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Experimental realizations of topological quantum systems and detections of topological invariants
in ultracold atomic systems have been a greatly attractive topic. In this work, we propose a scheme
to realize topologically different phases in a bichromatic optical lattice subjected to a periodically
driven tilt harmonic oscillation, which can be effectively described by a superlattice model with
tunable long-range hopping processes. By tuning the ratio of nearest-neighbor (NN) and next-
nearest-neighbor (NNN) hopping amplitudes, the system undergoes a topological phase transition
accompanied by the change of topological numbers of the lowest band from −1 to 2. Using a
slowly time-periodic modulation, the system emerges distinct quantized topological pumped charges
(TPCs) of atoms in the filled band for different topological phases. Our scheme is realizable in
current cold atomic technique.

PACS numbers: 03.65.Vf,73.43.Nq,05.30.Fk

I. INTRODUCTION

Exploration of topological phases of matters has
attracted longstanding interest in condensed matter
physics in past decades [1–18]. Besides traditional solid
materials, ultracold atomic systems have provided a pow-
erful platform for the investigation and simulation of
topological physics [19–29]. By manipulating the geome-
try of optical lattices and atomic hopping configurations,
a series of celebrated models of topological quantum sys-
tems, such as the Hofstadter model [19–21], the Haldane
model [22, 23] and the Su-Schrieffer-Heeger model [24–
28], have been experimentally realized in cold atomic sys-
tems. Besides the tunability of geometrical structures,
the time-periodic modulation of parameters of systems
can significantly change the band structures of the effec-
tive Floquet Hamiltonian [19–23, 30–40] and thus pro-
vides an additional freedom to adjust nontrivially topo-
logical bands. So far, the Floquet band engineering has
become an effective experimental tool for exploration of
topological phases in periodically driven optical lattices.

On the other hand, the time-periodic driving has been
widely applied to realize coherent manipulation of the
ultracold atomic gases in optical lattice. Some impor-
tant experimental progresses include the coherent con-
trol of the single-particle tunneling amplitude in peri-
odically shaken lattices [41], the realization of dynami-
cal localization[41–43], the implementation of kinematic
frustration [44], and the dynamical control of quantum
phase transition from a bosonic superfluid to a Mott-
insulating state [45]. These experimental schemes are
based on the observation of an effective modification of
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tunneling matrix elements induced by the time-periodic
driving. In most previous studies, only the NN hopping
processes are considered, due to the tunneling amplitudes
between NNN sites decay very quickly and are gener-
ally negligible in comparison with the NN hopping terms.
However, as we shall demonstrate in this paper, it is pos-
sible to get a much stronger NNN tunneling terms for a
periodically driven system. The presence of long-range
hopping terms can significantly change the band struc-
ture of the system, and may induce phase transition be-
tween topologically different phases.

In this work, we study the topological phase transition
in a one-dimensional (1D) periodically driven optical su-
perlattices, which can be realized by trapping fermions in
a 1D bichromatic optical lattice with a tilt harmonic os-
cillation. The effective time-independent Hamiltonian in
the high-frequency oscillation regimes can be described
by a superlattice model with both the NN and NNN hop-
ping terms, and particularly the ratio of NN and NNN
hopping amplitudes can be adjusted freely. In compar-
ison with the 1D superlattice model described by the
Harper model [29, 46], the system provides different topo-
logical behaviors when the NNN hopping amplitude J2 is
larger than the NN one J1. To characterize the topolog-
ical features, we study the topological Chern numbers of
the system in different parameter regimes. The existence
of topological phase transition is based on the change of
Chern numbers for the system with the lowest band be-
ing fully filled by fermions when the parameter crosses
the transition point, the change of energy gaps and non-
trivial edge states. Particularly, recent progress in in situ

detection with the single-site resolution offers the possi-
bility of the detection of topological Thouless pumping
[25, 26] in different topological regimes. Our calculation
verifies the topological quantization of the center of mass
(CM) of the cloud in realistic ultracold atom experimen-
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tal situations.

II. MODEL AND EFFECTIVE HAMILTONIAN

Consider the noninteracting ultracold fermions
trapped in a bichromatic optical lattice with a tilt
harmonic oscillation. The fermionic motion along the x
axis is described by H = Hs +W (t), where

Hs = −
∑

j,m

J ′
m(ĉ†j ĉj+m + h.c.) + λ

∑

j

cos (2παj + δ)n̂j,

(1)
is a bichromatic optical lattice and

W (t) = 2χ cos (Ωt)
∑

j

jn̂j, (2)

represents a tilt of the lattice with harmonic oscillation,
where χ is the strength of the shaking term and Ω is
the driving frequency. Here, ĉj is the annihilation op-

erator, n̂j = ĉ†j ĉj is the density operator on site j, λ is
the strength of the modulation, α determines the mod-
ulation period chosen α = 1/3 in this paper and δ is
an arbitrary phase. In the absence of W (t) term, the
static bichromatic optical lattice model includes the hop-
ping terms and the quasiperiodic modulation term where
the strength of the modulation λ depends on the am-
plitude of the secondary lattice and the amplitude of
the hopping terms J ′

m can be described by an asymp-
totic law J ′

m ∼ (xm)−3/2e−hxm [47, 48]. Here, xm is
the interval between two lattice sites and h is the dis-
tance between the branch point and the real axis in
the complex momentum k space. For the deep well,
h/kL ∼

√

V0/(4Er) − 1/4, whereas in the weak bind-
ing case, h/kL ∼ V0/(8Er) where V0 is the depth of the
primary lattice, and Er = ~

2k2L/(2µ) is the recoil energy
with the wave vector of the primary laser light waves kL
and µ being the mass of the fermions. With the decrease
of V0/Er, the effect of the long-range hopping emerges.
For the shallow potential case, take V0/Er = 3 as an ex-
ample, the ratio of the strengths between the NNN and
the NN hopping J ′

2/J
′
1 ∼ 0.1 [49, 50]. In our work, we

only consider the NN and NNN hopping terms for the
shallow potential case.
In the presence of periodic shaking, the scenario has

been investigated theoretically [51–60] and experimen-
tally [19–23, 35, 41–45, 61]. For sufficiently high driving
frequencies, the periodic shaking system can be equiva-
lent to an effective Hamiltonian Heff which behaves sim-
ilarly as the undriven system, but with the hopping ma-
trix elements J ′

1 and J ′
2 replaced by the renormalized

matrix elements J ′
1J0[2χ/(~Ω)] and J ′

2J0[4χ/(~Ω)], re-
spectively, where J0 is the Bessel function of order zero.
Fig.1(a) shows the Bessel function of order zero J0(x)
and J0(2x). We can see the ratio of J0(2x)/J0(x) can be
freely controlled by x. In realistic experiment, we can ad-
just the driven strength χ and the driving frequency Ω,

to freely control the ratio between the strength of NNN
and NN hopping terms. Hence the effective Hamiltonian
can be described as following

Heff = −
∑

j,m={1,2}

Jm(ĉ†j ĉj+m + h.c.) +
∑

j

Wj n̂j , (3)

with

Wj = λ cos (2παj + δ). (4)

For α = 1/3, there are three different sites in
each unit cell shown in Fig.1(b). In order to sim-
plify the extra variables, we define J1 = J cos θ de-
notes the NN hopping strength and J2 = J sin θ
is the NNN hopping strength [Fig.1(c)] where J =
√

{J ′
1J0[2χ/(~Ω)]}

2 + {J ′
2J0[4χ/(~Ω)]}

2 and cos θ =
J ′
1J0[2χ/(~Ω)]/J . Without loss of generality, θ is chosen

from 0 to π/2 to change the ratio J2/J1. In the following,
J is set as energy unit.
For the case of θ = 0, the effective Hamiltonian Eq.(3)

only includes the NN hopping and the three period chem-
ical potential terms which returns to the model stud-
ied by Lang et.al. [29] and Kraus et.al. [46] [Fig.1(d)].
The system is topologically nontrivial and when the low-
est band is fully filled by fermions, we can calculate
the Chern number in two-dimensional phase-momentum
(δ, k) space and obtain the topological number −1 [29].
Under the open boundary conditions (OBCs), the topo-
logically nontrivial edge modes emerge in the energy gaps
[Fig.2(a2)]. Whereas for the case of θ = π/2 shown
in Fig.1(e), only the NNN hopping is preserved and J1
term is omitted. The 1D chain separates into two de-
coupled chains, one is comprised by all of the odd sites
and the other is by even sites. These two new chains
includes the same hopping elements J2 and the chemical
potential which are still three period but with different
forms from the original one, i.e. λ cos (2π

3
j − δ)n̂2j and

λ cos [ 2π
3
(j + 1)− δ]n̂2j+1. Another difference from the

original one is that the lattice constant becomes double.
Hence, (i) the energy of the two new chains are degener-
ate; (ii) the period of the energy spectrum in momentum
space shrinks half as shown in Fig.2(e1); (iii) when the
lowest band is fully filled, each chain provides the Chern
number +1 and the summation is +2. At the two differ-
ent limits (θ = 0 and π/2), the system presents different
topological behaviors. It means that with the increase
of θ from 0 to π/2, the system undergoes a topological
phase transition with the Chern number changing from
−1 to +2. In this paper, we shall study the topological
phase transition with the change of θ and charge pump-
ing method is applied to detect the transition. We choose
θ = π/8, π/4 and π/3 as the specific examples of θ 6= 0
and π/2.

III. TOPOLOGICAL PHASE TRANSITION

A change of topological numbers is generally attributed
to a topological phase transition. As the discussion
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FIG. 1: (Color online) (a) Bessel function of order zero J0(x)
and J0(2x). (b) For α = 1/3, there are three different sites in
every unit cell; (c) for arbitrary θ, the strength of NN hopping
is J1 and NNN hopping is J2; (d) in the θ = 0 limit, J2 is
obviated and (e) in the limit θ = π/2, the original chain is
separated into two new chains and only the NNN hopping
term conserved connects odd or even sites.

above, at θ = 0 and π/2, the Chern number of the
system are respectively equal to −1 and 2. It is con-
firmed that with the rolling of θ from 0 to π/2, the sys-
tem undergoes a topological phase transition. To char-
acterize the topological properties of the bulk states,
we can calculate the Chern number of the lowest band
in the two-dimensional parameter space of (δ, k). The
Chern number is the topological invariant which is re-
lated to integral of the Berry curvature over the filled

bands via C = 1
2π

∫ 2π

0
dδ

∫ 2π

0
dk(∂δAk − ∂kAδ), where

AX = i〈ψ(X)|∂X |ψ(X)〉 is the Berry connection and
ψ(X) is the occupied Bloch state with the parameter X
[62]. The Chern number for fermions fully filled in the
lowest band is −1 when θ is less than π/4, while jumps
to 2 when θ crosses π/4. Hence the topological phase
transition of the system occurs at θ = π/4.

If a topological phase transition exists in one system,
the transition is accompanied by the energy gap closing
and reopening. Next we study the change of the energy
gap for different θ under the PBCs. Fig.2(a1)-(e1) show
the energy spectrum of Hamiltonian (3) in momentum
k space with λ = 1.5, δ = 0 and θ = 0, π/8, π/4, π/3
and π/2, respectively. In the absence of J2 as shown
in Fig.2(a1), there are three energy bands due to three
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FIG. 2: (Color online) (a1)-(e1) Energy bands for the system
under PBCs with λ = 1.5, δ = 0, θ = 0, π/8, π/4, π/3 and
π/2, respectively. (a2)-(e2) Energies varying with the phase δ
under OBCs. Here, L = 60, λ = 1.5, θ = 0, π/8, π/4, π/3 and
π/2, respectively. (f) The variation of the CM ∆xCM vs the
phase δ under OBCs with L = 60 and filling N = 20 fermions
for the cases of θ = π/8 and π/3.

different sites in each unit cell. An obvious gap emerges
between the lowest two bands which is shrinking with the
increase of θ. As θ reaching to π/4 shown in Fig.2(c1),
the first and second bands are touched together at k = π.
When θ is larger than π/4, the energy gap reopens
[Fig.2(d1)]. In Fig.2(e1), θ = π/2, the 1D chain sepa-
rates into two decoupled period-three new chains with
the twice lattice constant. The energies of two decou-
pled chain are degenerate and the period of the energy
spectrum is shorten half. It is shown that θ = π/4 is the
topological phase transition point, on both sides of which
one has different Chern numbers.

Under the OBCs, as the phase δ varies from 0 to
2π, the energy spectrums with L = 60, λ = 1.5,
θ = 0, π/8, π/4, π/3 and π/2 are shown in Fig.2(a2)-
(e2). For the case of θ 6= π/4, the edge states connecting
two different bulk regimes emerge in the gap and the
position of the edge states varies continuously with the
rolling of δ. Whereas when θ = π/4, the gaps vanish
and there are no edge modes detected. Taking θ = π/8
and π/3 as examples, we study the variation of the CM
∆xCM (δ) = xCM (δ) − xCM (δ + δ′) vs the phase δ for
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FIG. 3: (Color online) (a1)-(e1) The initial local den-
sity distributions of fermions ρj labelled by blue solid
lines and the initial local average densities ρ̄j marked
by red dash lines. (a2)-(e2) TPCs ∆n changing with
time t. Here, we average 10 realizations of initial phase
δ0, L = 210, N = 40, λ = 8.5, and from (a)-(e)
(θ, ωT ) = (0, 0.033), (π/8, 0.03), (π/4, 0.029), (π/3, 0.027) and
(π/2, 0.033), respectively.

filling N = 20 fermions. Here, the position of CM is de-
fined as xCM =

∑

j jρj , ρj = 〈ψG|n̂j |ψG〉 with ψG the
ground state wave function is the density distribution at
site j and δ′ is a tiny deviation of the phase. In Fig.2(f),
for the case of θ = π/8, ∆xCM ≈ −54.4 at δ = 0.66π. It
means that there are fermions shifting from left edge to
right with the increase of δ near 0.66π. For the case of
θ = π/3, the fermions from right edge shift to left when δ
crosses 0 and 1.33π. The appearance of edge states and
particles shifting from one edge to another are generally
attributed to the nontrivially topological feature of bulk
systems. Also the number of jump discontinuity of xCM

is equal to the absolute value of the Chern number as
show in Fig. 2(f) [63], i.e., for θ = π/8 and the lowest
band fully filled, the number of the jump point is equal
to the absolute value of the first band Chern number C1,
and for the case of θ = π/3, the number of the jump
points is 2 corresponding to |C1| = 2. We can detect
the jump discontinuity by an in situ measurement of the
density of the cloud, when we adiabatically pump the
phase δ. Thus one can directly extract Chern numbers
in different regimes.

IV. TOPOLOGICAL PUMPED CHARGES

In realistic ultracold atom experimental situations, we
consider the CM of a cloud trapped in a harmonic po-
tential, i.e., Wj in Eq.(4) is replaced by

Wj = λ cos [2παj + δ(t)] +
1

2
µω2

T (j − j0)
2, (5)

where δ(t) = δ0 + 2πt/T with initial phase δ0 and in-
creasing linearly with time. The 1D lattice changes in
time with a period T . ωT is the frequency of the har-
monic trap, j0 is the position of the lattice center, and
we set the mass of fermions µ being unity. We study
the density distribution of the trapped system ρj and
in order to reduce the oscillations of the density dis-
tributions, we alternatively calculate the local average
density ρ̄j =

∑p
i=1 ρj+i/p with p = 3 for the case of

α = 1/3. In Fig.3(a1)-(e1), the initial local density dis-
tributions of fermions labelled by blue solid lines and
the initial local average densities marked by red dash
lines are shown. Here, we average 10 realizations of
the initial phase δ0, L = 210, N = 40, λ = 8.5 and
(θ, ωT ) = (0, 0.033), (π/8, 0.03), (π/4, 0.029), (π/3, 0.027)
and (π/2, 0.033), respectively. The initial local average
density with a plateaus at ρ̄j = 1/3 in the center of the
trap indicates it is a band insulator in this regime except
the case of θ = π/4. We can see the band insulators with
metallic wings and the metallic edges should impact the
detection of the topological numbers.

TABLE I: List of the TPCs ∆n(T ), the relative errors of the
TPCs δn(T ) and the total particle numbers of the metallic
regime nmetal for different θ and ωT corresponding to Fig.3.

(θ, ωT ) ∆n(T ) δn(T )(%) nmetal

(0, 0.033) -0.9987 0.13 0.0274

(π/8, 0.03) -0.9921 0.79 4.0621

(π/3, 0.027) 1.9699 1.505 6.1032

(π/2, 0.033) 1.9957 0.21 1.0258

We use charge pumping method to calculate topologi-
cal invariants in different parameter regimes[64–66]. We
propose to slowly vary the phase in Eq.(5) linearly with
time δ(t) = δ0 +2πt/T , where the 1D lattices changes in
time with a period T . To reveal the topological number,
we observe the TPC ∆n = xCM (t)/p. Experimentally,
the position of the CM can be measured by using in situ

method. The effect of the nontrivial topological pump-
ing can be identified as a quantization of ∆n at multiple
pumping cycles. Fig.3(a2)-(e2) with the same parameters
as Fig.3(a1)-(e1) show the TPCs ∆n evolve with time t,
the interval of the time is set as ∆t = T/105 and average
10 realizations of initial phase δ0. In the regime θ < π/4,
∆n(T ) approaches to −1, whereas when θ lager than π/4,
∆n(T ) ≈ 2. At the phase transition point θ = π/4 shown
in Fig.3(c2), ∆n(T ) = 0.0244 which indicates that this
point is topologically trivial.
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All of the TPCs approach to integers for topologically
nontrivial cases, but are not exactly equal to. We artifi-
cially define ρ̄j < 0.32 as the metallic regimes. The total
particle number of the metallic regime nmetal and the rel-
ative error of the TPC δn(T ) are listed in TABLE I. From
TABLE I, we can see that the smaller the metallic regime,
the less deviation between the measurements and the re-
alistic topological invariants. The metallic wings will,
in principle, give a non-quantized value of the pumped
charge, although we could not give the definite relations
between δn(T ) and nmetal [67]. Hence, we shall exclude
the metallic regime effect as much as possible, when we
measure the topological numbers.

V. SUMMARY

In summary, we demonstrate that a 1D periodically
driven bichromatic optical lattice system can be de-
scribed by a superlattice model with adjustable NN and
NNN hopping terms, which exhibits topologically non-
trivial phase transition with the topological invariants
from -1 to 2. Take θ = 0, π/8, π/4, π/3 and π/2 as
specific examples to study the topological properties of
the system and determine the position of the topological
phase transition point. We find that when θ = 0 and
π/8 (θ < π/4), the topological number of the filled low-
est band is -1, whereas for the case of θ = π/3 and π/2
(θ > π/4), the Chern number of the lowest band jumps
to 2. And the topological number of θ = π/4 is a triv-
ial number which is topological phase transition point.
We also determine the transition by calculating change
of the gaps and nontrivial edge states. Charge pumping
method is applied to detect the topological invariants on
both sides of the transition point. The numerical re-
sults are affected by the proportion of the initial metallic
wings. In realistic ultracold atom experimental situation,
we need reduce the regime of the metallic wings as much
as possible.

VI. APPENDIX

A. Effect of harmonic potential

In this supplemental material, we study the effect of
the frequency of the harmonic potential for the detec-
tion of topological pumped charges (TPCs). For realistic
ultracold atom experimental situations, we introduce a
harmonic trap into the original Hamiltonian (3) in the
main text given by

Vj =
1

2
ω2
T (j − j0)

2, (6)

where ωT is the frequency of the harmonic trap and j0
is the position of the center of the lattice. As explained
by Thouless [1], when the lattice is subjected to a slow

FIG. S4: (Color online) (a1)-(e1) The initial local density
distributions of fermions ρj labelled by blue soild lines and
the initial local average densities ρ̄j marked by red dash lines.
(a2)-(e2) TPCs ∆n changing with time t. Here, we average
over 10 realizations of initial phase δ0, L = 210, N = 40, λ =
8.5, θ = 0 and from (a)-(e) ωT = 0.05, 0.065, 0.068, 0.08 and
0.1, respectively.

and periodical time modulation, a quantization of parti-
cle transport in a one-dimensional (1D) band insulator
can be detected, which is related to the topological in-
variant. To study the topological number, we propose to
slowly change the phase linearly in time with a period T ,
δ(t) = δ0 + 2πt/T , where δ0 is the initial phase.

In Fig.S4 we show the initial density distribution ρj
and the local average density ρ̄j defined in the main text
changing with the increasing of the frequency of the har-
monic potential ωT for the case of L = 210, N = 40, λ =
8.5 and θ = 0, averaged over 10 realizations of initial
phase δ0. Clearly, the local average densities present
band insulators in the center of traps with metallic wings.
We artificially set ρ̄j < 0.32 as the metallic regime and
the proportion of the total particle numbers in the metal-
lic regime nmetal/N are listed in TABLE. S2. The regime
of the metallic edges shrinks rapidly with the increase of
ωT . To calculate TCPs, we slowly and periodically roll
the phase linearly in time and the interval of the time
is set as ∆t = T/105 and average over 10 realizations of
initial phase δ0. Fig.S4(a2)-(e2) show the time evolution
of TPCs ∆n. For small ωT , such as ωT = 0.05, nmetal is
over half of total particles, and the TPC ∆n(T ) at time T
greatly deviates the realistic topological number and the
relative error of the TPC δn(T ) reaches to 55.2% (shown
in TABLE. S2). With the increase of ωT , the metallic
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proportion decreases and the TPC at time T approaches
to −1 rapidly. When ωT reaches to 0.1, the metallic
regime is much smaller, TPC ∆n(T ) = −0.9918, and the
relative errors of the TPC δn(T ) = 0.82%. We believe
to detect the topological invariants proposed by Thouless
[1], one need to suitably increase the tapping frequency
in realistic ultracold atomic experiments to decrease the
metallic regime as much as possible.

TABLE S2: List of the TPCs ∆n(T ), the relative errors of
the TPCs δn(T ) and nmetal/N for different ωT corresponding
to Fig.S4.

ωT ∆n(T ) δn(T )(%) nmetal/N

0.05 -0.448 55.2 0.5877

0.065 -0.7231 27.69 0.3304

0.068 -0.8862 11.38 0.2035

0.08 -0.9713 2.87 0.1512

0.1 -0.9918 0.82 0.1024
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