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In various applications one is interested in quantum dynamics at intermediate evolution times, for
which the adiabatic approximation is inadequate. Here we develop a quasi-adiabatic approximation
based on the WKB method, designed to work for such intermediate evolution times. We apply it to
the problem of a single qubit in a time-varying magnetic field, and to the Hamiltonian Grover search
problem, and show that already at first order, the quasi-adiabatic WKB captures subtle features
of the dynamics that are missed by the adiabatic approximation. However, we also find that the
method is sensitive to the type of interpolation schedule used in the Grover problem, and can give
rise to nonsensical results for the wrong schedule. Conversely, it reproduces the quadratic Grover
speedup when the well-known optimal schedule is used.

I. INTRODUCTION

There exist only a handful of Hamiltonian-based quan-
tum algorithms [1, 2], designed to run on analog quan-
tum computers [3–5], that exhibit a provable quantum
speedup [6]. The adiabatic version of the Grover search
problem is one such example [7]. The existence of this
speedup is proven using the adiabatic theorem [8], i.e., it
is based on an asymptotic analysis in the total evolution
time. This is in contrast to the circuit model version
of the Grover problem [9], for which a closed-form an-
alytical solution is known for arbitrary evolution times
and arbitrary initial amplitude distributions [10, 11]. No
such closed form analytical solution of the Hamiltonian
version of Grover’s algorithm is known as of yet.

The Wentzel-Kramers-Brillouin (WKB) method is a
famous technique for approximating differential equa-
tions which has found applications in many domains
of physics and mathematics, including optics, acous-
tics, astrophysics, elasticity, and quantum mechanics
(see Ref. [12] for a mathematical history of the WKB
method). In this work, we adopt the WKB method to
provide approximate analytical solutions to the Hamil-
tonian Grover problem. The WKB method we use is
quasi-adiabatic (as opposed to semiclassical [13]): the
small parameter is the inverse of the total evolution time
(not ~, which we set to 1). We choose to focus on the
Grover problem since this problem is well studied and un-
derstood, but the WKB method is widely applicable and
easily generalizable to other Hamiltonian-based quantum
algorithms. We thus expect it to be a useful tool in ana-
lyzing such algorithms beyond the adiabatic approxima-
tion.

We compare the results of the WKB approximation
with a numerically exact solution. Strikingly, we find
that the quality of WKB results depends strongly on the
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interpolation schedule from the initial to the final Hamil-
tonian. The WKB approximation is reliable already at
low order for the schedule that generates a quantum
speedup for the Grover problem [7], but fails for the other
schedules we tested. These other schedules are charac-
terized by a different dependence on the power of the
inverse spectral gap.

The structure of the paper is as follows. We briefly
review the quasi-adiabatic WKB method in Sec. II. The
method is applied to the Grover problem in Sec. III, and
the WKB solutions are derived in Sec. IV. The results
are discussed and analyzed in Sec. V, where we perform
a comparison with the numerically exact solution. We
conclude in Sec. VI.

We remark that there are other tools available to study
quasi-adiabatic dynamics: Adiabatic perturbation the-
ory is a popular method [14]. In Appendix A we study a
particular variant of adiabatic perturbation theory from
Ref. [15] and compare it to our method. Our method is
not a variant of adiabatic perturbation theory because at
the lowest order we do not recover the adiabatic evolu-
tion.

II. QUASI-ADIABATIC WKB FOR
INTERPOLATING HAMILTONIANS

We start by briefly reviewing the asymptotic WKB
expansion technique (for background see, e.g., Ref. [16]),
and connect it to interpolating Hamiltonians of the type
used in adiabatic quantum computing.

A. WKB as an asymptotic expansion

The WKB expansion

y(r) ∼ eθ(r)/ε[y0(r) + εy1(r) + ε2y2(r) + . . . ], (1)

is an ansatz used for the solution of ordinary differen-
tial equations in y(r) that contain a small parameter,
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ε, multiplying the highest derivative. This ansatz is an
asymptotic expansion in ε, i.e., there is no guarantee that
it will provide a unique or even a convergent solution. In
fact, the asymptotic series for y(r) is usually divergent;
the general term εnyn(r) starts to increase after a certain
value n = nmax, which can be estimated for second order
differential equations of the form ε2y′′(r) = Q(r)y(r),
if Q(r) is analytic [17]. The number nmax can be in-
terpreted as the number of oscillations between r0 [the
point at which y(r) needs to be evaluated] and the turn-
ing point r? [i.e., where Q(r?) = 0] closest to r0. In this
work we will only be concerned with the expansion up to
order ε for a second order differential equation. For later
convenience, we list the expressions for the derivatives of
the ansatz:

y ∼ eθ/ε
∞∑
j=0

εjyj (2a)

y′ ∼ eθ/ε
∞∑
j=0

εj−1 (θ′yj + y′j−1)︸ ︷︷ ︸
≡z(1)j

(2b)

y′′ ∼ eθ/ε
∞∑
j=0

εj−2 [(θ′)2yj + θ′′yj−1 + 2θ′y′j−1 + y′′j−2]︸ ︷︷ ︸
≡z(2)j

(2c)

with yk ≡ 0 if k < 0, and where the number of primes
denotes the order of the derivative.

B. Interpolating Hamiltonians

We consider interpolating Hamiltonians of the form

H[r(s)] = [1− r(s)]Hinitial + r(s)Hfinal. (3)

which depend on time only via the dimensionless time
s ≡ t/tf . Here tf denotes the total evolution time and
is the only timescale in the problem. The “interpolation
schedule” r(s) is strictly increasing, differentiable, and
satisfies the boundary conditions r(0) = 0 and r(1) =
1. The derivative of the inverse of r(s), viz. s′(r), is
therefore also strictly positive. This allows us to divide
by s′ when we need to.

Consider now the Schrödinger equation for this evolu-
tion

i
d

dt
|χ(t)〉 = µH(r[s(t)]) |χ(t)〉 , (4)

where µ is an energy scale, and H(·) is dimensionless,
e.g., a linear combination of Pauli matrices. Writing ev-
erything in terms of s, we get

i
d

ds
|χ(s)〉 = µtfH[r(s)] |χ(s)〉 . (5)

One can also write the problem in terms of r. This yields:

iε
d

dr
|χ(r)〉 = g(r)H(r) |χ(r)〉 , (6)

where g(r) ≡ s′(r), s(r) : [0, 1] 7→ [0, 1], and where

ε ≡ 1

µtf
, (7)

is the dimensionless small parameter for our WKB ex-
pansion. Since ε is small for large tf , we call our method
“quasi-adiabatic WKB”.1

III. THE GROVER PROBLEM VIA THE
QUASI-ADIABATIC WKB APPROXIMATION

Recall that the Grover problem can be formulated as
finding an item in an unsorted list of N = 2n items, in the
smallest number of queries [18]. This admits a quadratic
quantum speedup, as was first shown by Grover in the
circuit model [9]. It is also one of the few instances where
an adiabatic algorithm was discovered which recovers the
quantum speedup. The crucial insight, which eluded the
first attempt [2], was that the speedup obtained in the
circuit model could be recovered in the adiabatic model
provided the right interpolation schedule r(s) is chosen,
namely, a schedule that drives the system more slowly
when the gap is smaller [7] (see also Refs. [8, 19]).

In the Hamiltonian Grover algorithm one uses the n-
qubit interpolating Hamiltonian

HGrover[r(s)] = [1− r(s)](I − |u〉 〈u|) + r(s)(I − |m〉 〈m|),
(8)

where m ∈ {0, 1}n is the marked state and

|u〉 ≡ 1√
2n

∑
x∈{0,1}n

|x〉 , (9)

is the uniform superposition state. The system is initial-
ized in the state |u〉. It can be easily checked that the
dynamics described by this Hamiltonian is restricted to
S ≡ Span{|u〉 , |m〉}. Let K ≡ 2n − 1 and define

|m⊥〉 ≡ 1√
K

∑
x∈{0,1}n
x 6=m

|x〉 , (10)

1 We remark that the quasi-adiabatic WKB approximation should
not be confused with the traditional WKB approximation as-
sociated with the ~ → 0 limit. The latter is typically used
as a semiclassical approximation in one-dimensional position-
momentum quantum mechanics, involving a potential barrier
(see, e.g., Ref. [13]). The quasi-adiabatic and semiclassical WKB
approximations are not interchangeable. This can be seen from
the Schrödinger equation for a particle in a one-dimensional po-
tential:

i
~
tf

d

ds
|χ〉 =

(
−

~2

2m
∂2x + V (x, stf )

)
|χ〉 ,

where again s = t/tf and V (x, t) is a space- and time-dependent
potential energy function. It is evident that there is no way to
trade both ~ and 1/tf for a single small parameter, since they
appear together as the product ~tf .
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so that |u〉 = (|m〉 +
√
K |m⊥〉)/

√
K + 1. Note that

{|m〉 , |m⊥〉} is an orthonormal basis for S. In this basis,
the Hamiltonian is

H(s) =

(
[1− r(s)] K

K+1 −[1− r(s)]
√
K

K+1

−[1− r(s)]
√
K

K+1 1− [1− r(s)] K
K+1

)
. (11)

Henceforth we restrict our analysis to this two-
dimensional Hamiltonian and will not return to the high-
dimensional Hamiltonian that gave rise to it.

Let

|χ(s)〉 = ψ(s) |m〉+ φ(s) |m⊥〉 , (12)

i.e., henceforth ψ(s) is the amplitude of the marked state
(ground state of the final Hamiltonian), and φ(s) is the
amplitude of the unmarked component (the excited state
of the final Hamiltonian).

From Eq. (6), the Schrödinger equation for a general
interpolation becomes

iεψ′ =
g(r)

K + 1

[
K(1− r)ψ −

√
K(1− r)φ

]
, (13a)

iεφ′ =
g(r)

K + 1

[
−
√
K(1− r)ψ + (1 + rK)φ

]
. (13b)

The boundary conditions are

ψ(0) =
1√

K + 1
, φ(0) =

√
K

K + 1
, (14)

so it follows from Eqs. (13) that ψ′(0) = φ′(0) = 0.
We now turn the above coupled first order system into

two decoupled second order differential equations:

ε2(1− r)ψ′′ + ε(εa1,1 + a1,2)ψ′ + a0ψ = 0 (15a)

ε2(1− r)φ′′ + ε(εa1,1 + a1,2)φ′ + (a0 + igε)φ = 0 ,
(15b)

where

a0 = −g
2K(1− r)2r

K + 1
(16a)

a1,1 = 1− g′

g
(1− r), a1,2 = i(1− r)g . (16b)

The function g(r) = s′(r) uniquely determines the
schedule r(s). We shall consider four different schedules
corresponding to choices α ∈ {0, 1, 2, 3} in

r′(s) = cα∆(r)α , (17)

where cα is a constant that depends onK (see Refs. [7, 8])
and ∆(r) is the eigenvalue gap of the Hamiltonian in
Eq. (11), given by:

∆(r) =

√
1− 4Kr(1− r)

K + 1
. (18)

Equation (17) forces the schedule to become slower
(faster) when the gap is smaller (larger).

The linear schedule [r(s) = s] corresponds to the choice
α = 0, and the schedule discovered by Roland and Cerf
[7] corresponds to α = 2. We also analyze schedules
corresponding to α = 1, 3. To find the constant cα,
we integrate Eq. (17) and use the boundary condition
s(1) = 1. The expressions for the schedules thus ob-
tained, expressed in terms of the corresponding gα(r)
functions [recall that g(r) ≡ s′(r)], are as follows:

g0(r) = glin(r) = 1 (19a)

g1(r) =
2
√

K
K+1

log
(√

K+1+
√
K√

K+1−
√
K

) × 1

∆(r)
(19b)

g2(r) = gRC(r) =

√
K

(K + 1) tan−1(
√
K)
× 1

∆(r)2
(19c)

g3(r) =
1

K + 1
× 1

∆(r)3
(19d)

We now turn to the construction of the WKB solutions
for both amplitudes ψ and φ for each of the schedules.

IV. CONSTRUCTING THE WKB SOLUTIONS

To derive the WKB solutions, we substitute the WKB
ansatz [Eqs. (2)] into Eqs. (15a) and (15b).2 Then, we set
the terms multiplying different orders εj to zero, which
yields the following recursive set of equations for j ≥ 1:

(1− r)z(2)
j + a1,1z

(1)
j−1 + a1,2z

(1)
j + a0yj = 0 (20a)

(1− r)z(2)
j + a1,1z

(1)
j−1 + a1,2z

(1)
j + a0yj + igyj−1 = 0 ,

(20b)

where ψ [Eq. (15a)] is reconstructed from Eq. (20a), and
φ [Eq. (15b)] is reconstructed from Eq. (20b). We con-
sider only the lowest three orders in ε below.

First, isolating the ε0 term [i.e., setting j = 0 in both
Eqs. (20a) and (20b)], we obtain the eikonal equation:

(θ′)2 + igθ′ − g2Kr(1− r)
K + 1

= 0 , (21)

which is a quadratic equation in θ′, so that:

θ′± = − ig
2

[1±∆(r)] . (22)

Turning to the ε1 term, we obtain the transport equa-

2 A Mathematica R© notebook containing code for obtaining the
WKB expressions used in our analysis is provided at https://

tinyurl.com/WKB-notebook.

https://tinyurl.com/WKB-notebook
https://tinyurl.com/WKB-notebook
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tions:

ψ′0
ψ0

= −
(1− r)θ′′ +

[
1− g′

g (1− r)
]
θ′

(1− r)(2θ′ + ig)
, (23a)

φ′0
φ0

= −
(1− r)θ′′ +

[
1− g′

g (1− r)
]
θ′ + ig

(1− r)(2θ′ + ig)
. (23b)

Here ψ0, φ0 are the parts of the WKB approximant that
correspond to y0, which was a general placeholder for the
lowest order term. Further, Eq. (23a) is obtained from
Eq. (20a), and Eq. (23b) is obtained from Eq. (20b), both
after setting j = 1 and using the eikonal equation (21)
to eliminate the y1 term. Let Θ± ≡ θ′±/g(r). It is easy
to check that the transport equations then become:

ψ′0
ψ0

= − (1− r)Θ′ + Θ

(1− r)(2Θ + i)
, (24a)

φ′0
φ0

= − (1− r)Θ′ + Θ + i

(1− r)(2Θ + i)
. (24b)

Since, by Eq. (22), Θ± = − i
2 [1±∆(r)] is independent

of g, it follows that ψ0 and φ0 do not depend on the
interpolation g.

Further, using Θ+ = −(i+ Θ−) and Θ′± = ∓ i
2∆′, it is

straightforward to show that the r.h.s. of Eq. (24a) for
ψ±0 is identical to the r.h.s. of Eq. (24b) for φ∓0 . Thus,
after integration we have ψ±0 (r) = c±0 φ

∓
0 (r), where c±0 is

(the exponential of) an integration constant.
Moreover, the r.h.s. of Eq. (24a) corre-

sponding to Θ± is easily seen to be equal to

− 1
2

[
∆′(r)
∆(r) + 1

1−r ±
1

(1−r)∆(r)

]
. Hence, integrating

Eqs. (24) yields:

logψ±0 (r) = log φ∓0 (r) + c̃±0 (25)

=
1

2
log

1− r
∆(r)

∓ 1

2

∫
1

(1− r)∆(r)
dr + d̃±0 ,

where c̃±0 and d̃±0 are integration constants. Or, using the
explicit form for the gap given in Eq. (18):

ψ+
0 (r) = c+0 φ

−
0 (r) (26a)

= d+
0

1− r√√
K + 1∆(r)[K(2r − 1) + (K + 1)∆(r) + 1]

ψ−0 (r) = c−0 φ
+
0 (r) (26b)

= d−0

√
K(2r − 1) + (K + 1)∆(r) + 1√

K + 1∆(r)
,

where c±0 = ec̃
±
0 and d±0 = ed̃

±
0 .

Finally, turning to the ε2 term [i.e., setting j = 2 in
Eqs. (20a) and (20b)] yields:

w′ = −
y′′0 (1− r) +

[
1− g′

g (1− r)
]
y′0

(1− r)(2θ′ + ig)y0
, (27)

where w ≡ y1
y0

. Here y represents both ψ and φ. We

used the eikonal equation to eliminate the y2 term, and
the transport equations to obtain y′0/y0 in w′. Solving
Eq. (27) yields y1. Note that here we cannot remove the
dependence of y1 on the interpolation g.

We can now assemble the different functions into a
solution. Given the interpolation g, we can integrate
Eq. (22) to find θ±, resulting in two solutions ψ± and
φ±. This means that we have to consider linear combi-
nations of these two solutions. Thus

ψ ∼ Aψeθ+/ε(ψ+
0 + εψ+

1 ) +Bψe
θ−/ε(ψ−0 + εψ−1 ) (28a)

φ ∼ Aφeθ+/ε(φ+
0 + εφ+

1 ) +Bφe
θ−/ε(φ−0 + εφ−1 ) , (28b)

where the constants Aψ,φ, Bψ,φ are determined using the

boundary conditions ψ(0) = 1√
K+1

, φ(0) =
√

K
K+1 , and

ψ′(0) = φ′(0) = 0. Note that despite the fact that ψ0

and φ0 do not depend on g, the parameter θ does, via
θ± =

∫
gΘ±dr. Therefore even at the lowest order, the

approximate solution retains a dependence on the inter-
polation g.

The only constraints our solutions must satisfy are
the differential equations (20) and the boundary condi-
tions. Thus we are free to choose the integration con-
stants (c±0 , d

±
0 , and others that would arise at higher or-

ders j ≥ 2), and henceforth we choose them to be equal
at all orders, such that only A,B,C,D are undetermined
until we use the boundary conditions.

It is important to remember that the WKB approxi-
mation method does not enforce normalization. Hence,
generically, the WKB approximation to a quantum state
is unnormalized, resulting in approximations to proba-
bilities that may be greater than 1.3 Thus, care must
be taken when applying this approximation technique to
estimate physical quantities, and in particular one must
check that normalization holds. For some of the exam-
ples we study here, such nonsensical probabilities indeed
arise. In Sec. V B, we study whether the norm of the
WKB approximation is an indicator of approximation
quality and also whether renormalization can be improve
the WKB approximation.

One final general comment is in order. It turns out
that the differential equations (15a) and (15b) have the
following unfortunate property: substituting the WKB
approximation to ψ into Eq. (13a) and solving for φ does
not yield a good approximation to φ. On other hand,
the WKB approximation to φ does yield a good approx-
imation to φ. This is why we need to perform the WKB
approximation separately for each of the amplitudes.

3 For convenience, we will abuse terminology somewhat and refer
to the WKB approximations to physical probabilities as “prob-
abilities” even though they may not be normalized. It should be
clear from the context whether we are referring to approximated
probabilities or to actual probabilities.
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V. RESULTS

In this section we analyze the quality of the approxi-
mate solutions by comparing them with the solutions ob-
tained via numerical integration of the Schrödinger equa-
tion. The results obtained by numerical integration are
sufficiently accurate that we can take the numerical so-
lution to be a good proxy to the exact solution. We
denote the numerically obtained solution by |χNum〉 and
the solution obtained from the WKB approximation by
|χWKB〉.

A. Single Qubit in a magnetic field

As a simple test, we first apply the formalism devel-
oped in Sec. II to the case K = n = 1, which models a
qubit in a time-varying magnetic field that changes from
the x-direction to the z-direction, with a linear interpo-
lation r(s) = s:

H(r) = −(1− r)σx − rσz, (29)

where σx ≡ |m〉 〈m⊥|+ |m⊥〉 〈m| and σz ≡ |m⊥〉 〈m⊥| −
|m〉 〈m|. Thus, the eikonal equation (22) becomes

θ′± = − i
2

[1±∆(r)] , (30)

where ∆(r) ≡
√

1− 2r(1− r). Therefore the two energy
levels of this problems are E±(s) = −iθ′±. Similarly,
the solutions [Eqs. (26)] of the transport equations yield,
after setting K = 1,

ψ+
0 = φ−0 =

1− r√
∆(r + ∆)

(31a)

ψ−0 = φ+
0 =

√
r + ∆

∆
, (31b)

where we have chosen the integration constants to remove
overall numerical factors.

Next, we may use these solutions to obtain the first-
order correction. For this we obtain from Eq. (27):

ψ±1 (r) = ∓iψ±0 (r)
16r4 − 40r3 + 42r2 − 17r + 5± 6∆(r)

12(1− r)∆(r)3
,

(32a)

φ±1 (r) = ±iφ±0 (r)
16r4 − 40r3 + 42r2 − 17r + 5∓ 6∆(r)

12(1− r)∆(r)3
.

(32b)

From these expressions and the boundary conditions

we construct two solutions: |χ(0)
WKB〉 (using ψ0, φ0) and

|χ(1)
WKB〉 (using ψ0, φ0 and ψ1, φ1). We expect |χ(1)

WKB〉
to be a better approximation to the exact solution than

|χ(0)
WKB〉 and we expect the quality of approximation to

improve with increasing tf , i.e., with decreasing ε. We

also consider the naive adiabatic approximation, which
we define as the instantaneous ground state of H(r).

Figure 1 shows that the WKB approximation is able
to capture the correct population dynamics.4 In more
detail, Fig. 1(a) shows that the approximation captures
oscillations not present in a naive adiabatic approxima-
tion, and Fig. 1(b) shows that the quality of the approxi-
mation improves from the lowest order to the next order
of the WKB approximation.

Next, consider the final ground state probability,

pGS(tf ). In Fig. 2(a), we see that |χ(0)
WKB〉 is already

sufficient to capture the asymptotic scaling of pGS with

tf . Further, |χ(1)
WKB〉 captures the oscillations in pGS(tf ),

with an accuracy that grows with increasing tf . Perform-

ing a series expansion of
∣∣∣〈1|χ(0)

WKB(1)〉
∣∣∣2 in powers of 1

tf
,

we obtain the leading order term to be 1
4t2f

. As we see

in Fig. 2(b), this asymptotic prediction is close to the
asymptotic scaling of the numerical solution.

Finally, consider the time-averaged trace-norm dis-
tance between two time-evolving states |χ1(t)〉 and
|χ2(t)〉:

D (|χ1〉 , |χ2〉) =
1

tf

∫ tf

0

D (|χ1〉 , |χ2〉) dt (33a)

D (|χ1〉 , |χ2〉) ≡
1

2
‖|χ1〉 〈χ1| − |χ2〉 〈χ2|‖1 . (33b)

The results comparing the numerical solution to the naive
adiabatic approximation and the two lowest WKB ap-
proximation orders are shown in Fig. 3. As expected,
the naive adiabatic approximation becomes better as tf
increases, and the same is true for the WKB approx-
imations, which are both more accurate than the adi-
abatic approximation. Moreover, the first-order WKB
approximation is better than the adiabatic approxima-
tion according to the time-averaged trace-norm distance
metric.

Taken together, the results for the n = 1 case show that
both the zeroth-order WKB approximation and the first-
order WKB approximation consistently improve upon
the naive adiabatic approximation, and the first-order
WKB approximation can be used to pick out more sub-
tle features of the quantum evolution.

B. The n-qubit Grover problem

We next turn to a study of the Grover problem as a
function of problem size n, with n > 1. The quantity of
interest to us is how long we need to run the adiabatic

4 Figures were made with the help of the MaTeX package for
Mathematica R© by Szabolcs Horvát (see url: http://szhorvat.

net/pelican/latex-typesetting-in-mathematica.html).

http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html
http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html
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FIG. 1. Evolution of a single qubit (n = 1) in a magnetic field, under the g0(r) = 1 schedule. (a) Population in the ground state
|m〉 as a function of r = s = t/tf for tf = 50 according to the numerical solution (|χNum〉), the two lowest orders of the WKB

approximation (|χ(0)
WKB〉 and |χ(1)

WKB〉), and the naive adiabatic evolution (|χGS〉). The WKB predictions and the numerical
solution exhibit oscillations and are indistinguishable from each other on the scale shown. The adiabatic approximation does not
exhibit oscillations. (b) The ground state population difference between the WKB approximation and the numerical simulation
for tf = 50. The higher order WKB approximation provides a significantly better approximation.
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FIG. 2. Final ground state population of a single qubit (n = 1) in a magnetic field, under the g0(r) = 1 schedule. (a)
Depopulation of the ground state (i.e., population in the excited state |m⊥〉) at r = 1 as a function of tf , comparing the

numerical solution (|χNum〉) and the two lowest orders of the WKB approximation (|χ(0)
WKB〉 and |χ(1)

WKB〉). The lowest order

|χ(0)
WKB〉 captures the asymptotic behavior of the exact solution, while |χ(1)

WKB〉 becomes indistinguishable from the exact solution

for tf & 50. (b) The difference between the true population in the state |m⊥〉 at time r = 1 and the asymptotic prediction of

1
4t2
f

obtained from the 1/tf expansion of
∣∣∣〈m⊥|χ(0)

WKB(1)〉
∣∣∣2. The asymptotic approximation becomes more accurate as tf grows.

algorithm before a certain threshold probability of suc-
cess pTh is exceeded. The associated threshold timescale
is defined as:

tTh
f ≡ min{tf : pGS(t) > pTh ∀t > tf}. (34)

Here, pGS(t) represents the probability of finding the
ground state at the end an adiabatic evolution of time

t. We choose pTh = 0.95 (we have checked that the re-
sults are insensitive to changing pTh).

First, in Fig. 4 we show how tTh
f (n) scales for the nu-

merical solution, under the four different schedules de-
fined in Eqs. (19). It appears as though the scaling for
the g3(r) schedule is better than the theoretically opti-
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FIG. 3. The time-averaged trace-norm distance [see Eq. (33)]
vs. tf for a single qubit (n = 1) in a magnetic field under
the g0(r) = 1 schedule. The distances plotted are between
the numerical solution and the adiabatic approximation, and
the two lowest order WKB approximations. The adiabatic
and the WKB distances decrease monotonically with tf , with
the former being a prediction of the adiabatic theorem in the
large tf limit. The WKB approximations at both orders are
consistently better than the adiabatic approximation and the
first-order WKB approximation improves upon the zeroth-
order WKB approximation.
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FIG. 4. The time required to achieve a final ground state
probability of 0.95 for the schedules defined in Eqs. (19) (log
scale). The straight lines represent exponential scaling fits of
O(21.01n), O(20.667n), O(20.508n), and O(20.463n) respectively.

mal scaling of 2n/2 [20], but this is a small n effect as
shown in Fig. 5.

Next, we examine how well the WKB approximation
does in predicting these scalings. In Fig. 6 we plot the
scaling of tTh

f (n) for the same four schedules, under the

lowest order WKB approximation. Only the g2(r) sched-
ule (which slows as the inverse-square of the gap) yields
the correct scaling of tTh

f (n). This is also the sched-
ule which yields the smallest instantaneous and time-
averaged trace-norm distance, as shown in Figs. 7(a) and
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FIG. 5. The scaling of pGS(tf ) from the numerically exact
solution under the g3 schedule, for larger problem sizes than
in Fig. 4. The straight line represents an exponential scaling
fit of O(20.499n). Thus, the scaling converges to the expected

scaling of O(2n/2) predicted by the query complexity bound
[20].
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FIG. 6. The time required to achieve a final ground state
probability of 0.95 for the interpolations defined in Eqs. (19)]
(log scale), using the WKB approximation at the lowest or-
der. The straight lines represent fits of O(2n), O(20.51n),

O(23.5n0.2

), and O(1) respectively. Thus, the lowest-order
WKB approximation predicts the right scaling only for the
optimized schedule g2(r).

7(b), respectively. For the other schedules, Fig. 6 shows
that the WKB approximation gives answers that are dra-
matically different from the exact solution. Furthermore,
for the g0 and g1 schedules, the scaling with n of tTh

f (n)

violates the query complexity bound [20].

Why do the approximations for the g0, g1, and g3

schedules give us the wrong scalings, while the approxi-
mation for the g2 schedule gives us the correct scaling?
A possible answer lies in the steepness of the final-time
approximate success probability curves for the different
schedules. In Fig. 8 we show the pGS(tf ) curves for
all four schedules for n = 4 (K = 15) as predicted by
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FIG. 7. (a) The trace-norm distance between the lowest order WKB approximation and the numerically exact solution for the
four different schedules [Eq. (19)] as a function of the evolution parameter r. Here n = 6 and tf = 60. (b) The time-averaged
trace-norm distance [Eq. (33)] between the lowest order WKB approximation and the numerically exact solution for the four
different schedules [Eqs. (19)]. Here n = 6. Both panels are consistent with Fig. 6 where g2 recovers the correct scaling. Recall
that g2 represents the optimal schedule found in Ref. [7], which provides the best approximation to the numerical evolution.
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FIG. 8. Final ground state probability pGS as function of total evolution time tf for the Grover problem with n = 4 for the four
different schedules, gα with α ∈ {0, 1, 2, 3} as predicted by the WKB approximation at first order. (a) The g0 and g1 schedules.
The rise in pGS as a function of tf is very steep, and quickly exceeds 1 for both schedules (the g0 curve goes very slightly above
1). The g0 curve rises faster than the g1 curve for pGS ≤ 1. (b) The g2 and g3 schedules.The rise in the pGS curve for g2 is
much steeper than the rise for the g3 curve. In general, the smaller is α, the larger the steepness in the pGS(tf ) curve. This is
consistent with the tTh

f (n) scalings obtained in Fig. 6.

the first-order WKB approximation (the highest order at
which we are able to obtain analytic expressions). For the
g0 and g1 schedules, we see that the final ground state
probability rises very sharply and exceeds unity (very
slightly for g0), and thereby becomes nonsensical [see
Fig. 8(a)], while for the g2 and g3 schedules, pGS(tf ) ≤ 1
[see Fig. 8(b)]. Further, we observe that the curves are
ordered from steepest to shallowest rise as g0, g1, g2, g3.
We conjecture that this rise in pGS with tf continues to
slow down with increasing α. Thus the g2 schedule cap-
tures the right scaling [in Fig. 6] by capturing the right
steepness: for α < 2 the rise is too steep, and for α > 2
the rise is too shallow. A full explanation of this phe-

nomenon is left to future work, but we speculate that
the g0 and g1 schedules correspond to effective Hamilto-
nians that no longer represent the Grover problem.

Given that the WKB approximation gives consistent
results only for the g2(r) schedule, we focus on this sched-
ule and examine where the WKB approximation per-
forms better than the naive adiabatic approximation. As
can be seen in Fig. 9, for the g2(r) schedule, the WKB
approximation always has an advantage over the naive
adiabatic approximation. Further, it is clear that the ad-
vantage is bigger for smaller evolution times tf and for
larger problem sizes n.

As we have indicated above, the WKB approxi-
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FIG. 9. The Grover problem with the g2(r) schedule for
n ∈ {1, . . . , 5}. (a) The time-averaged trace-norm distance
[Eq. (33)] between the numerical solution and the lowest

order WKB approximation (solid), i.e, D(|χ(0)
WKB〉 , |χNum〉);

and the time-averaged trace-distance between the numeri-
cal solution and the adiabatic approximation (dashed), i.e,
D(|χGS〉 , |χNum〉). The lowest order WKB approximation is
always better than the adiabatic approximation for all n val-
ues we have tested. (For both the solid and dashed lines, the
lower the line on the plot, the lower the value of n.)

mants are generically not normalized: they can be sub-
normalized or super-normalized. Two questions arise:
(1) Is the degree of non-normalization a good indicator
of approximation quality of the WKB aproximation? (2)
Does renormalization by fiat improve the quality of the
approximation?

First, in Fig. 10 we plot the norm of the WKB ap-
proximation at the lowest order for the case of n = 6
and tf = 60 as a function of the anneal parameter r for
all four schedules. In this regime, the WKB approxima-
tion is sub-normalized for all schedules. Arranging the
schedules from farthest from normalization to closest to
normalization, we have: g3, g2, g1, g0, with g0 and g1 clos-
est to being normalized. On the other hand, we have seen
[Fig. 7(a) and Figs. 6,7(b)] that the best approximation
was obtained for the g2 schedule. Thus, we conclude that
the degree of non-normalization is not a good indicator
of the quality of approximation.

Second, we consider renormalization of the WKB ap-
proximation, by which we mean:

|χrWKB〉 ≡
|χWKB〉√

〈χWKB|χWKB〉
, (35)

where we have denoted the renormalized WKB approx-
imants as |χrWKB〉. Note that it is somewhat ad hoc
to normalize the approximant: a renormalization step
is not part of the standard WKB approximation proce-
dure. With this caveat, we now analyze the behavior of
the WKB approximants after renormalization.

First we consider the time-averaged trace-norm dis-
tance, D [Eq. (33)]. As shown in Fig. 11, renormalizing
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FIG. 10. The norm of the WKB approximation at the lowest
order as a function of the evolution parameter r for different
schedules. g2 represents the optimal schedule, but does not
maintain normalization. Note that g3 is significantly more
sub-normalized that than the rest, and dips down to about
0.7 (not shown). Here n = 6 and tf = 60.
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FIG. 11. The difference between the time-averaged trace-
norm distances for the renormalized and unnormalized WKB
approximants, for the four different schedules [Eqs. (19)].
Here n = 6 and tf = 60. A negative value means that the
unnormalized WKB approximation deviates more from the
numerically exact solution than the renormalized WKB ap-
proximation.

the WKB approximation does improve the approxima-
tion.

However, the situation changes when we consider the
threshold timescale tTh

f (n) [Eq. (34)], shown in Fig. 12.
We see that renormalizing the WKB approximation
yields highly unphysical results for the g0, g1, and g2

schedules. In particular, for the g0 and g1 schedules, we
see that the renormalized WKB approximation predicts
a scaling for tTh

f (n) that decreases with problem size n.

For the g2 schedule we see a scaling of O(1). So, while
the unnormalized WKB predicted the correct scaling for
the g2 schedule, the renormalized WKB does not retain
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FIG. 12. The time required to achieve a final ground state
probability of 0.95 for the interpolations defined in Eqs. (19)]
(log scale), using the renormalized version WKB approxima-
tion at the lowest order. The straight lines represent fits of
O(2n/2), O(1), O(2−n/2), and O(2−n/2) respectively.

that feature. On the other hand, for the g3 schedule,
we see that the renormalized WKB predicts the correct
scaling of O(2n/2), fixing the incorrect scaling of the un-
normalized WKB approximation for that schedule.

VI. SUMMARY AND CONCLUSIONS

We have presented a straightforward technique to ob-
tain an analytic asymptotic approximation to slowly
evolving 2-level systems by adapting the WKB method.
We have applied it to a problem that is motivated by adi-
abatic quantum computation: the Hamiltonian Grover
search problem. This problem has a physical Hilbert
space of dimension 2n, but is effectively constrained to a
2-dimensional subspace. We have seen that in this case
when n = 1, the WKB method provides good approx-
imations, especially to the population dynamics. We
saw that the WKB approximation can capture fluctu-
ations in the population that are absent in the purely
adiabatic (ground state) evolution. Thus, the WKB is
quasi-adiabatic. For completeness, in Appendix A, we
compare our WKB approximation to the asymptotic ex-
pansion method of Hagedorn and Joye [15], and show
that the latter misses the oscillations that are captured
by the quasi-adiabatic WKB expansion.

Turning to the Grover problem with n > 1 and with
different interpolation schedules, we observed that the
WKB approximation yields meaningful results only for
the schedule which slows quadratically with the ground
state gap. For this g2(r) schedule, the WKB approxi-
mation is able to capture the scaling with n of tTh

f , and
hence recovers the quantum speedup, even at the lowest
approximation order. On the other hand, for the sched-
ules that slow down more slowly than quadratically with
the gap, the WKB approximation violates normalization

and predicts an impossible faster-than-quadratic quan-
tum speedup for the Grover problem.

We also saw that, using the time-averaged trace-norm
distance, for the g2(r) schedule, the WKB approximation
always does better than a naive adiabatic approximation,
and the advantage becomes more pronounced for larger
system sizes and shorter evolution times.

Turning to the question of the whether the norm of the
WKB approximation is a good signal of approximation
quality, we saw that this is not the case. Further, we
saw that enforcing renormalization by fiat gives mixed
results. On the one hand, it lead to an improvement in
the time-averaged trace-distance and also gave the right
predictions for scaling of the threshold timescale for the
g3 schedule. On the other hand, it gave incorrect predic-
tions for the scaling of the threshold timescales for the
g0, g1, and g2 schedules, especially degrading the predic-
tion for the g2 schedule compared to its unnormalized
counterpart.

An interesting problem for future work is to provide
more rigorous justifications and explanations for when
and where the WKB approximation provides good ap-
proximations. With a better understanding of the regions
where the WKB approximation performs well, and if the
approximation errors are better controlled, the method
could be used in the design of quantum control protocols
to implement quantum gates [21–25].
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Appendix A: Comparison with the method of
Hagedorn and Joye

In this section, we recap the asymptotic expansion of
Hagedorn and Joye [15], which is a powerful tool for prov-

ing adiabatic theorems. In particular, the Hagedorn and
Joye method can be used to prove bounds on the error
incurred due to their asymptotic expansion; in fact, the
main goal of Ref. [15] was to show that the adiabatic
approximation can provide exponentially small errors if
the Hamiltonian is analytic in the time-variable (see also
Refs. [26–28]). Here, we analyze its utility as a compu-
tational tool.

Hagedorn and Joye (HJ) propose the following method
to obtain asymptotic approximations to the time-
dependent Schrödinger equation

iε
d |χ(r)〉
dr

= H(r) |χ(r)〉 . (A1)

Note that the above equation is of the form of Eq. (6),
with ε ≡ 1

µtf
and H(r) ≡ s′(r)H(r).

They obtain a theorem which states that for any value
of the small parameter ε, one can write down an approx-
imation for |χ(r)〉 which takes the form of a power series
in ε. The quality of the approximation (as measured by

the 2-norm) scales as e−
1
ε provided that the number of

terms in the series scales as 1/ε. More precisely:

Theorem 1 ([15]). Assume reasonable smoothness and
gap conditions on the Hamiltonian. We can then recur-
sively obtain an asymptotic expansion of the form

|χ(N)
HJ (r, ε)〉 = e−

i
ε

∫ r
0
E(q)dq (|χ0(r)〉+ ε |χ1(r)〉

+ · · ·+ εN |χN (r)〉+ εN+1 |χ⊥N+1(r)〉
)
. (A2)

such that for any r, there exist positive G, C(g), and

Γ(g) such that for all g ∈ (0, G), the vector |χ(bg/εc)
HJ (r, ε)〉

satisfies

‖ |χ(r, ε)〉 − |χ(bg/εc)
HJ (r, ε)〉 ‖2 ≤ C(g)e−Γ(g)/ε, (A3)

for all ε ≤ 1. Here, |χ(r, ε)〉 is the Schrödinger
evolved wavefunction starting from the initial condition

|χ(0, ε)〉 = |χ(bg/εc)
HJ (0, ε)〉.

We explore the usefulness of this asymptotic expan-
sion as an approximation tool and thus we do not esti-
mate the number of terms that are necessary to provide
an exponentially small error. Instead, we develop the
approximation for two orders and compare the resulting
asymptotic expansion with the WKB method.

Let us develop the terms in the HJ expansion (as given
in Ref. [15]). We substitute the asymptotic ansatz

|χHJ〉 ∼ e−
i
ε

∫ r
0
dqE(q) (|χ0(r)〉+ ε |χ1(r)〉+ . . . ) (A4)

into the Schrödinger equation, and equate the terms mul-
tiplying the same order of ε, which results in the following
expression for the O(εj) term

|χj(r)〉 = fj(r) |Φ(r)〉+ |χ⊥j (r)〉 . (A5)
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Here |Φ(r)〉 is the eigenstate being (approximately) fol-
lowed, and the other components of the above formula
are obtained recursively by using:

f0(r) = 1; (A6a)

fj−1(r) = −
∫ r

0

〈Φ(q)|∂qψ⊥j−1(q)〉 dq, j ≥ 2 (A6b)

=

∫ r

0

〈Φ′(q)|ψ⊥j−1(q)〉 dq; (A6c)

|χ⊥j (r)〉 = i[H(r)− E(r)]−1
R (fn−1(r) |Φ′(r)〉

+P⊥(r)∂r |χ⊥j−1(r)〉
)

; (A6d)

where, in going from Eq. (A6b) to Eq. (A6c), we in-
tegrated by parts and used 〈Φ(q)|ψ⊥j−1(q)〉 = 0. Also,
P⊥(r) ≡ I − |Φ(r)〉 〈Φ(r)| is the instantaneous projector
on to the complement of |Φ(r)〉; E(r) is the eigenvalue
being quasi-adiabatically followed; and [H(r) − E(r)]−1

R
is the reduced resolvent, i.e., the inverse of [H(r)−E(r)]
restricted to the complement of |Φ(r)〉.

In order to compare the HJ expansion with the WKB
approximation, we will compare the N -th order expan-
sion provided by both methods. Note that the N -th or-
der of the HJ expansion includes terms up to O(εN+1).
This means that we will be comparing the zeroth order

of WKB (i.e., |χ(0)
WKB〉) with

|χ(0)
HJ(r)〉 ≡ e− iε

∫ r
0
E(q)dq

(
|χ0(r)〉+ ε |χ⊥1 (r)〉

)
; (A7)

and the first order WKB (i.e., |χ(1)
WKB〉) with

|χ(1)
HJ(r)〉 ≡ e− iε

∫ r
0
E(q)dq

(
|χ0(r)〉+ ε |χ1(r)〉+ ε2 |χ⊥2 (r)〉

)
.

(A8)

For two-level systems such as the one that we are con-
cerned with, we obtain the following simplified expres-
sions, where “GS” and “Exc” denote the ground and ex-
cited states respectively and ∆ represents the spectral

gap:

[H(r)− EGS(r)]−1
R =

1

∆(r)
|χExc(r)〉 〈χExc(r)| (A9a)

=⇒ |χ⊥1 (r)〉 =
i

∆(r)
〈χExc(r)|χ′GS(r)〉 |χExc(r)〉 ,

(A9b)

f1(r) =

∫ r

0

dq 〈χ′GS(q)|χ⊥1 (q)〉 , (A9c)

|χ⊥2 (r)〉 =
i

∆(r)
(f1(r) |χ′GS(r)〉 (A9d)

+ |χExc(r)〉 〈χExc(r)|∂rχ⊥1 (r)〉
)
.

We have assumed that the ground state is being fol-
lowed and hence set |Φ〉 = |χGS〉. We have also used
the fact that for real-valued Hamiltonians in two dimen-
sions 〈χ′GS|χGS〉 = 0. (Note that this does not mean
|χ′GS〉 = |χExc〉 because |χ′GS〉 is generally not normal-
ized and carries a non-trivial phase.)

We now restrict to the case of a qubit in a magnetic
field.

First, consider |χ(0)
HJ〉 (which includes terms up to order

ε). Figure 13(a) shows that |χ(0)
HJ〉 provides an approxi-

mation that is ‘too adiabatic’. In particular, it fails to
capture the oscillations that are captured by the WKB
approximation, as seen in Fig. 1. Furthermore, from the

form of |χ(0)
HJ〉 it is clear that this approximation will pre-

dict pGS(tf ) = 1 always:

pHJ,0
GS (tf ) =

∣∣∣〈χGS(1)|χ(0)
HJ〉
∣∣∣2 (A10)

= | 〈χGS(1)|χGS(1)〉︸ ︷︷ ︸
=1

+ 〈χGS(1)|χ⊥1 (1)〉︸ ︷︷ ︸
=0

|2. (A11)

Next, consider |χ(1)
HJ〉 (which includes terms up to order

ε2). Figure 13(b) shows that this too provides an approx-
imation which fails to capture the oscillations that are
present in the numerical solution and also in the lowest
order WKB solution. Thus, we conclude that the WKB
method is more suitable for developing analytic approx-
imations.

While we pointed out some of the disadvantages of the
HJ method as an approximation technique, we remark
that the method is particularly useful to prove scaling
results. For example, consider,∣∣〈χGS(1)|χ1

HJ(1)〉
∣∣2 = |(1 + εf1(1))|2 (A12)

=
(

1 + ε2 |f1(1)|2
)

(A13)

= O(1) + ε2O(1). (A14)

In the first line, we used the fact |χGS〉 is orthogonal to
any (unnormalized) state that carries the ⊥ symbol. In
the second line, we used the fact that

f1(1) = i

∫ 1

0

dq
|〈χ′GS(q)|χExc(q)〉|2

∆(q)
(A15)

is purely imaginary. Thus the HJ expansion captures the
1−O( 1

t2f
) scaling of the final ground state probability.
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FIG. 13. (a) The difference between the predictions of the naive adiabatic approximation (|χGS(r)〉) and the lowest order

HJ approximation (|χ(0)
HJ〉) for the population in the state |χGS(1)〉 ≡ |0〉, as a function of the rescaled time parameter r, for

tf = 20. The difference is very small, of the order of 10−3. (b) The population in the state |m〉 as a function of time for the
HJ expansion using the 0th and 1st orders; the adiabatic solution; and the numerical solution. The adiabatic solution and the
HJ method are indistinguishable on the scale of this plot. Clearly, they do not the capture the oscillations displayed by the
numerical solution. Here tf = 50.
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