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Abstract

Using TDDFT calculations we compare tunneling ionization of the a4F ground state and the

a6D first excited state of vanadium in laser fields of intensities between 1.4 and 4.0×1013 W/cm2.

The calculated ionization yields of the ground state of vanadium were already shown to agree well

with experimental results [Chu and Groenenboom, Phys. Rev. A 94, 053417 (2016)]. We find

that the tunneling ionization rate of the sextet state is lower than that of the quartet state. This

is surprising, since the ionization potential of the sextet is lower than that of the quartet state.

This finding, however, is consistent with the experimental observation that niobium, whose ground

state is a6D1/2, has a much smaller ionization yield than vanadium (a4F3/2), even though their

ionization potentials are extremely close [Smits et al., Phys. Rev. Lett. 93, 213003 (2004)]. Our

calculations demonstrate the existence of exchange blockade for the higher spin state. It arises

from a strong field dynamic effect that the highest and second highest electrons mixing in the same

set of unoccupied spin orbitals, which causes an isotropic attractive potential that confines the

electrons close to the core.

PACS numbers: 33.80.Rv,42.50.Hz,33.80.Eh,33.90.+h
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I. INTRODUCTION

The emerging field of attosecond science [1, 2] is based on the interaction of atoms and

molecules with intense lasers. Currently, strong field theories often use the single active

electron (SAE) approximation. Among these theories are the widely adopted strong field

approximation [3] and the Ammosov-Delone-Kralnov (ADK) tunneling ionization [4] model.

While SAE based approaches have been successful in describing the interaction of inert gases

with strong fields, more and more work on molecules reveals the involvement of orbitals lower

in energy than the highest occupied orbital [5, 6], suggesting the importance of many-electron

mechanisms. Such involvement is usually related to the polarization direction of laser field

in the molecular frame [7]. Sometimes resonances in photoelectron spectra also show up in

high harmonic generation [6, 8], indicating similar many-electron mechanisms.

Atoms and molecules ionize through tunneling in intense laser fields. Tunneling ionization

yields for transition metal atoms V, Ni, Pd, Ta, and Nb are significantly lower than the ADK

predictions [9, 10]. In particular V and Nb belong to the same group in the periodic table

and their ionization potentials differ by only 0.01 eV. And yet, the measured saturation

intensity of Nb is twice as large as that for V [10]. Even though the polarizability of Nb is

larger by 27%, tunneling models that take polarizability into consideration cannot explain

the particularly large ionization suppression in Nb compared to V [11–13].

A notable difference between the electronic structure of V and Nb is that the ground

state of V is (3d34s2)4F and that of Nb is (4d45s)6D. To our best knowledge, there has

not been any publications addressing the relationship between the spin state and tunneling

ionization. In order to determine whether a higher spin multiplicity could be the cause of

reduced ionization, we employ a method that takes electron spin into consideration.

In an earlier study, we applied a time-dependent density functional theory (TDDFT)

method to calculate the ionization yields of vanadium in intense laser fields [14]. Results of

our calculation agreed well with measurements in the tunneling regime of single ionization.

Our work confirmed the proposal that the multielectron response exerts an additional bar-

rier for tunneling [10]. Specifically, we found that the isotropic component and the dipole

component of the induced potential contribute the most to reducing the tunneling rate. As

the electron density moves away from the nucleus in a laser field, an isotropic attractive

potential is created at the core, which effectively reduces the energy of the electron in the
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highest occupied orbital and hence increases the ionization potential. Meanwhile, momen-

tary accumulation and depletion of the electron density of one side of the nucleus versus the

other gives rise to the dipole component that elevates the barrier at medium to large radial

distances.

With a similar method we here study the role of spin multiplicity in tunneling ionization.

Rather than comparing the 4F state of vanadium with the 6D state of niobium, we study

the 4F and 6D states of vanadium that can be represented with a single Slater determinant.

The advantage of this scheme is that it avoids errors associated with adding a complete

atomic shell. In our model the ionization potential of the 4F quartet state is slightly higher

than that of the 6D sextet state. Were ionization potential the only determining factor,

tunneling ionization rates of the sextet would be higher. However, both the experimental

results and our earlier study point to the importance of many-electron responses. This work,

therefore, amounts to a comparison of the many electron responses of states with different

spin multiplicities.

Vanadium exists in many oxidation states V2+, V3+, V4+, V5+ so it functions as an elec-

tron transfer catalyst in a wide variety of reactions. In computational chemistry, modeling

these metallic compounds largely relies on DFT, usually employing a hybrid exchange-

correlation potential that reproduces bond distances and energies well. For time-dependent

calculations of atomic ionization, it is important that the negative of the orbital energy is

consistent with the ionization energy. Also, the long range singularity and the anisotropy of

the open-shell atom must correctly be accounted for to calculate tunneling ionization.

Our earlier TDDFT work suggested that only when the field is relatively weak and the

Keldysh parameter is greater than 1.1, correlation effects are important in determining

ionization rates and outcome [14]. Ionization is multiphoton, rather than tunneling, in this

regime. Our inclusion of the correlation potential was not sufficient to describe the effect that

arises from multiple electron configurations in this case. However, when the laser intensity

is greater and ionization is dominated by tunneling, TDDFT calculations reproduced the

measured ionization yields for a range of laser intensity. Analysis of the data showed that

the included correlation potential played little role in the many-body effects that reduce

the tunneling ionization. In the present comparative study we drop the correlation term

and approximate the time-dependent exchange-correlation potential as a weighted average

of Hartree Fock exchange potentials between occupied orbitals. Designed as such, this work
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specifically investigates the relationship between the spin state of transition metal atoms

and the Coulomb and exchange potentials in intense laser fields. Its conclusions may be

applicable to a class of open shell atoms and molecules.

In the following section we introduce a SAE model that is based on the static Kohn-Sham

(KS) equations. In Section III we briefly describe our all electron TDDFT method and the

multipole expansion of the KS potentials, which we use in analysis of the results. In Section

IV we present the results of the static DFT calculations, the ionization rates computed with

a SAE model, and the results for the all electron TDDFT calculation. In Section V we

analyse the TDDFT results and identify the mechanism that explains the suppression of

tunneling ionization in the high spin state. Finally, in Section VI we briefly discuss spin

contamination and we conclude.

II. SINGLE ACTIVE ELECTRON APPROXIMATION BASED ON DFT

The states of the neutral atoms before ionization are obtained from static DFT calcula-

tions. To solve the static KS equations, we use the generalized pseudospectral method [15]

that puts more grid points near the nucleus and fewer near the cutoff, which is at 1000 a0.

In the ionization calculations an absorbing boundary, which models the ionization process,

is placed at 75 a0. Calculations are converged with respect to all adjustable parameters.

We use a spin-unrestricted formalism, so the orbital energies for spin up (↑) and spin down

(↓) electrons can be different. The difference mostly arises from the exchange-correlation

potential, since the Coulomb potential is spin independent. Our convention is to have more

electrons in the α spin states, i.e. N↑ > N↓. Further details of the method are given in

reference [14].

Assuming that intense laser fields do not alter the ion-electron interaction, i.e., there is

not any laser induced potential for the active electron, we approximate the time-dependent

KS potential as

vσ(r, t) = vσ(r, 0) + E(t) · r, (1)

where σ is the spin index and r is the electron coordinate. The polarization direction of the

electric field E is along the z axis and

E(t) = f(t) sinωt, (2)
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where ω is the angular frequency of the incident light and f(t) is the field strength for which

we use sin2 pulses of 20 optical cycles. For 1500 nm lasers, the pulse duration is 100 fs.

To obtain the ionization yields, we solve the time-dependent equations

i
∂

∂t
ψiσ(r, t) =

[

Ĥ0
σ(r) +E(t) · r

]

ψiσ(r, t),

i = 1, 2, . . . , Nσ, (3)

where i is the orbital index, Nσ is the number of electrons for the σ spin, and ψiσ is the

time-dependent spin orbital. Initially ψiσ(r, 0) is a solution of the static KS equations whose

Hamiltonian is Ĥ0
σ(r).

All the occupied spin orbitals are propagated in time. We calculate the survival proba-

bility for each spin orbital as

niσ =

∫∫∫

ψ∗
iσ(r, T )ψiσ(r, T )d

3r, (4)

where T is the pulse length and the ionization probability for each spin orbital as

γiσ = 1− niσ. (5)

The ionization yield is calculated as the sum

P =
∑

σ

Nσ
∑

i=1

γiσ. (6)

III. TDDFT MODELING OF THE STRONG FIELD INDUCED POTENTIAL

Zangwill and Soven have shown that in the linear response regime, the potential change

due to many electron effects must be included to properly reproduce the polarizability and

photoabsorption cross section of rare gas atoms [16]. Similarly, in our previous work on the

4F9/2 state of vanadium [14] we have shown that in intense laser fields, instead of Eq. (1),

we should use the time-dependent KS potential

vσ(r, t) = vσ(r, 0) + ∆vσ(r, t) +E(t) · r, (7)

in which ∆vσ(r, t) is the induced potential. Depending on the laser intensity, the impact of

∆vσ(r, t) may be as large as effectively increasing the ionization potential by 1 eV.

In our TDDFT method we describe the induced KS potentials ∆vσ(r, t) by

∆vσ(r, t) =

∫∫∫

∆ρ(r′, t)

|r − r′| d
3
r
′ +∆Vxc,σ(r, t), (8)
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where ∆ρ and ∆Vxc,σ are the changes in the electron density and exchange-correlation po-

tential relative to their respective initial values. Evaluating them involves solving time-

dependent KS equations

i
∂

∂t
ψiσ(r, t) =

[

Ĥ0
σ(r) + ∆vσ(r, t) +E(t) · r

]

ψiσ(r, t),

i = 1, 2, . . . , Nσ. (9)

The electron spin density at coordinate r and time t is determined by the set of occupied

orbitals {ψiσ} as

ρσ(r, t) =
Nσ
∑

i=1

ψ∗
iσ(r, t)ψiσ(r, t). (10)

The change in electron density is

∆ρ(r, t) =

β
∑

σ=α

ρσ(r, t)− ρσ(r, 0), (11)

in which ρσ(r, 0) is calculated from the initial spin orbitals that are solutions of the static

KS equations.

The time-dependent exchange-correlation potential is expressed as

Vxc,σ(r, t) = − 1

ρσ(r, t)

∑

i

∑

j

Re

[

ψ∗
jσ(r, t)ψiσ(r, t)

∫∫∫

ψ∗
iσ(r

′, t)ψjσ(r
′, t)

|r− r′| d3r′

]

. (12)

The change in the exchange-correlation potential, ∆Vxc, is

∆Vxc,σ(r, t) = Vxc,σ(r, t)− Vxc,σ(r), (13)

where Vxc,σ(r) is the exchange-correlation potential in the static KS equation. Its expression

is given in reference [14].

The time-dependent KS equations in Eq. (9) are Euler equations resulting from the

quantum action [17, 18]

A[Ψ] =

∫ t1

t0

dt

〈

Ψ(t)|i ∂
∂t

− Ĥ(t)|Ψ(t)

〉

(14)

having a stationary point at the time-dependent density ρ(r, t). In Eq. (14), Ψ(t) is the

total N -electron wave function and it is represented by the Slater determinant,

Ψ(t) =
1√
N !

det [ψ1σ1
(t)ψ2σ2

(t) · · ·ψNσ(t)] . (15)
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Projecting Eq. (15) onto a determinant of field free orbitals, we find contributions of single,

double, triple, and higher excitations. Such multiple excitations/de-excitations are many-

electron by nature and they cause ∆ρ and ∆Vxc in Eq. (8).

To solve Eqs. (9) we employ the time-dependent generalized pseudospectral method [14,

19].

A. Legendre expansion of the induced Kohn-Sham potentials

In the analysis of the TDDFT results below we will employ a Legendre expansion of the

induced KS potentials ∆vσ(r, t), since in previous work we found that only the lowest two

orders have an appreciable effect in the time-dependent equations [14].

The expansion is

∆vσ(r, t) =

∞
∑

l=0

∆v(l)σ (r, t)Pl(cos θ), (16)

where Pl is a Legendre polynomial of order l, θ is the angle between the vector r and laser

polarization E, and the expansion coefficients ∆v
(l)
σ (r, t) depend on the distance r = |r|. To

find the expansion coefficients we use the multipole expansion of the Coulomb interaction:

1

|r − r′| =
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

rl<
rl+1
>

Ylm(r̂)
∗Ylm(r̂

′), (17)

where r< is the smaller of r and r′ and r> is the larger of the two, Ylm are spherical harmonics,

and r̂ and r̂′ are the spherical polar coordinates of r and r
′, respectively. Substituting

this expansion into Eq. (12), using the orthogonality relations for spherical harmonics and

Legendre polynomials gives for the Coulomb term

∆vβ(r, t) ≈
∫ r

0
∆ρ

(0)
α (r′, t)dr′

r
+

∫ ∞

r

∆ρ
(0)
α (r′, t)

r′
dr′ +

[

∫ r

0
∆ρ

(1)
α (r′, t)r′dr′

r2
+ r

∫ ∞

r

∆ρ
(1)
α (r′, t)

r′2
dr′

]

cos(θ), (18)

where ∆ρ
(l)
α (r, t) are the coefficients in the Legendre expansion of ∆ρα(r, t).

The exchange term can be expanded in a similar way by introducing a Legendre expansion

for the orbital products in Eq. (12)

ρiσ,jσ(r, t) = ψiσ(r, t)ψ
∗
jσ(r, t) =

∞
∑

l=0

ρ
(l)
iσ,jσ(r, t)Pl(cos θ). (19)

We give the explicit expressions in Section V below.
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Figure 1: Orbital energy level diagrams for the vanadium (3d34s2)4F 9/2 and (3d44s)6D9/2 states.

Table I: Calculated orbital energies (ǫ) in eV of vanadium compared to measured ionization po-

tential (Ip) from Ref. [20].

Neutral Cation

State Conf. State Conf. Ip Orbital −ǫ

4F 9

2

3d34s2 5F5 3d34s 7.07 4s↓ 6.99

3F4 3d34s 7.81 4s↑ 7.96

3F4 3d24s2 11.5 3d↑ 11.4

6D 9

2

3d44s 5D4 3d4 6.49 4s↑ 6.52

5F5 3d34s 6.84 3d↑ 6.99
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IV. RESULTS

A. Static DFT calculations

We study the (3d34s2)4F and (3d44s)6D terms of vanadium (Fig. 1). The ground state

is 4F 3/2, but we focus on the 4F 9/2 and 6D9/2 fine structure levels, which are 0.068 558 and

0.30 0634 eV above the ground state [20], respectively. These states can be presented by

a single Slater determinant, which allows us to use TDDFT calculations to compare the

tunneling ionization processes of quartet and sextet states.

In Table I we list the calculated orbital energies, together with the measured ionization

potentials for removing an electron from those orbitals while keeping other electrons in the

same spin orbitals as in the neutral atoms. The ionization of the quartet changes the ground

state electronic configuration into an excited state configuration of the cation. For the sextet

it is the other way around: the cation is in its ground state configuration, while the neutral

is in an excited state. As a result, the single electron ionization potential of the quartet is

higher than that of the sextet by 0.5 eV. The calculate and measured ionization energies

agree well.

B. Ionization in the DFT based single active electron approximation

Figure 2 shows a comparison of the ionization yields of the 6D9/2 and 4F9/2 states under

the assumption that the potential from the ion does not change with time. As expected in

this approximation, the sextet state has a higher ionization yield due to its lower ionization

potential.

Only the highest occupied spin orbitals contribute significantly to the ionization yield

calculated with Eq. (6). For the 4F9/2 quartet it is 4s↓. For the 6D9/2 sextet 4s↑ is the

highest. Figure 3 shows these orbitals, together with their corresponding KS potentials.

The potentials include the attractive interaction with the nucleus, the Coulomb repulsion

term from the total electron density, and the exchange-correlation term. The KS potential of

the sextet is higher for r < 2.30 a0 while the potentials become very similar for r ≥ 5.09 a0.

The higher energy of the sextet results in a higher ionization rate when the intense laser

field is switched on and the electron-ion potential is kept constant.
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Figure 2: Calculated ionization yield of the 4F 9/2 quartet and 6D9/2 sextet states of vanadium in

1500 nm 100 fs laser pulses, when induced potentials are not included [see Eq. (3)].

C. TDDFT prediction of ionization yields

In Fig. 4 we plot the calculated ionization yields for the 4F9/2 quartet and
6D9/2 sextet by

the all electron TDDFT method. From 1.4 to 2.5×1013 W/cm2 intensity, the values for the

quartet was shown to agree with measurements [14]. Here, we only present yields that are

less than 0.5, which, from TDDFT calculations, should be more reliable than higher yields.

In contrast with the comparison in Fig. 2, the ionization yields are much lower for the sextet

than for the quartet. Inclusion of many-electron dynamics reduces the ionization yield for

both the quartet and sextet, but the reduction for sextet is much greater.

In the next section we analyse the many-electron dynamics and show that the exchange

interaction between time propagated 4s↑ and 3d↑ electrons strongly affects tunneling ioniza-

tion of the sextet. It creates a temporal attractive potential that is spatially isotropic and

narrow, which binds the electron closer to the core and effectively increases the ionization

potential.
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Figure 3: Comparison of the Kohn-Sham potentials (black), the highest spin orbital (blue) and

its energy (red) of the 4F 9/2 and 6D9/2 states. The solid lines refer to 4F9/2 and the dotted lines

to 6D9/2. The wave functions are shifted vertically such that their zeros occur at the intersections

with the corresponding energy levels.

V. ANALYSIS OF TDDFT MANY-ELECTRON DYNAMICS

Equation (8) shows that the changes in the spin-dependent KS potentials ∆vσ are related

to the change in the electron density ∆ρ and the changes in the spin-dependent exchange-

correlation potentials ∆Vxc,σ as induced by the intense laser field. Even if only one electron

is active, these two terms are nonzero. But at least at large radial distances, where the

active electron dominates the density, the two terms cancel. This can be seen from Eq. (12)

by letting i and j correspond to the highest occupied spin orbital, which give minus the

Coulomb integral. At small radial distances many electrons contribute to the density, so the

change due to the active electron is small.

Hence when comparing the predictions of the SAE model [Eq. (3)] and the TDDFT

approach [Eq. (9)], we deduce that many-electron dynamics gives rise to a ∆vσ contribution,

which results in substantial suppression of the ionization. In the TDDFT calculations all
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Figure 4: The ionization yield of the 4F 9/2 and 6D9/2 states of vanadium in 1500 nm lasers as a

function of the laser intensity, calculated with the all electron TDDFT method [see Eq. (9)].

electrons were included, but in this analysis we focus on the ∆vσ contributions that are

caused by the dynamics of electrons that occupy the second highest spin orbitals. For the

4F9/2 quartet state this is the 4s↑ orbital, and for the sextet state these are the 3d↑ orbitals.

For the quartet state, the 4s↓ electron that ionizes has β spin, so its dynamics is controlled

by the vβ potential, which only depends on the 4s↑ electron through the Coulomb term.

Whereas for the 6D9/2 sextet state, exchange interaction contributes since the 4s↑ ionizing

electron has the same spin as the 3d↑ electrons.

For the quartet state, the electron which is initially in the 4s↑ orbital is subject to the

more attractive potential vα (see Fig. 5). Nonetheless, it moves away from the core in an

intense laser field, which makes ∆ρ
(0)
α negative for small radial distances. Hence, the sum of

the first two terms in Eq. (18) is negative, which means that ∆v
(0)
β is attractive, particularly

near the core. Following the electric field of the laser, ∆ρ
(1)
α peaks at a somewhat larger

radial distance, which creates a repulsive potential that serves as an additional barrier for
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Figure 5: The α and β spin static KS potentials vσ(r, 0), the highest (4s↓) and second highest (4s↑)

occupied orbital spin orbitals of the 4F9/2 state and their energies. The wave functions are shifted

vertically such that their zeros occur at the intersections with the corresponding energy levels.

tunneling ionization. As such, dynamics of the second electron creates a ∆v
(0)
β that binds

the electron more to the core and a ∆v
(1)
β that increases the tunneling barrier.

For the 6D9/2 sextet state, the two highest spin orbitals are plotted in Fig. 6. They both

have α spin. The second highest electron occupies a 3d↑ orbital and the combination of a

lower energy level and an additional centrifugal barrier prevents the electron from tunneling

out first. In contrast with the quartet case, both the Coulomb and the exchange terms

contribute to the change in the KS potential

∆vα(r, t) ≈
∫∫∫

∆ρ3d(r
′, t)

|r − r′| d3r′ +∆Vxc,3d(r, t) + ∆Vxc,3d4s(r, t). (20)

Here, ∆ρ3d is the change of density due to the dynamics of the 3d electrons, ∆Vxc,3d is the

change in the exchange potential caused by the 3d electrons only, and ∆Vxc,3d4s is the change

in the exchange between 3d and 4s electrons [see Eq. (12)]. At r = 0.45 a0, 3d electrons

dominate the density and the first two terms of Eq. (20) mostly cancel each other. Away

from this distance, ∆Vxc,3d becomes insignificant. We therefore combine the first two terms
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Figure 6: The α-electron Kohn-Sham potential for the 6D9/2 state (dashed line), the highest

(4s↑) (solid line) and second highest (3d↑) (dotted line) occupied orbitals and their energy levels.

The wave functions are shifted vertically such that their zeros occur at the intersections with the

corresponding energy levels.

and rewrite Eq. (20) as

∆vα(r, t) ≈
∫∫∫

∆ρ̃3d(r
′, t)

|r − r′| d3r′ +∆Vxc,3d4s(r, t), (21)

where ∆ρ̃3d is an “effective change” of the density of 3d electrons, which takes into account

cancellation due to the exchange term by reducing the density.

The first term of Eq. (21) expands similarly as in Eq. (18). The second term, however,

causes ∆vα(r, t) of the sextet to be very different from ∆vβ(r, t) of the quartet. To un-

derstand this difference, we consider the first two terms in the Legendre expansion of the

exchange contribution to the KS potential for the α electrons (see Section IIIA),

∆V 3d4s
xc,α (r, t) ≈ −

ρ
(0)
4s,3d(r, t)

∫ r

0
ρ
(0)
3d,4s(r

′, t)dr′

rρα(r, t)
−
ρ
(0)
4s,3d(r, t)

ρα(r, t)

∫ ∞

r

ρ
(0)
3d,4s(r

′, t)

r′
dr′

−
[

∫ r

0
ρ
(1)
3d,4s(r

′, t)r′dr′

r2ρα(r, t)
+
rρ

(1)
4s,3d(r, t)

ρα(r, t)

∫ ∞

r

ρ
(1)
3d,4s(r

′, t)

r′2
dr

]

cos(θ)

−c.c., (22)
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Figure 7: Induced potential, ∆v
(l)
β (r, tm)Pl(cos θ) for l = 0 (solid) and l = 1 (dotted) of the 4F 9/2

quartet state (black) and ∆v
(l)
α (r, tm)Pl(cos θ) for l = 0 (solid), and for l = 1 (dashed) of the 6D9/2

sextet state (red), at the peak intensity of a 1.54×1013 W/cm2, 1500 nm laser. tm = T/2+3π/2ω.

where ρ
(l)
4s,3d(r, t) = [ρ

(l)
3d,4s(r, t)]

∗. For unperturbed orbitals, ρ
(l)
3d,4s(r, 0) is only nonzero for

l = 2, so at t = 0 the two terms with l = 0 and l = 1 are zero. If we write both ψ4s↑(r, t)

and ψ3d↑(r, t) orbitals as linear combinations of field free spin orbitals, we find that a nonzero

l = 0 contribution only arises when both orbitals mix in atomic orbitals of the same angular

momenta. For instance, both orbitals may mix in a 4pz orbital. A nonzero l = 1 term arises

from spin orbitals whose angular momentum quantum numbers differ by one.

In Fig. 7 we compare the induced KS potentials ∆v
(0)
β of the quartet with ∆v

(0)
α of the

sextet and ∆v
(1)
β of the quartet with ∆v

(1)
α of the sextet at the maximum field strength of

I = 1.54 × 1013 W/cm2 at tm = T/2 + 3π/2ω. This peak intensity is chosen because the

TDDFT calculated ionization probability of the quartet agrees well with the experimental

data. We also consider that at this laser intensity, the atom is not too far away from the

ground state to be treated with a local adiabatic exchange-correlation potential.
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Figure 8: Energy diagram for vanadium in a 1500 nm laser of 1.54×1013 W/cm2. Solid black line:

the electronic potential at the peak intensity according to our TDDFT formalism for the quartet

4F9/2. Dotted black line: the same potential for the sextet 6D9/2. Solid red line: the shifted energy

level for the quartet 4F9/2. Dotted red line: the shifted energy level for the quartet 4F9/2.

The induced isotropic potential ∆v
(0)
α of the sextet is much more attractive than ∆v

(0)
β of

the quartet at short radial distances. At the core, the ratio of these potentials is six. The

two curves cross at r = 3.7 a0. Beyond this point, ∆v
(0)
β of the quartet is more attractive.

The substantial difference near the core is caused by the first two terms of Eq. (22): in the

strong laser field, the 3d and 4s mix in orbitals with the same angular momentum. For the

sextet the electrons in these orbitals have the same spin, and exchange interaction lowers

the time-dependent KS potential, increasing the ionization potential. For the quartet, the

electrons in these orbitals have opposite spin, and there is no exchange interaction. Both

∆v
(1)
α of the sextet and ∆v

(1)
β of the quartet peak at r = 2.6 a0 where they are about 2 eV.

This elevates the ionization barrier and reduces the tunneling ionization rate for both states.

The effects of the induced KS potentials depicted in Fig. 7 on the full time-dependent

KS potentials [Eq. (7)], including the electric field and the higher order Legendre terms,
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are shown in Fig. 8. In black solid and dotted lines, we plot vβ(r, tm) of the quartet and

vα(r, tm) of the sextet. At shorter radial distances (r < 2.3 a0) the two potentials become

indistinguishable, contrary to corresponding static KS potentials in Fig. 3. This is due to

the much lower ∆v
(0)
α of the sextet shown in Fig. 7. To demonstrate the binding effect of

this lowered potential of the sextet, we add the isotropic induced potentials (solid lines in

Fig. 7) to the field free electronic potentials (black lines in Fig. 3) and calculate the shifted

highest occupied energy levels of the quartet (red solid line in Fig. 8) and sextet (red dotted

line in Fig. 8). The shifted energy level of the sextet becomes lower than that of the quartet

by 0.53 eV.

Figure 8 also shows that the barrier for tunneling ionization is higher for the sextet than

for the quartet. The peaks of the barriers are at 6.3 a0 and the difference in the barrier

heights is about 0.51 eV. Figure 7 shows that the difference in ∆v
(0)
σ accounts for most of

it. The barrier width is larger for the sextet, which is due to the combination of a higher

potential for r > 4 a0 and lower energy level.

VI. DISCUSSION AND CONCLUSIONS

Using a TDDFT method that incorporates the weighted Hartree Fock exchange into a

time-dependent KS potential, we compare tunneling ionization of the 4F9/2 and 6D9/2 fine

structure states of vanadium in intense lasers. For such a comparison we must discuss the

deviation of 〈S2〉 from the exact value. In principle, the deviation is zero for the sextet but

nonzero for the quartet since our method is spin unrestricted. The deviation is supposed to

be smaller for a DFT method than for Hartree Fock method, but harder to estimate. For

simplicity, we follow the formula for UHF,

〈

S2
〉

−
〈

S2
〉

exact
= Nβ −

Nα
∑

i=1

Nβ
∑

j=1

|〈ψiα|ψjβ〉|2 . (23)

For t = 0 it is calculated to be 0.0003. Ionization occurs at t > 0 and the formula is not

valid any more.

This deviation means that the calculated 4s↓ spin orbital of the quartet is slightly contam-

inated with higher orbitals, which may lead to an insignificantly overestimated ionization

yield. Without inclusion of the induced potential, the quartet renders higher ionization

yield in spite of the contamination. The induced potential that substantially suppresses the
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tunneling ionization in the sextet comes from dynamic exchange between 4s↑ and 3d↑, which

does not affect the single electron ionization yield of the quartet. Therefore spin contami-

nation does not hinder us from reaching the conclusion that the tunneling ionization rate of

6D is lower than that of 4F for vanadium, in spite of a lower ionization potential. Exchange

blockade is the reason for the much lower ionization rate of the high spin state. It comes

from the dynamic effect that the highest and second highest electron mix in the same spin

orbitals in intense laser fields.

The ground state of niobium is 6D1/2 and its ionization rates are much lower than the

quartet ground state, 4F3/2 of vanadium. Since niobium belongs to the same group as

vanadium in the periodic table and the ground state electron configuration of niobium is

4d45s, we believe that the same exchange blockade as what we discover here for the sextet

is the reason for the significant ionization suppression for niobium. We predict that the

ionization rates for the quartet is much larger for niobium as well.
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