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Previous measurements of single photon nd5/2nd5/2 → (n+ 1)dj(n− 2)f transitions by two of us
were described as microwave transitions made possible by configuration interaction (CI) between the
nd5/2nd5/2 and the nearly degenerate (n+ 2)p3/2(n− 2)f states [1]. Here we report the observation
of the one photon nd5/2nd5/2 → (n + 3)s1/2(n− 2)f , two photon nd5/2nd5/2 → (n + 3)pj(n− 2)f ,
and three photon nd5/2nd5/2 → (n + 4)s1/2(n − 2)f microwave transitions. We show that both
single and multiphoton microwave transitions are conveniently described as Forster resonant energy
transfers between resonant Floquet states, and we show that the Floquet-Forster model reduces
to the CI model used previously. Finally, to show that the transitions observed previously are by
no means unique, we report pair transitions with different initial and final states as well as radio
instead of microwave frequencies.

INTRODUCTION

Microwave fields provide a convenient way to probe
and control Rydberg atoms and their interactions, as
shown by a few examples. The observation of the mo-
tion of Rb Rydberg atoms on a repulsive van der Waals
potential has been observed by Teixeira et al.[2] who fol-
lowed the changing frequency shift of a microwave tran-
sition. Microwaves and radio frequency fields have been
used to control Forster resonant energy transfer, recently
in cold Rydberg atom samples by van Ditzhuizen et
al.[3], and some time ago in samples of room temperature
atoms by Pillet et al.[4]. Microwaves have also been used
to select pairs of atoms with well defined dipole–dipole
interactions[5]. There are several recent reports of tran-
sitions of pairs of Rydberg atoms [1, 6, 7]. Of particu-
lar relevance to the present work, we reported the mi-
crowave spectroscopy of pairs of Rb Rydberg atoms. In
particular, we observed transitions in which a pair of Rb
nd5/2 atoms, in the nd5/2nd5/2 molecular state, absorbed
a single microwave photon and underwent the transi-
tion to the (n + 1)dj(n − 2)f state. In spite of the fact
that only one photon was absorbed, both atoms changed
state. We described the process in terms of a configura-
tion interaction (CI) model, in which the dipole–dipole
interaction induced admixture of the energetically nearby
(n+2)p3/2(n−2)f state into the nd5/2nd5/2 state allows
the microwave transition to the (n+ 1)dj(n− 2)f state.

Here we describe the extension of the observations to
multiphoton transitions between pairs of atoms. Specif-
ically, we have observed the one photon nd5/2nd5/2 →
(n + 3)s1/2(n − 2)f , two photon nd5/2nd5/2 → (n +
3)pj(n − 2)f , and three photon nd5/2nd5/2 → (n +
4)s1/2(n − 2)f microwave transitions. All of these pro-
cesses can be described in terms of Forster resonant
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dipole–dipole energy transfers between Floquet, or mi-
crowave dressed, states. In this approach we treat the
interaction of the atoms with the microwave field first,
and then the dipole–dipole interaction between the re-
sulting Floquet states. This approach is similar to that
followed by van Ditzhuizen et al.[3] and Pillet et al.[4],
but it differs in that the microwave field interacts with
only one of the two atoms of the pair; the other is simply
a spectator. The spectator atom is analogous to the spec-
tator Rydberg electron in isolated core excitation of two
electron Rydberg atoms[8, 9]. The Floquet approach pro-
vides a convenient way to treat multiphoton processes,
and it reduces to the CI model for single photon transi-
tions. Finally, to show the generality of these transitions
we describe transitions involving different initial and final
states.

In the sections which follow we present the Floquet
model, describe the experimental approach, present our
experimental observations and compare them to the ex-
pectations from the model.

FLOQUET MODEL OF FORSTER ENERGY
TRANSFER

In Fig. 1 we show one, two, and three photon mi-
crowave transitions from nd5/2nd5/2 pairs to other states
of the form n′s1/2(n − 2)f and (n + 3)pj(n − 2)f . Pre-
viously we described one photon transitions using a CI
model, in which the dipole–dipole interaction of the
nd5/2nd5/2 state with the nearby (n+2)p3/2(n−2)f state
admixes some of the latter into the nominal nd5/2nd5/2
state. With this admixture a relatively weak microwave
field can drive the nd5/2nd5/2 to (n+3)s1/2(n−2)f tran-
sition. In the case of the two and three photon transi-
tions, a stronger microwave field is required, and except
for the most closely spaced pairs, the interaction with the
microwave field is much stronger than the dipole–dipole
interaction. Accordingly, our approach is to treat the
interaction of the atoms with the microwave field first,
using a Floquet approach and ignoring the dipole–dipole
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interaction, and then introduce the dipole–dipole inter-
action between the resulting Floquet states. When the
microwave frequency brings Floquet states into degener-
acy, Forster resonant energy transfer occurs due to the
dipole–dipole interaction. For the case in which a single
microwave photon is absorbed or emitted the Floquet
approach reduces to the result given by the CI approach
used previously[1, 6].

For concreteness we consider the system shown in
Fig. 1, specifically the one, two, and three microwave
photon transitions

nd5/2nd5/2 + h̄ω → (n+ 3)s1/2(n− 2)f (1a)

nd5/2nd5/2 + 2h̄ω → (n+ 3)p1/2(n− 2)f (1b)

nd5/2nd5/2 + 2h̄ω → (n+ 3)p3/2(n− 2)f (1c)

nd5/2nd5/2 + 3h̄ω → (n+ 4)s1/2(n− 2)f. (1d)

All of these transitions are allowed due to the
dipole–dipole interaction of the nd5/2nd5/2 state with the
nearby (n+ 2)p3/2(n−2)f state, as shown by the double
headed arrow in Fig. 1. We ignore the (n+2)p1/2(n−2)f
state since it is not coupled to the nd5/2nd5/2 state by
the dipole–dipole interaction, and its inclusion does not
significantly affect the Floquet levels at the resonant fre-
quencies.

Unless stated otherwise we use atomic units, and for
compactness in notation we introduce the shorthand

nd5/2 → d

(n+ 2)p3/2 → p

(n+ 3)s1/2 → s

(n+ 3)p1/2 → p′1

(n+ 3)p3/2 → p′3

(n+ 4)s1/2 → s′

(n− 2)f → f.

(2)

With this notation the transition of Eq. (1a) is written
as dd+ h̄ω → sf .

The wave functions for the molecular states are direct
products of the two atomic wave functions, and we ignore
exchange. The energies of the molecular states at R =
∞, where R is the distance between the two atoms, are
obtained by adding the energies of the two atomic states,
which are easily calculated using the known Rb quantum
defects[10–12].

The molecular dipole matrix elements which are im-
portant for the microwave coupling are

〈pf |µ |sf〉 = 〈p|µ |s〉 〈f |f〉 = 〈p|µ |s〉 = µps

〈sf |µ |p′1f〉 = 〈s|µ |p′1〉 〈f |f〉 = 〈s|µ |p′1〉 = µsp′1
〈sf |µ |p′3f〉 = 〈s|µ |p′3〉 〈f |f〉 = 〈s|µ |p′3〉 = µsp′3
〈p′1f |µ |s′f〉 = 〈p′1|µ |s′〉 〈f |f〉 = 〈p′1|µ |s′〉 = µp′1s′

〈p′3f |µ |s′f〉 = 〈p′3|µ |s′〉 〈f |f〉 = 〈p′3|µ |s′〉 = µp′3s′ .

(3)

In each of these transitions one atom undergoes the
transition while the other remains a spectator in the

(n − 2)f state. These molecular matrix elements are
reminiscent of isolated core excitation of the two elec-
tron Rydberg atoms[8, 9]. The frequencies relevant to
the transitions shown in Fig. 1 are not near any atomic
frequencies for either the atomic f or d states. For this
reason the (n−2)f atom is simply a spectator in the mi-
crowave transitions, and a nd atom is unaffected by the
microwave field.

The dipole–dipole interaction which is important for
all transitions shown in Fig. 1 is

Vdd =
〈
nd5/2nd5/2

∣∣ µµ′
R3

∣∣(n+ 2)p3/2(n− 2)f
〉
, (4)

where µ and µ′ are the dipole matrix elements of the two
atoms. It can be written as

Vdd =

〈
nd5/2

∣∣µ ∣∣(n+ 2)p3/2
〉 〈
nd5/2

∣∣µ′ |(n− 2)f〉
R3

=
µdpµdf
R3

.

(5)

Before we begin the description of the Floquet model
for the transitions shown in Fig. 1, it is useful to sum-
marize the CI model for the single photon dd→ sf tran-
sition. Specifically, we are interested in calculating the
fractional population transfer (FPT) from the dd to the
sf state at resonance. To calculate it we calculate the
transition probability for a pair of atoms spaced by R
and then average over the spacings in the trap volume,
as explained in some detail elsewhere[1].

Due to the dipole–dipole interaction the dd state ex-
cited by the laser has a small admixture of the pf state,
so that at any finite separation R the state |ddR〉 is given
by

|ddR〉 = |dd〉+
µdpµdf
∆R3

|pf〉 , (6)

where states without subscripts are R = ∞ states, and
∆ is the dd− pf energy detuning shown in Fig. 1.

The linearly polarized microwave electric field
E cos(ωt) produces the dd− sf coupling

Ω = 〈ddR|
µE

2
|sf〉 =

µdpµdf
∆R3

µpsE

2
. (7)

The coupling Ω is the Rabi frequency for the transition,
and if the product ΩT > π, where T is the duration of
the microwave pulse, the population oscillates back and
forth between the initially populated dd state and the
sf state. The time average probability of being in the
sf state is 1/2. The spacing R = RT is that for which
ΩT = π. Explicitly,

ΩT =
µdpµdfµpsET

2∆R3
T

= π. (8)

For R < RT we assume the average transition probability
to be one half, and for R > RT we assume it to vanish,
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since Ω ∝ 1/R3. For FPT � 1, RT � Rav. where Rav
is related to the local density ρ by

ρ =
3

4πR3
av

. (9)

In this case,

FPT =
R3
T

2R3
av

. (10)

From Eqs. (7) to (10) it is evident that

FPT ∝ ρE. (11)

That is, FPT is proportional to both density and the
microwave field amplitude.

From the six bare states shown in Fig. 1 we construct
six Floquet states which are periodic, with the period
of the microwave driving field[13]. The Floquet energies
are obtained by adding and subtracting integral multiples
of the microwave frequency ω to the bare energies. We
are interested in the Forster resonances shown in Fig. 1,
which occur when the Floquet states based on the sf ,
p′1f , p′3f , and s′f states are degenerate with the dd state.
For R=∞ and zero microwave field these degeneracies

occur when

Wsf − ω = Wdd

Wp′1f
− 2ω = Wdd

Wp′3f
− 2ω = Wdd

Ws′f − 3ω = Wdd.

(12)

Accordingly, we restrict our attention to the Floquet
energies Wdd, Wpf , Wsf − ω, Wp′1f

− 2ω, Wp′3f
− 2ω

and Ws′f − 3ω. Ignoring Floquet energies in which other
multiples of ω have been added or subtracted is equiva-
lent to making the rotating wave approximation. Fig. 2
shows the Floquet energy levels for n=39 as a function of
the microwave frequency for vanishing microwave field.
The microwave resonances of Fig. 1 correspond to the
level crossings of the 42s1/237f , 42p1/237f , 42p3/237f ,
and 43s1/237f Floquet states with the 39d5/239d5/2 state
at frequencies 57.878, 55.137, 55.850, and 55.249 GHz.
These are the Forster dipole–dipole energy transfer reso-
nances of the dd state with the Floquet states.

Equally important are the 42p1/237f − 43s1/237f and
41p3/237f − 42s1/237f crossings at 55.473 and 58.356
GHz. These crossings are dipole allowed single photon
microwave resonances, and in any finite field they be-
come avoided crossings, altering all the energy levels but
that of the 39d5/239d5/2 state. These avoided crossings
lead to AC Stark shifts of the Forster resonances.

In the presence of the linearly polarized microwave field
E cosωt all the levels are coupled, by the matrix elements
of Eq. (3), except dd, and the Floquet Hamiltonian ma-
trix can be written as[13]

HF =


Wdd 0 0 0 0 0

0 Wpf µspE/2 0 0 0
0 µspE/2 Wsf − ω µp′1sE/2 µp′3sE/2 0
0 0 µp′1sE/2 Wp′1f

− 2ω 0 µs′p′1E/2
0 0 µp′3sE/2 0 Wp′3f

− 2ω µs′p′3E/2
0 0 0 µs′p′1E/2 µs′p′3E/2 Ws′f − 3ω

 (13)

Diagonalizing this matrix yields the eigenvalues and
eigenvectors. Since we have ignored the dipole–dipole
interaction in this Floquet treatment, the energy Wdd

does not depend on the microwave field and one of the
eigenstates is |dd〉. Each of the other five eigenstates we
label as |ψF 〉, where |ψF 〉 is the linear combination

|ψF 〉 = a1 |pf〉+ a2 |sf〉+ a3 |p′1f〉+ a4 |p′3f〉+ a5 |s′f〉 .
(14)

In Fig. 3 we show the Floquet energies over the same
frequency range as shown in Fig. 2, but with a microwave
field amplitude E = 415 mV/cm.

The dipole moments of Eq. (13) are matrix elements
of z, to correspond to the microwave polarization. We
obtained the radial parts from Saffman and Walker[14]

and the angular parts from Edmonds[15]. The specific
values used are:

µs′p′3 =

√
2

3
(1681)

µs′p′1 = −1

3
(1650)

µp′1s = −1

3
(1752)

µp′3s =

√
2

3
(1728)

µsp =

√
2

3
(1598).

(15)

With the microwave field of 415 mV/cm the matrix ele-
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ment µsp leads to a microwave coupling of approximately
200 MHz, i.e. µspE/2 ∼= 200 MHz.

Comparing Fig. 3 to Fig. 2, we can see that the sin-
gle photon microwave resonances at 55.473 and 58.356
GHz have become obvious avoided crossings, and the
two photon 41p3/237f − 42pj37f resonances are visible.
At the single microwave photon resonances the separa-
tion between Floquet levels, and the level shifts, are lin-
ear in the microwave field. Far from them, for exam-
ple at the Forster level crossings with the 39d5/239d5/2
state, the level shifts are quadratic in the microwave
field. In Fig. 4 we show an expanded view of the portion
of Fig. 3 containing the two and three photon Forster
resonances (marked by dashed boxes in Figs. 2 and 3),
in zero field and E=415 mV/cm. At the frequency of
the 39d5/239d5/2−42p3/237f Forster resonance at 55.850
GHz, the 42p3/237f state lies about halfway between the
43s1/237f and 42s1/237f states, and the AC Stark shifts
due to these two states almost cancel, leading to a small
AC Stark shift of this Forster resonance. In contrast,
at the frequency of the 39d5/239d5/2− 42p1/237f Forster
resonance at 55.137 GHz, the 42p1/237f state is below
both the 42s1/237f and 43s1/237f states, so the AC Stark
shifts add. More important, the Forster resonance is very
close to the single photon 42p1/237f − 43s1/237f reso-
nance, leading to a large frequency shift.

For small microwave fields the AC Stark shifts of the
Forster resonances are quadratic in the microwave field
amplitude, and the calculated AC Stark shifts are pre-
sented with the experimental results in the next section.

To calculate the fractional population transfer (FPT)
from the laser excited dd state to a Floquet state at a
Forster resonance, we follow a procedure similar to that
used in the development of Eqs. (7) to (10). We compute
the transition probability for a pair of atoms spaced by
distance R and then average over the distribution of the
spacings in the trap volume.

We calculate the transition probability at resonance for
a transition from the dd state to the Floquet state for a
pair as follows. The microwave field is switched on and
off in 10 ns, which is fast compared to the dipole–dipole
interaction. Thus, when the microwave field is switched
on the population oscillates between |dd〉 and |ψF 〉 at the
frequency Ω given by the dipole–dipole coupling matrix

element Ω = 〈dd| µµ
′

R3 |ψF 〉. Since only the |pf〉 part of the
|ψF 〉 eigenfunction contributes to this matrix element,

Ω = 〈dd| µµ
′

R3
|ψF 〉 = a1 〈dd|

µµ′

R3
|pf〉 , (16)

where a1 is the coefficient given in Eq. (14). For ΩT > π,
on average half the oscillating population is in the ψF
state and is left there when the microwave field is turned
off, in 10 ns. As in the earlier development of Eqs. (7)
to (10), the condition ΩT = π is met for R = RT where

ΩT = a1 〈dd|
µµ′

R3
T

|pf〉T = π. (17)

For R < RT , ΩT > π, and the average transition proba-
bility is one half. For R > RT the transition probability
falls rapidly with R. Accordingly, pairs with R < RT
undergo the transition, and the FPT is again

FPT =
R3
T

2R3
av

. (18)

The population oscillation frequency Ω and the FPT
are proportional to the Rydberg atom density and a1,
the coefficient of the pf component of ψF . In the low
microwave field limit, at each of the Forster resonances
a1 is proportional to EM , where M is the number of the
photons absorbed or emitted.

To verify that the Floquet model gives the same result
as the CI model discussed earlier, we restrict our atten-
tion to the one photon case treated using the CI model.
For the one photon dd − sf Forster resonance the mi-
crowave power is sufficiently low that only three states
need to be considered, dd, pf , and sf . In this case the
only coupling in the Floquet matrix of Eq. (13) is that
between the pf and sf states, and

a1 =
µpsE

2(Wsf − ω −Wpf )
. (19)

Since, at resonance Wsf − ω = Wdd (see Eq. (12)), we
can write the oscillation frequency Ω as

Ω =
µpsµdpµdfE

2∆R3
, (20)

which is precisely the CI result of Eq. (7). In sum, the
Floquet model allows us to predict the AC Stark shifts of
the multiphoton resonances and the fractional population
transfers, which scale as EM , where M is the number of
microwave photons emitted or absorbed. Furthermore,
the Floquet description is equivalent to the CI model
presented previously to describe one photon transitions.

To compute the microwave fields required to observe
the different transitions shown in Fig. 1, a useful criterion
is the field required to produce a fixed value of a1. In
Table I we give the microwave fields required to produce
a1=0.05 for n=39. For the two photon transitions of
Fig. 1 this criterion requires E≈ 550 mV/cm, comparable
to the microwave field amplitude of 415 mV/cm that was
used to generate Fig. 3. From Table I it is apparent that
similar microwave field strengths are required to observe
the two photon transitions dd→ p′1f and dd→ p′3f , since
the detuning from the intermediate sf state is large in
both cases. However, the AC Stark shift of the dd →
p′1f resonance is much larger due to the proximity of
the dd → p′1f Forster resonance to the single microwave
photon p′1f → s′f resonance.

EXPERIMENTAL APPROACH

The essential notion of the experiment can be under-
stood with the aid of Fig. 5, which shows the relevant
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energy levels of single microwave photon transitions from
the nd5/2nd5/2 state. Pulsed 480 nm laser excitation
of atoms to the nd5/2 state produces nd5/2nd5/2 pairs,
which are coupled by the dipole–dipole interaction to the
energetically nearby (n + 2)p3/2(n − 2)f state. A 1 µs
long microwave pulse drives one of the four transitions,
labelled A to D, in Fig. 5. In CI terms, the transitions are
allowed due to the admixture of the (n+ 2)p3/2(n− 2)f
state into the nd5/2nd5/2 state by the dipole–dipole inter-
action. One of the atoms in the admixture interacts with
the microwave field while the other remains a spectator.
As shown by Fig. 5, which is approximately to scale, the
microwave field can drive the pair to a lower or higher
energy state. We detect that the pair has undergone the
transition by applying a field ionization pulse after the
microwave pulse. We assume that the field ionization
pulse projects the atoms onto isolated atomic states. For
a transition to be observable one of the atoms in the fi-
nal state pair must have an energy above the energy of
the initially excited nd state so that it is ionized earlier
in the field ionization pulse. The (n+ 2)p3/2, (n+ 1)dj ,
and (n+ 3)s1/2 states meet this criterion. It is useful to
note that in transition D although the microwave transi-
tion removes energy from the pair, the transition is de-
tectable since the result is an (n+2)p3/2 atom, which lies
above the nd5/2 state. The resonances corresponding to
the transitions shown in Fig. 5 are recorded by setting
the gate of a gated integrator on the signal due to field
ionization of the (n + 2)p3/2, (n + 1)dj , or (n + 3)s1/2
state and slowly sweeping the microwave frequency over
many shots of the laser.

Since this experiment is an extension of work reported
previously [1], the experimental approach has much in
common. 85Rb atoms are trapped in a vapor loaded
magneto-optical trap (MOT), which supplies a steady
population of Rb atoms in the 5p3/2 state. Atoms are
excited to the nd5/2 or ns1/2 state by a 10 µJ 480 nm
laser pulse which is generated by pulse amplifying, at a
20 Hz repetition rate, and then frequency doubling the
output of tapered amplifier seeded by a 960 nm single
mode diode laser. The 480 nm pulse is 10 ns long and
has a bandwidth of 150 MHz. Approximately 4 ms before
the excitation with the pulsed laser, the trap magnetic
fields are switched off so that the residual field at the
center of MOT during the experiment is reduced to less
than 50 mG. Subsequent to laser excitation, the atoms
are exposed to a 1 µs long microwave pulse to drive the
transitions shown in Fig. 5. 65 ns after the end of the
microwave pulse, a 3 µs rise time field ionization pulse
is applied to field ionize the Rydberg atoms and drive
the resulting ions to a microchannel plate (MCP) detec-
tor. The signal from the MCP is recorded with a gated
integrator and stored in a computer for later analysis.

The cloud of cold Rb atoms is held at the center of four
stainless steel vertical rods which pass through the cor-
ners of a horizontal square 18 mm on a side. The positive
field ionization voltage pulse is applied to the rods farther
from the MCP while the two rods nearer to the MCP are

grounded. The density of Rydberg atoms in the MOT
is determined in the following way. The 780 nm fluores-
cence from the MOT is measured to find the total number
of the trapped atoms in the 5p3/2 state. Then, the num-
ber of Rydberg atoms excited on each laser shot can be
determined by combining the measured reduction of the
5p3/2 population when the pulsed Rydberg excitation is
added and the 1 s filling time of the trap. The density
of the Rydberg atoms is determined by measuring the
waist of the 480 nm beam and the diameter of the MOT.
It is assumed that the Rydberg atom density has the fol-

lowing form: ρ(x, y, z) = ρ0e
−(x2+y2+z2)/r2M e−(x

2+y2)/r2L ,
where rM=0.5 mm and rL=0.18 mm are the radii of the
MOT and the 480 nm laser beam, respectively; ρ0 is the
density at the center of the trap; and x, y, and z are the
Cartesian displacements from the center of the trap. The
480 nm beam propagates in the z direction. In these ex-
periments, the maximum value of ρ0 is 5×108cm−3, and
the density measurement uncertainty is a factor of three.

The microwaves are generated in an Agilent E8247C
synthesizer, which has a maximum frequency of 20 GHz,
and a General Microwave DM862B switch is used to
form the microwaves into 1 µs long pulses. A Narda
DBS2640X220 active doubler and a DBS4060X410 active
quadrupler are used to generate microwaves in the 26.5 to
40 GHz and 40 to 60 GHz ranges, respectively. The rela-
tive microwave power is controlled in the final waveguide
with a HP R832A or U832A precision attenuator. The
microwaves have horizontal polarization and propagate
from a horn outside the vacuum system through a win-
dow to the MOT volume. The vertical rods used to ap-
ply field ionization pulse scatter the microwaves to some
extent, and this results in the polarization’s not being
perfectly linear. Some of the transitions require low fre-
quencies, in the vicinity of 1 GHz. For those transitions,
the output of the Agilent E8247C synthesizer is directly
connected to the pair of rods closest to the MCP after
going through a Mini-circuits ZHL-42W amplifier and an
E&M Labs L30Y circulator. In most cases, there is an
AC Stark shift due to near resonance of the microwaves
to some other transition. Since the state that is responsi-
ble for the AC Stark shift is different for each transition,
more detail will be provided when discussing each tran-
sition. It is straightforward to extrapolate the location
of the resonance peaks to zero microwave power, and the
power shift is used to estimate the absolute microwave
field amplitude over the range of frequencies employed.

OBSERVATIONS

One Photon Transitions from nd5/2nd5/2

In Fig. 5 we show the single photon transitions from
the nd5/2nd5/2 state. In all cases these transitions are
possible due to the dipole–dipole induced admixture of
the nearly degenerate (n+ 2)p3/2(n− 2)f state into the
nd5/2nd5/2 state.
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nd5/2nd5/2 → (n + 3)s1/2(n− 2)f , Transition (A)

Fig. 6 shows the observed 40d5/240d5/2 →
43s1/238f7/2 resonances for a range of microwave
field amplitudes. This transition corresponds to the
transition A in Fig. 5 when n=40. As the microwave
field amplitude is raised, the transition exhibits an AC
Stark shift to higher frequency. The AC Stark shift is
caused by the fact that this transition is nearly resonant
with the atomic 42p3/2 → 43s1/2 transition. The
relative microwave fields are determined from attenuator
settings, whereas the absolute fields given in Fig. 6 are
determined by calculating how much field is required to
produce the observed shifts. In Table II we also present
the AC Stark shifts calculated from our Floquet model
as well as the maximum AC Stark shifts observed and
the estimated maximum field amplitude. Although we
have not made careful measurements of the microwave
field amplitudes, they are consistent with the maximum
field ∼0.7 V/cm we expect for our microwave system,
which has a maximum power of 100 mW and a horn with
a gain of 20 dB located 20 cm from the trapped atoms.
The resonance frequency at zero microwave power is
obtained by extrapolating the frequency of the resonance
peak at different microwave field amplitudes back to
zero power. The zero microwave power frequencies for
our measurements are summarized in Table II. Based
on either the CI or Floquet model for a single photon
transition, the fraction of atoms that is transferred to
(n + 3)s1/2(n − 2)f state is expected to depend linearly
on the microwave field amplitude. Fig. 7 shows the plot
of FPT vs. the microwave field amplitude, exhibiting
the expected linear behavior.

nd5/2nd5/2 → (n + 1)dj(n− 2)f , Transition (B)

Transition B in Fig. 5 was first reported by Yu et al.
[6] in 2013. Further investigation of transition B as well
as the observation of transition D were reported in the
previous paper[1].

nd5/2nd5/2 → (n + 2)p3/2(n− 2)g, Transition (C)

Unlike transitions A and B of Fig. 5, in this case it
is the (n − 2)f atom which undergoes the transition.
Fig. 8 shows the resonant peak for the 41d5/241d5/2 →
43p3/239g transition, which corresponds to transition C
in Fig. 5. Due to the low frequency range required for
the transition, the output of the microwave synthesizer is
connected directly to the pair of rods closest to the MCP,
as mentioned in the previous section. The transitions ex-
hibit an AC Stark shift, linear in the radio frequency
power, of up to 3 MHz, and the resonance frequencies at
zero power are obtained by extrapolating to zero power.
The results are summarized in Table II. The ng-series

quantum defect that is needed to calculate the intervals
was taken from the paper by Lee et al.[12].

nd5/2nd5/2 → (n + 2)p3/2(n− 1)d5/2, Transition (D)

There are two notable aspects to this transition. In
addition to the (n− 2)f atom undergoing the transition,
the transition is to a molecular state lower in energy than
the nd5/2nd5/2 state. However, the atom left in the (n+
2)p3/2 state gains energy and can be distinguished from
an nd5/2 atom by field ionization. The observation of this
transition was first reported in the previous paper[1]. In
Table II, we report more systematic measurements made
to determine the transition frequencies at zero microwave
power.

One Photon Transitions from ns1/2ns1/2

For the transitions originating from the nd5/2nd5/2
state, it is the dipole–dipole induced configuration in-
teraction with the nearby (n+ 2)p3/2(n− 2)f state that
allows the transitions. If we start with the ns1/2ns1/2
state, the nearest dipole–dipole coupled state, np3/2(n−
1)p3/2, is much further away. As a concrete example,
for n=40, ∆40s1/240s1/2−40p3/239p3/2=5.45 GHz, whereas
∆40d5/240d5/2−42p3/238f7/2=325 MHz. The large detuning

for ns1/2ns1/2 − np3/2(n − 1)p3/2 results in a small ad-
mixture coefficient. Nonetheless, it is possible to observe
transitions similar to the observed transitions originating
from the nd5/2nd5/2 state.

ns1/2ns1/2 → (n− 1)d5/2(n− 1)p3/2

Fig. 9 shows the energy levels involved in the
ns1/2ns1/2 → (n − 1)d5/2(n − 1)p3/2 transition which
is one of the possible transitions originating from the
ns1/2ns1/2 state. The diagram is approximately to
scale, and the large detuning between ns1/2ns1/2 and
np3/2(n − 1)p3/2 is evident. Fig. 10 shows the observed
resonance for n = 40. The resonant peak does not observ-
ably shift when the microwave power is raised because
the microwave frequency is not near the 40p3/2 → 39d5/2
resonant frequency.

Multiphoton Transitions from nd5/2nd5/2

In addition to the transitions discussed so far, tran-
sitions that involve more than one microwave photon
have been observed. Fig. 1 shows the observed single
and multi photon transitions originating from nd5/2nd5/2
state. Observing the multiphoton transitions requires
higher microwave field amplitude.
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nd5/2nd5/2 → (n + 3)p1/2(n− 2)f

Fig. 11 shows the observed 39d5/239d5/2 → 42p1/237f
resonances for a range of microwave field amplitudes.
This is a two photon transition, and the resonances ex-
hibit a large AC Stark shift to lower frequency. The mi-
crowave field amplitudes involved here are greater than
those in Fig. 6 by more than an order of magnitude. The
microwave field amplitudes were estimated from the ob-
served shifts. As discussed earlier, for a two photon
transition, the fraction of atoms that is transferred to
the (n + 3)pj(n − 2)f state is expected to scale as the
square of the microwave field amplitude, or linearly in
the microwave power. Fig. 12 shows the plot of FPT vs.
microwave field amplitude squared, which is linear, as
expected. The obtained zero power frequencies are given
in Table III.

nd5/2nd5/2 → (n + 3)p3/2(n− 2)f

Although the frequency for this transition lies near the
nd5/2nd5/2 → (n + 3)p1/2(n − 2)f transition frequency,
there is an important difference: The resonant peak for
this transition does not observably shift when the mi-
crowave power is raised. As discussed earlier, the sup-
pression of the AC Stark shift is caused by the fact that
the (n+ 3)p3/2 state lies approximately halfway between
the (n + 3)s1/2 and (n + 4)s1/2 states. As a result, the
AC Stark shift contributions due to the (n + 3)s1/2 and
(n+4)s1/2 states nearly cancel. The calculated AC Stark
shifts are given in Table III as well as the observed and
calculated zero power frequencies.

nd5/2nd5/2 → (n + 4)s1/2(n− 2)f

Fig. 13 shows the observed resonance for the
40d5/240d5/2 → 44s1/238f transition. The peak is

shifted to higher frequency by 25MHz by the AC Stark
shift. This three-photon transition requires a high mi-
crowave field amplitude, and the resonance peaks can
only be obtained for the microwave field amplitudes close
to the maximum possible value. The calculated AC Stark
shifts are given in Table IV as well as the observed and
calculated zero power frequencies.

CONCLUSION

These measurements show that it is straightforward
to drive microwave transitions between pairs of atoms
even when the dipole-dipole detuning is large, ∼5 GHz.
Both single photon and multiphoton transitions can be
described as Forster resonances of Floquet states tuned
into resonance with the microwave frequency. The Flo-
quet approach is particularly convenient for multiphoton
transitions as it is easily extended to stronger fields, and
it reduces to the CI approach used previously for single
photon transitions.
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FIGURES

FIG. 1. One, two, and three photon microwave transitions
from nd5/2nd5/2 state. The transitions to (n + 3)pj(n − 2)f
states are two-photon transitions, and the transition to (n +
4)s1/2(n−2)f state is a three-photon transition. The diagram
is approximately to scale.

FIG. 2. Floquet energy levels for n=39 as a function
of the microwave frequency for zero microwave field ampli-
tude. The energies are specified relative to the energy of the
39d5/239d5/2 state.

FIG. 3. Floquet energy levels for n=39 as a function of
the microwave frequency for microwave field amplitude of 415
mV/cm. The energies are specified relative to the energy of
the 39d5/239d5/2 state.

FIG. 4. An expanded view of the region marked by dashed
box in Fig. 2 and Fig. 3 containing the two and three pho-
ton Forster resonances. Solid lines and dotted lines rep-
resent microwave coupling of 0 and 200 MHz, respectively.
For W42p3/237f − 2ω, the solid line and the dotted line over-
lap. The energies are specified relative to the energy of the
39d5/239d5/2 state.
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FIG. 5. The observed one photon transitions originat-
ing from nd5/2nd5/2. The (n + 2)p3/2(n − 2)f state is
nearly degenerate with nd5/2nd5/2 level. For n = 39, the
(n + 2)p3/2(n− 2)f level is detuned by 477.8 MHz.

FIG. 6. Observed 40d5/240d5/2 → 43s1/238f7/2 resonances
for a range of microwave field amplitudes. The calculated res-
onance frequency for the transition at zero microwave power
and R =∞ is 53.721 GHz.

FIG. 7. Fractional Population Transfer (FPT) vs. microwave
field amplitude for the 40d5/240d5/2 → 43s1/238f7/2 transi-
tion

FIG. 8. Observed resonance for the 41d5/241d5/2 →
43p3/239g transition. The peak is shifted to higher frequency
by 1.4 MHz due to AC Stark shift. The calculated frequency
for the transition is 1190.4 MHz.
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FIG. 9. Energy levels for the one photon transition
ns1/2ns1/2 → (n− 1)d5/2(n− 1)p3/2

FIG. 10. Observed resonance for 40s1/240s1/2 →
39d5/239p3/2 transition. The calculated frequency for the
transition is 31.441 GHz. The peak is not observably shifted.

FIG. 11. Observed 39d5/239d5/2 → 42p1/237f resonances for
a range of microwave field amplitudes. The calculated reso-
nance frequency for the transition at zero microwave power
and R =∞ is 110.273 GHz.

FIG. 12. Fractional Population Transfer (FPT) vs. mi-
crowave field amplitude squared for the 39d5/239d5/2 →
42p1/237f transition

FIG. 13. The observed resonance for 40d5/240d5/2 →
44s1/238f transition. The peak is shifted to higher frequency
by 25 MHz due to AC Stark shift.
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TABLES

TABLE I. Microwave field amplitudes required to produce a1=0.05 for n=39.

Transition Required Microwave Field Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)s1/2(n− 2)f7/2 49.8
nd5/2nd5/2 → (n + 3)p1/2(n− 2)f7/2 622.5
nd5/2nd5/2 → (n + 3)p3/2(n− 2)f7/2 456.5
nd5/2nd5/2 → (n + 4)s1/2(n− 2)f7/2 1369.5

TABLE II. Resonance frequencies and AC Stark shifts for one photon transitions. Calculated shifts are obtained from our
Floquet model. The estimated maximum field amplitudes are calculated from the maximum observed shifts and calculated
shifts.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)s1/2(n− 2)f7/2 39 57.878 57.876(9) 486.8 18.4 194
40 53.721 53.719(11) 791.1 73.4 305

nd5/2nd5/2 → (n + 2)p3/2(n− 1)d5/2 39 43.921 43.923(8) 348.4 29.4 290
40 40.415 40.417(8) 570.6 20.1 188

nd5/2nd5/2 → (n + 2)p3/2(n− 1)d3/2 39 44.138 44.139(3) 455.3 12.8 168
40 40.615 40.616(6) 745.7 10.7 120

nd5/2nd5/2 → (n + 2)p3/2(n− 2)g 41 1.190 1.190(11) 130.9 3.3 159
42 1.194 1.190(5) 305.2 3.6 109

ns1/2ns1/2 → (n− 1)d5/2(n− 1)p3/2 39 34.010 34.010(9) 36.7 < 1
40 31.441 31.441(10) 44.9 < 1

TABLE III. Resonance frequencies and AC Stark shifts for two photon transitions. Calculated shifts are obtained from our
Floquet model. The estimated maximum field amplitudes are calculated from the maximum observed shifts and calculated
shifts.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)p1/2(n− 2)f7/2 39 110.273 110.280(51) 419.9 118.6 531
40 102.294 102.294(31) 482.1 50.8 325

nd5/2nd5/2 → (n + 3)p3/2(n− 2)f7/2 39 111.699 111.697(18) 8.6 < 1
40 103.617 103.615(10) 15.5 < 1

TABLE IV. Resonance frequency and AC Stark shift for the three photon transition. The calculated shift is obtained from our
Floquet model. The estimated maximum field amplitude is calculated from the maximum observed shift and calculated shift.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 4)s1/2(n− 2)f7/2 40 153.768 153.767(79) 87.2 40.2 679
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