ̃ = N/R = 0.5. (Main panel) Subtracted overlap
|1−O(t)|, where O(t) = |〈Ψt|ψ(t)〉|, of the time-evolving state
|ψ(t)〉 (for the T = 0 cases) with the ground state |Ψt〉 of the

emergent local Hamiltonian Ĥ(2)(t) (13) and Ĥ(4)(t) (14).

IV. DYNAMICAL FERMIONIZATION

As mentioned before, here we study hard-core bosons
in 1D lattices. We consider initial Hamiltonians of the
form:

Ĥ
(α)
0,HCB = −J

L0−1∑
l=−L0

(
b̂†l+1b̂l + H.c.

)
+

J

Rα

L0∑
l=−L0

lα b̂†l b̂l ,

(6)

where b̂†l (b̂l) is the creation (annihilation) operator of a
hard-core boson at site l, J is the hopping amplitude,
and J/Rα and α are the strength and exponent of the
power-law trap, respectively. The quantity to be kept
constant when taking the thermodynamic limit is the so-
called characteristic density ρ̃ = N/R [50, 51], where N
is the total number of particles in the trap.

Mapping hard-core bosons onto spins-1/2 and spins-

1/2 onto fermions, b̂l = eiπ
∑

m<l f̂
†
mf̂m f̂l [52–54], Hamil-

tonian (6) maps onto a Hamiltonian of noninteracting
spinless fermions

Ĥ
(α)
0 = −J

L0−1∑
l=−L0

(
f̂†l+1f̂l + H.c.

)
+

J

Rα

L0∑
l=−L0

lαf̂†l f̂l .

(7)
One can efficiently compute one-body observables of
hard-core bosons solving for the fermions and using prop-
erties of Slater determinants [18, 44, 51, 55]. The site

occupations of fermions nl = 〈n̂l〉, with n̂l = f̂†l f̂l, and
hard-core bosons are identical.

We first focus on the cases in which α = 2 (harmonic
trap) and α = 4 (quartic trap). The insets in Fig. 1
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show typical initial ground-state and finite-temperature
(T = 0.3J) site occupations considered in our study. It
is interesting to note that, in the center of the quartic
trap, the site occupations are almost constant.

Our quench consists of turning off the trap, so that the
dynamics occur under the physical Hamiltonian

Ĥ = −J
L0−1∑
l=−L0

(
f̂†l+1f̂l + H.c.

)
. (8)

We measure time in units of 1/J and set J ≡ 1. This
class of geometric quantum quenches is known as sudden
expansion and has been widely studied theoretically [16–
18, 21, 44, 56–77] and in experiments with ultracold
atoms in optical lattices [41, 78–81]. In contrast to the
standard time-of-flight measurements, the lattice poten-
tial and, as a result, strong interactions, are not switched
off during the quench.

We now derive the emergent local Hamiltonian for
this setup. Note that, in Ref [40], the initial and the
final Hamiltonians satisfied the commutation relation
[Ĥ, Ĥ0] ∝ Q̂, with Q̂ being a conserved quantity of the
final Hamiltonian (up to boundary terms). Such a com-

mutation relation was enforced by making Ĥ0 the sum of
Ĥ and a boost operator. For α = 2 and 4 [see Eq. (7)],
the traps of interest here, this is not the case.

For the analysis that follows, it is useful to define the
generalized kinetic energy T̂ (m,α) and current Ĵ (m,α) op-
erators

T̂ (m,α) = −R−α
L0−m∑
l=−L0

[(
l +

m

2

)α
f̂†l+mf̂l + H.c.

]
, (9)

Ĵ (m,α) = R−α
L0−m∑
l=−L0

[
i
(
l +

m

2

)α
f̂†l+mf̂l −H.c.

]
.(10)

They allow us to write the initial Hamiltonian as Ĥ
(α)
0 =

T̂ (1,0)−T̂ (0,α)/2, and the final Hamiltonian as Ĥ = T̂ (1,0).

Note that the operators T̂ (m,0) and Ĵ (m,0) commute with
Ĥ, up to boundary terms. This is what ensures that the
sum in Eq. (2) is convergent for our quenches of interest.

Let us consider first the initial harmonic confinement,
α = 2 in Eq. (7). The commutator of the final and the
initial Hamiltonian yields

[Ĥ, Ĥ
(2)
0 ] = −2i R−1Ĵ (1,1) . (11)

While Ĵ (1,1) does not commute with Ĥ, their commutator
yields the operators

[Ĥ, Ĵ (1,1)] = −i R−1T̂ (2,0) + 2i R−1N̂ , (12)

which both commute with Ĥ (up to boundary terms),

N̂ =
∑
l n̂l. We therefore truncate the series in Eq. (2)

at n0 = 2. Consequently, the emergent local Hamiltonian
for the initial harmonic trap reads

Ĥ(2)(t) = Ĥ
(2)
0 −λ−

2t

R
Ĵ (1,1) +

(
t

R

)2
T̂ (2,0) +

(√
2t

R

)2
N̂ .

(13)
Remarkably, when mapping spinless fermions back to
hard-core bosons, the operator T̂ (2,0) in Eq. (13) becomes

a two-body operator −
∑
l(b̂
†
l+2[1 − 2b̂†l+1b̂l+1]b̂l + H.c.).

Hence, the emergent local Hamiltonian for hard-core
bosons contains correlated next-nearest neighbor hop-
pings, even though the emergent local Hamiltonian for
the corresponding fermions is nevertheless quadratic.

The emergent local Hamiltonian to describe the expan-
sion dynamics from other initial power-law traps, with
α > 2, can also be determined in a straightforward way.
However, the calculations become increasingly lengthy
with increasing α as the series in Eq. (2) is truncated at
n = α. In Appendix B, we discuss the calculation for the
quartic trap, α = 4 in Eq. (7). The resulting emergent
local Hamiltonian reads

Ĥ(4)(t) = Ĥ
(4)
0 − λ− 6

(
t

R

)2
T̂ (0,2) +

(
t

R

)2 [
4

(
t

R

)2
+R−2

]
T̂ (2,0) + 6

(
t

R

)2
T̂ (2,2) −

(
t

R

)4
T̂ (4,0)

− t

R

[
12

(
t

R

)2
+R−2

]
Ĵ (1,1) − 4

(
t

R

)
Ĵ (1,3) + 4

(
t

R

)3
Ĵ (3,1) + 2

(
t

R

)2 [
3

(
t

R

)2
+R−2

]
N̂ , (14)

which is significantly more complex than Ĥ(2)(t). How-
ever, it still consists of sums of local operators.

The emergent local Hamiltonian construction suggests

that if the initial state is the ground state of Ĥ
(α)
0 (7) [for

α even and positive] and Ĥ(α)(t) is nondegenerate, the

time-evolving state |ψ(t)〉 is the ground state of Ĥ(α)(t)
at all times, which we denote as |Ψt〉. This statement is
not limited to a particular initial characteristic density ρ̃.

We check this numerically for α = 2 and 4, and ρ̃ = 0.5
in Fig. 1 by calculating the overlap O(t) = |〈Ψt|ψ(t)〉|.
The overlap is essentially one to machine precision. This
confirms that, if the lattice is sufficiently large such that
the site occupations at the edges vanish at all times, the
emergent eigenstate solution is valid at all times (see Ap-
pendix A). Moreover, Figs. 2(c)–2(f) show results for var-
ious one-body observables for initial finite-temperature
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FIG. 2. Dynamical fermionization of the hard-core boson momentum distribution function. All the results reported are obtained
using the emergent local Hamiltonian Ĥ(2)(t) (13) [upper panels] and Ĥ(4)(t) (14) [lower panels]. The only exceptions are the
thin dashed lines in (c)–(f), which depict results for the time evolution (TE) of thermal (T = 0.3) initial states. (a)–(d) Quasi-
momentum distribution mk (main panels) and site occupations nl (insets) in the ground state of the emergent local Hamiltonian

[(a),(b)] and in the emergent Gibbs ensemble [(c),(d)]. (e),(f) Absolute value of one-body correlations C(x) = |〈b†l=0b̂l′=x〉| in
the ground state of the emergent local Hamiltonian and in the emergent Gibbs ensemble. Thin dotted lines are power-law
fits to C(x) = ax−1/2 for the ground-state results in the interval x ∈ [10, 100] at t = 0 and x ∈ [50, 500] at t = 375. For the
harmonic trap, we get a = 0.270 at t = 0 and a = 0.148 at t = 375, while for the quartic trap, we get a = 0.264 at t = 0 and
a = 0.149 at t = 375. The results reported are for systems with N = 100 particles and a characteristic density ρ̃ = 0.5.

states, obtained both by time-evolving the initial den-
sity matrix (as in Ref. [44]) and by using the emergent
Gibbs ensemble. The results can be seen to agree, which
demonstrates the validity of the emergent Gibbs ensem-
ble description [see Eq. (5)].

Physically, the quench dynamics under investigation is
of particular interest because the quasimomentum dis-
tribution of hard-core bosons undergoes a dynamical
fermionization, namely, it approaches that of spinless
fermions as the cloud expands [17]. (Note that the quasi-
momentum distribution of the spinless fermions does not
change in time because the fermionic occupations of the
quasimomentum modes are conserved quantities.) This
dynamical fermionization is to be contrasted to the result
of the time-of-flight protocol, in which all the external
potentials are switched off and the measured momentum
distribution after expansion is, up to higher-order Bragg
peaks, the same as the initial quasimomentum distribu-
tion of the hard-core bosons. Dynamical fermionization
has been studied for hard-core bosons in initial ground
states in a lattice [17, 18], in the continuum [49], and at
finite temperatures in a lattice [44].

Figures 2(a)–2(d) display the quasimomentum distri-
bution mk for α = 2 and 4. We define mk of hard-
core bosons as mk = (1/R)

∑
l,l′ e

ik(l−l′)〈b̂†l b̂l′〉 (for spin-

less fermions, one just needs to replace b̂†l b̂l′ by f̂†l f̂l′).
In equilibrium, mk of hard-core bosons is clearly differ-

ent from its spinless fermion counterpart: it is sharply
peaked at k = 0 in the ground state [Figs. 2(a) and 2(b)],
while finite temperatures [Figs. 2(c) and 2(d)] smoothen
the peak [55]. Remarkably, during the dynamics [see
Figs. 2(a)–2(d)], mk of hard-core bosons approaches (and
becomes nearly identical to) the one of spinless fermions
irrespective of the initial temperature [44] and of the ex-
ponent of the initial confining potential. The quasimo-
mentum distribution of hard-core bosons is nearly identi-
cal to that of the fermions at the longest expansion times
studied, when the occupations nl in the center of the lat-
tice are strongly reduced from their initial values [see the
insets of Figs. 2(a)-2(d)].

The dynamical fermionization of the bosonic quasimo-
mentum distribution function is not the only intriguing
phenomenon that occurs during the expansion dynamics.
Another remarkable feature is the preservation of coher-
ence in the many-body wavefunction of pure states. This
can be seen by studying the spatial decay of the absolute

value of one-body correlations C(x) = |〈b̂†l=0b̂l′=x〉|, for
which results are depicted in Figs. 2(e) and 2(f). While
the spatial decay for finite-temperature initial states is
exponential [44], it is intriguing that for initial ground
states the correlations retain a power-law decay with the
ground-state exponent C(x) ∝ x−1/2 at all times [17, 18].
The fact that the expanding states that start their dy-
namics from ground states are eigenstates of emergent
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local Hamiltonians (13) and (14) allow one to gain an in-
tuitive understanding for why correlations can be power
law. This is a behavior typical of gapless 1D systems in
their ground states, which are described by the Luttinger
liquid theory [54].

V. NONUNIQUENESS OF THE EMERGENT
LOCAL HAMILTONIAN

Before concluding, let us also consider initial Hamilto-
nians of the form

Ĥ
′(α)
0 =

L0∑
l=−L0

lαn̂l , (15)

which commute for different values of α. Let us consider
two initial Hamiltonians Ĥ

′(α1)
0 and Ĥ

′(α2)
0 and the same

final Hamiltonian Ĥ after the quench. The correspond-
ing emergent local Hamiltonians Ĥ′(α1)(t) and Ĥ′(α2)(t)
commute [this follows from Eq. (1)], i.e., they share eigen-
states. This means that different emergent local Hamil-
tonians can be used to describe dynamics from initial

states that are common eigenstates of Ĥ
′(α1)
0 and Ĥ

′(α2)
0 .

An interesting aspect about the nonuniqueness of the

emergent local Hamiltonian appears when studying Ĥ
′(α)
0

for even and odd values of α, as the former (latter) ex-
hibits a spectrum that is bounded (unbounded) from be-
low. If one considers an initial state that is a Fock state
with one particle per site in the center of the lattice,
see the insets in Fig. 3, that state is the ground state of

Ĥ
′(2)
0 and Ĥ

′(4)
0 , while it is a highly-excited (degenerate)

eigenstate of Ĥ
′(1)
0 . As a result, the expansion dynam-

ics can be described using the ground state of Ĥ′(2)(t)
and Ĥ′(4)(t) [obtained by replacing Ĥ

(α)
0 → Ĥ

′(α)
0 and

R → 1 in Eqs. (13) and (14), respectively] or using a
highly-excited eigenstate of

Ĥ′(1)(t) = Ĥ
′(1)
0 − t Ĵ (1,0) − λ , (16)

with λ = 0. In the main panel in Fig. 3, we show overlaps
between the target eigenstates of Ĥ′(1)(t), Ĥ′(2)(t), and

Ĥ′(4)(t) as a function of time. The overlaps are one within
machine precision for all times shown.

This example offers an understanding for why one-
body correlations with ground-state character can be
found in highly-excited eigenstates of emergent local
Hamiltonians with spectra that are unbounded from be-
low [40]. In the case considered here, a highly-excited

eigenstate of Ĥ′(1)(t) is the ground state of Ĥ′(2)(t) and

Ĥ′(4)(t). Note that, actually, a macroscopic number of

low-energy eigenstates of Ĥ′(2)(t) and Ĥ′(4)(t) appears

(is “cloned”) in the middle of the spectrum of Ĥ′(1)(t).

0 1 2 3 4 5
t/N

10-12

10-8

10-4

100

| 1
 - 

O
ve

rla
p 

|
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FIG. 3. Nonuniqueness of the emergent local Hamiltonian.
We consider an initial product state |ψ0〉 =

∏
l∈Lc

b̂†l |∅〉, where
the particles occupy Lc consecutive sites in the center of the

lattice. This state is an eigenstate of Ĥ
′(1)
0 , Ĥ

′(2)
0 , and Ĥ

′(4)
0

(see insets for the corresponding site occupations). In the
quench, the trap is turned off and hopping between nearest
neighbor sites is turned on. As a result, a highly excited eigen-
state of the emergent local Hamiltonian Ĥ′(1)(t) is identical

to the ground states of Ĥ′(2)(t) and Ĥ′(4)(t), as shown in the
main panel by the vanishing values of the subtracted overlap
between these states. Results are reported for systems with
N = 100 and L = 2500,

VI. CONCLUSIONS

We have shown that emergent eigenstate solutions ex-
ist for the expansion dynamics of Tonks-Girardeau gases
in 1D optical lattices after turning off power-law con-
fining potentials. Those quenches do not involve the
boost operator, which was central to the discussion in
Ref. [40]. Our construction is applicable independently
of the characteristic density chosen, the exponent of the
power-law traps, the initial temperature, and for arbi-
trarily long times, so long as particles do not reach the
edges of the lattice. The emergent local Hamiltonians
constructed here provide a promising tool to manipulate
time-evolving states in optical lattices. For example, by
quenching to the emergent Hamiltonian during the ex-
pansion one can suddenly freeze the atomic cloud, as it
becomes a stationary state. This opens a door towards
the efficient engineering of tailored many-particle states.

We studied the dynamical fermionization of the hard-
core boson quasimomentum distribution function during
expansion dynamics, and showed that the dynamically
fermionized state may be the ground state of an emer-
gent local Hamiltonian with competing (generalized) ki-
netic and current operators. We also formally intro-
duced the concept of the emergent Gibbs ensemble to de-
scribe quantum dynamics of initial Gibbs states. It can
be used to describe the expansion dynamics of Tonks-
Girardeau gases, relevant to current experiments with
ultracold atomic bosons in optical lattices.
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Appendix A: Times of validity of the emergent
eigenstate description

In the derivation of Ĥ(2)(t) and Ĥ(4)(t), we neglected

boundary terms that appear in the commutators Ĥn.
These terms enter the series in Eq. (2) generating op-
erators at the lattice boundaries whose support increases
with the power of t, and eventually result in a breakdown
of the emergent eigenstate description of the dynamics
on finite lattices and long times. Physically, the break-
down time can be understood to be the time at which
propagating particles reach the lattice boundaries [40].
Hence, by taking limits appropriately, no breakdown of
the emergent eigenstate solution will occur. One needs
to first take the lattice size to infinity while keeping the
time fixed, and then take the infinite time limit.

Appendix B: Emergent local Hamiltonian for the
initial quartic trap

The emergent local Hamiltonian Ĥ(4)(t) in Eq. (14)

is derived by evaluating elements Ĥ(4)
n of the series in

Eq. (2). The first-order term is

Ĥ(4)
1 = −iR−3Ĵ (1,1) − 4i R−1Ĵ (1,3) , (B1)

the second-order term is

Ĥ(4)
2 = 24R−2T̂ (0,2)−2R−4T̂ (2,0)−12R−2T̂ (2,2)−4R−4N̂ ,

(B2)
the third-order term is

Ĥ(4)
3 = 72i R−3Ĵ (1,1) − 24i R−3Ĵ (3,1) , (B3)

and the fourth-order term is

Ĥ(4)
4 = 96R−4T̂ (2,0) − 24R−4T̂ (4,0) + 144R−4N̂ . (B4)

One then realizes that Ĥ(4)
4 commutes with Ĥ (up to

boundary terms), and, hence, the series in Eq. (2) can
be truncated at n0 = 4 to produce the emergent local
Hamiltonian Ĥ(4)(t) in Eq. (14).
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