
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Single-photon-driven high-order sideband transitions in an
ultrastrongly coupled circuit-quantum-electrodynamics

system
Zhen Chen, Yimin Wang, Tiefu Li, Lin Tian, Yueyin Qiu, Kunihiro Inomata, Fumiki

Yoshihara, Siyuan Han, Franco Nori, J. S. Tsai, and J. Q. You
Phys. Rev. A 96, 012325 — Published 19 July 2017

DOI: 10.1103/PhysRevA.96.012325

http://dx.doi.org/10.1103/PhysRevA.96.012325


Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit quantum
electrodynamics system

Zhen Chen,1, ∗ Yimin Wang,1, ∗ Tiefu Li,2, † Lin Tian,3, ‡ Yueyin Qiu,1 Kunihiro Inomata,4

Fumiki Yoshihara,4, § Siyuan Han,5 Franco Nori,4, 6 J. S. Tsai,4, 7 and J. Q. You1, ¶

1Quantum Physics and Quantum Information Division,
Beijing Computational Science Research Center, Beijing 100193, China

2Institute of Microelectronics, Department of Microelectronics and Nanoelectronics and Tsinghua
National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084, China

3School of Natural Sciences, University of California, Merced, California 95343, USA
4RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

5Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
6Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040, USA

7Department of Physics, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
(Dated: June 23, 2017)

We report the experimental observation of high-order sideband transitions at the single-photon level in a quan-
tum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling
strength reaching 10% of the resonator’s fundamental frequency, we obtain clear signatures of higher-order red-
and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation
advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes
in the quantum Rabi model at the single-photon level.

PACS numbers: 85.25.-j, 03.67.Lx, 42.50.Pq

I. INTRODUCTION

Superconducting quantum circuits exhibit macroscopic
quantum coherence (see, e.g., [1–7]) and can be designed to
have exotic properties that cannot be realized or even do not
occur in natural atomic systems [8]. For instance, the unique
geometry of superconducting quantum circuits enables the re-
alization of ultrastrong coupling in qubit-resonator systems
with the coupling strength g reaching a considerable fraction
of the resonator frequency ωr: g/ωr & 0.1 [9, 10]. With
current technological advances, ultrastrong coupling has in-
deed been demonstrated in recent experiments with super-
conduting flux qubits inductively coupled to superconducting
resonators [11–13]. In this ultrastrong-coupling regime, the
well-known Jaynes-Cummings model breaks down because
the rotating-wave approximation is no longer applicable, and
the quantum Rabi model is thus required to describe the en-
ergy spectrum and the system dynamics [14, 15]. Also, the
ultrastrong-coupling regime can lead to fast quantum compu-
tation schemes [16, 17] and a plethora of interesting quantum
optics phenomena [18–25].

Despite its fundamental importance and wide interests, the
experimental application of the ultrastrong coupling to quan-
tum information processing remains challenging. It is known
that higher-order processes can be achieved with an intense
driving field [26], but it is difficult to implement these pro-
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cesses with a very weak driving field (i.e, at a few pho-
tons level), since it requires large intrinsically-built-in non-
linearity of the system. In contrast to the previous obser-
vation of power-enhanced high-order processes by intensify-
ing the driving field, the high-order sideband transitions in
our experiment can be realized at the single-photon-driven
level and are mainly contributed by the ultrastrong Rabi cou-
pling. The single-photon-driven first-order sideband transi-
tion (ωd = ωq ± ωr) was observed in both strongly and ultra-
strongly coupled qubit-resonator systems [27, 28], where ωd,
ωq and ωr are frequencies of the driving field, qubit and res-
onator, respectively. When intensifying the driving field, two-
photon-driven first-order sideband transition (2ωd = ωq + ωr)
was also observed in a strongly coupled qubit-resonator sys-
tem [29, 30]. However, in the present experiment, using a
suitably-designed ultrastrongly coupled qubit-resonator cir-
cuit and a very weak driving field, we are able to resolve
up to the third-order sideband transitions (ωd = ωq ± sωr,
s = 0, 1, 2, 3) at the single-photon level, where the high-
order sideband transitions are mainly due to the ultrastrong
Rabi coupling. Also, two-photon-driven second-order side-
band transitions (2ωd = ωq ± sωr, s = 0, 1, 2) can be observed
by increasing the power of the driving field. Both the exper-
imental results and the theoretical analyses reveal that the ul-
trastrong Rabi coupling is the main cause of the high-order
sideband transitions presented in our work.

II. QUBIT-RESONATOR CIRCUIT

Our quantum circuit comprises a superconducting flux
qubit inductively coupled to a coplanar waveguide resonator
with suitably designed modes (for details, see Appendix A).
The superconducting flux qubit consists of four Josephson
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FIG. 1. (a) The transmission (i.e. the normalized |S 21|) spectrum of the λ/2-mode as a function of the flux bias δΦx and probe frequency
ωp/2π. The probe power is Pp ≈ −138 dBm, corresponding to an average photon number of n1 ≈ 1.17 in the resonator. (b) The spectrum
of the λ-mode with Pp ≈ −135 dBm and average photon number n2 ≈ 0.24. (c) The spectrum of the 3λ/2-mode with Pp ≈ −132 dBm and
average photon number n3 ≈ 0.19. The solid curves are the numerical fit of the spectra with respect to its ground state energy using the full
Hamiltonian H.

junctions with three of the junctions designed to be identi-
cal and the fourth junction reduced by a factor of 0.6 in area.
The qubit is operated near the optimal flux bias point with
an applied external flux Φx = δΦx + Φ0/2, where Φ0 is the
magnetic flux quantum and δΦx is a small offset from the op-
timal flux bias point Φ0/2. The qubit Hamiltonian can be
written as Hq = (ετz + δτx)/2, where δ is the quantum tun-
neling between the local potential wells, ε = 2IpδΦx is the
offset energy induced by the flux bias, with Ip being the max-
imal persistent current, and τz,x are the Pauli operators in the
persistent-current basis {|	〉 , |�〉} [31]. Below we use the
eigenbasis of the qubit {|g〉 , |e〉} and write the Hamiltonian as
Hq = ~ωqσz/2, with ωq =

√
ε2 + δ2/~.

To be galvanically connected to the coplanar waveguide
resonator [32], the flux qubit shares a common wire (length
34.8 µm, width 800 nm, and thickness 60 nm) with the
resonator’s center conductor. The Hamiltonian of the res-
onator is Hr =

∑
n ~ωn(a†nan + 1/2), where a†n (an) is the cre-

ation (annihilation) operator of the nth resonator modes (i.e.,
the nλ/2-mode), and ωn is the corresponding resonance fre-
quency. With a transmission measurement, we determine the
resonance frequencies of the lowest three modes of the res-
onator as ω1/2π = 3.143 GHz, ω2/2π = 6.361 GHz, and
ω3/2π = 9.420 GHz. Because of the inhomogeneity of the
resonator due to the presence of the qubit, these frequencies
are not perfect integer multiples of ω1 [33]. Within our pa-
rameter range, the λ/2-mode is dispersively coupled to the
flux qubit with a frequency far below the quantum tunneling
δ (i.e., the energy gap at the degeneracy point) of the qubit,
and the λ, 3λ/2 modes can be tuned to be on resonance with
the qubit by adjusting the magnetic flux bias δΦx. The dipo-
lar coupling between the qubit and the resonator has the form
of Hint =

∑
n ~gn(a†n + an)τz, with ~gn = MIpIr,n, where M is

the mutual inductance and Ir,n is the vacuum center-conductor
current of the nth resonator mode near the flux qubit. The
qubit is attached to the thin segment of the center conductor
in the middle of the resonator, where the current distribution
of both the λ/2- and 3λ/2-mode have antinodes and produces
maximum coupling with the qubit. The λ-mode has a node at
this position with nearly negligible coupling to the qubit and
will be omitted from our discussion. The full Hamiltonian

of this system is hence H = Hq + Hr + Hint. The uncou-
pled states of this system can be expressed as |qN1N3〉, with
q = {g, e} representing the qubit eigenstates and Nn being the
photon number in the nth resonator mode.

III. TRANSMISSION SPECTRA

In measuring the transmission spectrum of the qubit-
resonator system, we apply a single probe source of frequency
ωp to the resonator via a vector network analyzer and mea-
sure the resonator output at the probe frequency. In the ex-
periment, a low-power probe source is used to avoid pro-
ducing any appreciable effects on the qubit-resonator system.
Figure 1 shows the (color-coded) transmission spectra in the
neighborhood of the resonance frequencies of the λ/2-, λ-
and 3λ/2-mode, respectively. The measured spectral struc-
tures in these plots correspond to the transition frequencies
between the ground and excited states. To find the magni-
tudes of the coupling strength gn, we calculate the eigenstates
of the full Hamiltonian H numerically and fit the measured
data to the calculated energy splittings. The calculated tran-
sition frequencies are plotted as black curves in Fig. 1 with
g1/2π = 306 MHz, g2/2π = 5 MHz, and g3/2π = 521
MHz. These coupling strengths give the coupling ratios
g1/ω1=9.74%, g2/ω2=0.08%, and g3/ω3=5.53%.

IV. SINGLE-PHOTON-DRIVEN HIGH-ORDER SIDEBAND
TRANSITIONS

With ultrastrong Rabi coupling, single-photon-driven high-
order sideband transitions can be observed in transmission
spectroscopic measurements by using a weak pump field at
frequency ωd to drive the qubit through the resonator. The
pump Hamiltonian has the form Hd = Ωd,q cos (ωdt)τz in the
persistent-current basis, with Ωd,q being the driving strength.
A separate probe field with its frequency fixed at the reso-
nance frequency of one of the resonator modes is applied to
demonstrate the spectroscopic response of the coupled qubit-
resonator system in the presence of the pump field. The trans-
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FIG. 2. (a), (c), (e) The energy levels of the coupled qubit-resonator system as a function of the flux bias δΦx using parameters extracted
from Fig. 1. The energy levels in the dispersive regime are labelled in terms of the uncoupled states |qN1N3〉. In (a), the red (magenta) arrows
labelled as zm (fm) indicate the single-photon-driven zeroth-order qubit (first-order red-sideband) transition. In (c), the red (orange) arrows
labelled as zm (sm, s′m) indicate the single-photon-driven zeroth-order qubit (second-order red-sideband and cross-mode sideband) transition.
In (e), the magenta (green) arrows labelled as fm (tm) indicate the single-photon-driven first-order (third-order) red-sideband transition and the
black arrow labelled as b1 indicates the single-photon-driven first-order blue-sideband transition. (b), (d), (f) The transmission (normalized
|S 21|) spectrum as a function of the flux bias δΦx and driving frequency ωd/2π. In (b), for probe frequency of the 3λ/2-mode with probe
power Pp ≈ −132 dBm (average photon number n3 ≈ 0.19). The red-circle lines are due to the single-photon-driven zeroth-order qubit
transition |g00〉 ↔ |e00〉, corresponding to the red arrows in (a). The magenta-square lines are due to the single-photon-driven first-order
red-sideband transition |g01〉 ↔ |e00〉, corresponding to the magenta arrows in (a). (d) and (f), for probe frequency of the λ/2-mode with probe
power Pp ≈ −128 dBm (average photon number n1 ≈ 11.7). In (d), the red-circle (orange-cross) lines are due to the single-photon-driven
zeroth-order qubit (second-order red-sideband and cross-mode sideband) transition. In (f), the magenta-square (green-triangle) lines are the
single-photon-driven first-order (third-order) red-sideband transition and the black-cross denoted short line indicates the single-photon-driven
first-order blue-sideband transition. The power of the driving field on the resonator is Pd ≈ −92 dBm for (b) and Pd ≈ −97 dBm for (d) and
(f). The effective field to drive the flux qubit is much reduced in the dispersive regime of the qubit-resonator system and the resulting average
photon number in the resonator is far less than one (see Fig. A3 in Appendix B). (g) A linecut of the background-subtracted transmission
spectrum in (d) at ωd/2π = 9.78 GHz, where the first-order blue sideband transitions purely due to the counter-rotating terms are marked with
the blue arrows.

mission spectra are measured by monitoring the amplitude
and the phase of the transmitted probe tone [11, 34]. In Fig. 2,
we show the measured transmission spectra of the probe field
at a probe frequency ω3 of the 3λ/2-mode [Fig. 2(b)], and at
a probe frequency ω1 of the λ/2-mode [Fig. 2(d, f)], respec-
tively. Note that Figs. 2(b), 2(d) and 2(f) present some vertical
banding as a function of the flux bias, and the data in the mea-

sured transmission spectra become noisier at low flux bias. In
fact, when the flux bias δΦx approaches the degenerate point
of the qubit, the resonance frequencies of the resonator shift
[see Figs. 1(a) and 1(c)], due to the ultrastrong coupling be-
tween the qubit and the resonator. This makes the measured
signals weaker at low flux bias than at high flux bias, thus
yielding noisier data at low flux bias and also the appearance
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of the vertical banding versus the flux bias.
To identify each transition, in Figs. 2(a), 2(c) and 2(e), we

show the energy levels of the total qubit-resonator system as a
function of the flux bias δΦx with the colored arrows labeling
the corresponding sideband transitions in the presence of the
pump field. In these plots, besides the main peaks at the pump
frequency ωd = ωq (see the red-circle denoted lines) that cor-
respond to the direct single-photon transition |g00〉 ↔ |e00〉
(denoted by z1 and z2), we also observe single-photon-driven
high-order sideband transitions due to the ultrastrong Rabi
coupling. With a Schrieffer-Wolff transformation [18, 35], we
can identify the single-photon-driven higher-order sideband
transitions in the dispersive regime when the qubit frequency
is far off resonance from the resonator frequencies, and com-
pare the transitions with the measured spectra (see detailed
discussions in Appendix B).

In Fig. 2(b), spectral features are observed at the pump fre-
quency ωd = ωq − ω3, as indicated by the magenta-square
denoted lines f1, f2 and f3. With a pump field on the σz-
component of the qubit, one can have effective qubit reso-
nances at ωq∓ sωr, with s being an integer [36]. In the disper-
sive regime, due to the combination of single-photon pump-
ing and the qubit-resonator interaction, the observed spec-
tral lines corresponding to the single-photon-driven first-order
red-sideband transition |g01〉 ↔ |e00〉, are enabled by shifting
the driving frequency from ωq to ωq − ωr .

The effective Hamiltonian derived with the Schrieffer-Wolff
transformation is Heff = R(1)

3 (σ+a3 + a†3σ−), with the coupling
coefficient R(1)

3 = −Ωd,q cos θg3/∆
−
3 , where ∆±3 = ωq ± ω3

and |∆±3 | � g3. The transitions induced by these effective
couplings are also labelled in Fig. 2(a).

Single-photon-driven higher-order sideband transitions are
shown in Figs. 2(c)-2(f), where the transmission spectrum is
measured at the frequency of the λ/2-mode with the probe
tone being 4 dB higher and the driving tone being 5 dB lower
than the signals used in Fig. 2(b). Here single-photon-driven
red-sideband transitions [see the arrows in Figs. 2(c) and 2(e)]
up to the third-order (ωd = ωq − sω1, with s = 1, 2, 3)
are observed, as indicated by the corresponding colored lines
in Figs. 2(d) and 2(f). The peaks at ωd = ωq − ω1 (la-
belled by f1 and f2) are dominated by the single-photon-driven
first-order red-sideband transition, as analyzed above. The
peaks at ωd = ωq − 2ω1 are a mixture of the single-photon-
driven second-order red-sideband transition |g20〉 ↔ |e00〉
(labelled by s1 and s2) induced by the effective coupling
Heff = R(2)

1 (σ+a2
1 + a†21 σ−) and a cross-mode sideband tran-

sition |g01〉 ↔ |e10〉 (labelled by s′1 and s′2) by the effective
coupling Heff = R(2)

1̄3
(σ+a†1a3 + a†3a1σ−). These two tran-

sitions have comparable frequencies because the cross side-
band frequency ω3 − ω1 ≈ 2ω1 in our device. Expressions
for the coupling constants R(2)

1 and R(2)
1̄3

can be found in Ap-
pendix B. The single-photon-driven third-order red-sideband
transition |g30〉 ↔ |e00〉 (labelled by t1 and t2) is observed
at a pump frequency ωd = ωq − 3ω1. It originates from
the effective coupling Heff = R(3)

1 (σ+a3
1 + a†31 σ−) with R(3)

1 =

2Ωd,q cos θ(g1/∆
−
1 )2(g1/∆

+
1 )/3, which reveals that this transi-

tion depends on the counter-rotating terms. In addition to

the red-sidebands, the single-photon-driven first-order blue-
sideband is also observed, which represents the transition
|g00〉 ↔ |e10〉 as indicated by the black arrow and the black-
cross line (labelled by b) in Figs. 2(e) and 2(f). This transition
is induced by the effective coupling Heff = B(1)

1 (σ+a†1 + a1σ−)
with B(1)

1 = −Ωd,q cos θg1/∆
+
1 , which is purely due to the

counter-rotating terms. In Fig. 2(g), we also show a linecut
of the transmission spectrum in Fig. 2(d) extracted at ωd/2π
= 9.78 GHz, so as to clearly exhibit this transition.

As indicated in Figs. 2(a), 2(c) and 2(e), all sideband tran-
sitions observed in Figs. 2(b), 2(d) and 2(f) involve the qubit
states from |g〉 to |e〉, as well as the Fock states of the resonator
from |0〉 to |n〉, |n〉 to |0〉, or |n〉 to |n′〉, where n, n′ = 1, 2, · · · .
This implies that excited-state populations of the resonator are
needed for these sideband transitions. In Fig. 2(b), where the
first-order sideband transitions are observed, the average pho-
ton number is estimated to be n3 ≈ 0.19 for the probe field in
resonance with the 3λ/2-mode of the resonator. In Figs. 2(d)
and 2(f), where up to the third-order sideband transitions are
observed, the average photon number is then estimated to be
n1 ≈ 11.7 for the probe field in resonance with λ/2-mode of
the resonator. These given values of the average photon num-
ber of the probe field indeed reveal the possible population of
the excited states in the resonator. Also, thermal fields may
contribute to the excited-state population of the resonator, but
they are not as important as the probe field in our experiment
(see the discussions in Sec. VI as well).

Note that the magnitude of the sth-order single-photon-
driven sideband transition has linear dependence on the qubit-
driving strength Ωd,q as that of the zeroth-order process (i.e.,
the direct transition of the qubit states by the pumping field).
Also, it has power-law dependence on the coupling ratio as
(gn/∆

±
n )s, as explained in detail in Appendix B. Thus, at the

single-photon level to observe the zeroth-order process by us-
ing a very weak pumping field, the high-order processes can
also be demonstrated with a strong enough qubit-resonator
coupling. This is the case in our experiment, where the qubit-
resonator coupling is ultrastrong and the high-order processes
are observed at the quantum limit. As shown in Appendix
B, in the dispersive regime, the average photon number of
the driving field is even much less than one in the resonator.
Therefore, the transmission spectra in Fig. 2 reveal that the ef-
fects are mostly connected to the ultrastrong Rabi coupling of
the qubit-resonator system.

It is worthwhile to mention that the numerical fittings do
not overlap perfectly with the slope of the experimental spec-
tra for all regions of the flux biases, as shown in Figs. 2 and
3. For large flux biases, i.e. |δΦx| & 8 mΦ0, small deviations
appear between the fitting lines and the measured spectra. For
these, there are two reasons. One is the presence of higher
resonator modes in the real system, which cannot be captured
numerically due to computational limitations. The other rea-
son is that the two-level approximation for the flux qubit is
not good enough at larger flux biases. Close to the degenerate
point, the two-level approximation works well and we have
a nearly perfect two-level system that can be well described
by Pauli operators. However, away from the degenerate point,
higher levels start to affect the system’s dynamics.
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V. TWO-PHOTON-DRIVEN HIGH-ORDER SIDEBAND
TRANSITIONS

To further illustrate that our high-order sideband transitions
are induced by the ultrastrong coupling rather than the driving
power, here we show the spectroscopy measurement with the
driving power increased to Pd ≈ −92 dBm in Fig. 3(a) and
Pd ≈ −82 dBm in Fig. 3(b), respectively. In addition to the
single-photon-driven first-, second- and third-order sideband
transitions, we can clearly resolve two-photon-driven high-
order red-sideband transitions at 2ωd = ωq−sω1, with s = 0, 1
in Fig. 3(a) and s = 0, 1, 2 in Fig. 3(b). Also, two-photon-
driven first-order blue-sideband transition at 2ωd = ωq + ω1
is visible. The observation of two-photon-driven sideband
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FIG. 3. The transmission spectroscopy (normalized |S 21|) as a
function of the flux bias δΦx and driving frequency ωd/2π probed
at the frequency of λ/2 mode with power of Pp ≈ −133 dBm,
which contributes an average photon number n1 ≈ 3.34 into the
resonator. With the driving power increased to (a) Pd ≈ −92dBm
and (b) Pd ≈ −82dBm, the two-photon-driven sideband transitions
(2ωd = ωq ± sω1) become visible, as indicated by the yellow arrows
for the two-photon qubit transitions with s = 0, the red arrows for
the two-photon first- and second-order red-sideband transitions, and
the black arrows for the two-photon first-order blue-sideband transi-
tions. For clarity, here we only show in Fig. 3(b) the numerical fitting
of the two-photon-driven first-order sideband transitions as labelled
by the yellow, red, and black curves for 2ωd = ωq, 2ωd = ωq − ω1,
and 2ωd = ωq + ω1, respectively.

processes with s = 0, 1, 2 rather than single-photon-driven
higher-order processes with s = 4, 5, 6, . . . by intensifying the
driving field further reveal that the single-photon-driven high-
order sideband transitions in Fig. 2 depend more significantly
on the qubit-resonator coupling strength. This indicates that
the larger the coupling strength is, the easier to observe the
single-photon-driven higher-order sideband transitions with a
relatively weak driving field.

As shown in Fig. 3, the single-photon-driven high-order
sideband transitions can also be induced by intensifying the
driving field, but when increasing the driving power, multi-
photon-driven high-order sideband transitions (i.e., mωd =

ωq ± sωn, with m = 1, 2, 3, . . . ) will also occur (in Fig. 3, two-
photon-driven high-order sideband transitions 2ωd = ωq± sω1
indeed occurred when intensifying the driving field). More-
over, in addition to the complicated spectral features, the
peaks related to the single-photon-driven high-order sideband
transitions become blurred by increasing the driving power
[see Fig. 3(b)]. Therefore, the existence of ultrastrong Rabi
coupling is a necessary condition to observe the high-order
sideband transitions in Fig. 2 at the quantum limit of single-
photon level.

VI. DISCUSSIONS AND CONCLUSIONS

Higher-order processes at the few-photon level can play an
important role in quantum information processing. In prin-
ciple, the generation of higher-order processes requires large
nonlinearity in the system, which can be either intrinsically-
built-in or externally-induced. When driven strongly, the sys-
tem generates nonlinearity externally as in classical nonlin-
ear optics. Therefore, high-order sideband transitions may be
demonstrated using strong driving on a system with small cou-
pling strength. However, in the present work, we demonstrate
that the higher-order processes can also be produced in the
weak limit of driving field (i.e., at the few-photon level) on the
qubit, where the nonlinearity mainly comes from the intrin-
sic properties of the ultrastrongly coupled system. In fact, it
is clearly analyzed in Appendix B that in the dispersive limit,
the magnitudes of the single-photon-driven sth-order sideband
processes have both a linear dependence on the amplitude of
the driving field on the qubit and a power-law dependence on
the coupling ratio as (gn/∆

±
n )s. When the coupling strength is

not strong enough, the higher-order sideband transitions can
be very weak and become hard to be implemented with a weak
driving field on the qubit. Therefore, our experimental ob-
servation of the high-order sideband transitions at the single-
photon-driven level reveals the importance of the ultrastrong
coupling.

When applying driving microwave powers to the resonator
at the level of -90dBm or higher, though the effective driv-
ing field on the qubit is weak (see Appendix B), there can
be a considerable amount of heat generated in the attenuator
anchored to the mixing chamber stage of the dilution refrig-
erator. Even when the temperature of the plate itself does not
change, hot electrons may radiate thermal fields which could
drive the resonator and create excitations that would explain



6

the appearance of higher-order sidebands at higher powers. In
fact, similar techniques of increasing the effective resonator
temperature were used in other experiments (see, e.g., [37])
as a way to study higher-level transitions in qubit-resonator
systems. However, in our experiment, only single-photon-
driven high-order sideband transitions are observed in the ex-
perimental results shown in Fig. 2. If the thermal fields were
important, more sideband transitions driven by multiple pho-
tons, as seen in Fig. 3, would appear in the case of Fig. 2.
Actually, such features do not occur in Fig. 2. Moreover, our
spectra in Fig. 2 do not show the many transitions between
dressed states, as observed in [37] owing to the thermal exci-
tations. These indicate that the thermal fields do not play an
appreciable role in our experiment.

In Fig. 2(b), there are tiny features for some other transi-
tions, which appear in the near-resonance regions of the res-
onator modes. Moreover, the spectra in the on-resonance re-
gions become more complicated owing to the very large driv-
ing power. This is beyond the scope of studies in the present
work, because we only focus on the dispersive regimes. It will
be extensively studied in our future work.

In conclusion, we have observed high-order sideband tran-
sitions in an ultrastrongly coupled qubit-resonator system at
the single-photon level. These transitions, including red-
sideband transitions up to the third order and first-order blue-
sideband transition, are mainly induced by the ultrastrong
Rabi coupling rather than the strong pump power. Also,
we demonstrated the two-photon-driven high-order sideband
transitions in this ultrastrongly coupled system by intensify-
ing the driving field. Our results provide better understanding
of high-order processes in the ultrastrong Rabi model at the
single-photon-driven level.
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APPENDIX A: FABRICATION AND DEVICE
CHARACTERIZATION

The coplanar waveguide resonator is fabricated by electron-
beam lithography and reactive ion etching on a 3-inch ther-
mally oxidized silicon wafer covered with a 50 nm thick d.c.-
magnetron sputtered niobium film [Fig. A1(a)]. The cen-
ter conductor of the resonator is 20 µm wide and its gap
to the ground plane is 11.6 µm, so that a 50 Ω character-
istic impedance is obtained. The resonator with a length of
16 mm is defined by two identical interdigital coupling capac-
itors [Fig. A1(b)] with a numerically simulated capacitance of
about 7 fF. In the middle of the center conductor, a 100 µm
long niobium film is replaced by an aluminium strip which
connects to the flux qubit [Fig. A1(c)]. The aluminum part is
fabricated using electron-beam lithography and Al/AlOx/Al
shadow evaporation techniques. The thickness of the bottom
and top layer is 25 nm and 35 nm. For the flux qubit, three of
the Josephson junctions have an area 500 nm×400 nm and the
other junction is 205 nm ×400 nm, reduced by a factor of 0.6
[Fig. A1(d) and A1(e)]. The area of the qubit loop is 34.8 µm
×3.3 µm. The 34.8 µm-long shared arm generates ultrastrong
qubit-resonator coupling.

The quantum circuit is characterized at a temperature of
20 mK in a BlueFors LD-400 dilution refrigerator. A trans-
mission measurement is conducted to measure the resonator
properties in the low-power limit of the probe field. As
shown in Fig. A1(f), the λ/2-mode has a resonant frequency
of 3.143 GHz and full width at half maximum (FWHM) of
2.07 MHz. By a transmission spectroscopy measurement
[Fig. A1(g)], the dependence of the qubit frequency on the
applied external flux is obtained.

APPENDIX B: HIGH-ORDER SIDEBAND TRANSITIONS IN
THE DISPERSIVE LIMIT

A. The ultrastrongly coupled system under a resonator driving

In the persistent-current basis {|	〉 , |�〉} of the super-
conducting flux qubit, the dynamics of the coupled qubit-
resonator system is governed by the Hamiltonian

H =
1
2

(ετz + δτx) +
∑
n=1,3

[
~ωna†nan + ~gn(a†n + an)τz

]
. (A-1)

When applying a pump field of frequency ωd to the coplanar
waveguide resonator, the total Hamiltonian becomes

Ht = H + Hd,

Hd =
∑
n=1,3

Ωr,n cosωdt (a†n + an), (A-2)

with Ωr,n being the Rabi frequency of the driving field on the
nth mode of the resonator.

To analyze the effect of the driving field on the flux qubit,
we displace the field operator using a time-dependent dis-
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FIG. A1. (a) Optical image of the superconducting λ/2 coplanar waveguide resonator and schematic representation of the experimental
setup. The transmission through the cavity at frequency ωp is measured using a vector network analyser (VNA). A second microwave signal at
frequency ωd is used for qubit spectroscopy measurement. The input signal is attenuated and filtered at various temperature stages and coupled
into the resonator through the capacitor. Two isolators and low-pass filters (LPF) are used to protect the sample from the cryo-amplifier’s
noise. (b) Optical image of one of the two identical coupling capacitors of the resonator, as indicated by the blue rectangle area in (a).
(c) Scanning electron microscope (SEM) image of the galvanically-connected flux loop (the red and green rectangle areas are shown in (d)
and (e), respectively). The shared arm between the flux qubit and the resonator’s center line is 34.8 µm long and 800 nm wide. (d) SEM
image of the left two Josephson junctions in the flux qubit loop. (e) SEM image of the right two Josephson junctions in the flux qubit loop.
(f) Transmission spectra of the λ/2 resonator mode, which is measured at 20 mK. The black-continuous line shows the Lorentzian fit to
the transmission power spectrum. The resonance frequency ω1/2π = 3.143 GHz and FWHM of 2.07 MHz are obtained by the fitting. (g),
Qubit transition frequency ωq from spectroscopy measurement versus relative magnetic flux bias δΦx. The data is recorded at a probe power
Pp ≈ −143 dBm (corresponding to an average photon number n1 ≈ 0.19 in the resonator). The probe frequency is equal to the frequency of
the λ/2-mode. The black-continuous line represents a numerical fit to the qubit Hamiltonian Hq yielding the parameters δ/h = 6 GHz and
Ip = 265 nA.

placement operator

D(t) = exp X(t), X(t) =
∑
n=1,3

[
αn(t)a†n − α

∗
n(t)an

]
. (A-3)

The displaced Hamiltonian now reads

H′ =D†(t)HtD(t) − iD†(t)∂tD(t)

=Ht + [Ht, X(t)] +
1
2

[[Ht, X(t)], X(t)] + ...

− iD†(t)D(t)∂tX(t)

=
1
2

(ετz + δτx) +
∑
n=1,3

[
~ωna†nan + ~gn(a†n + an)τz

]
+

∑
n=1,3

gn
[
αn(t) + α∗n(t)

]
τz, (A-4)
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where αn(t) is chosen to be

αn(t) = −
Ωr,n

2

(
1

ωn − ωd
e−iωd t +

1
ωn + ωd

eiωd t
)
, (A-5)

which satisfies the following equation

∂tαn(t) = −iωnαn(t) − iΩr,n cosωdt. (A-6)

Then the last term gn
[
αn(t) + α∗n(t)

]
τz in Eq. (A-4), which

represents the effective driving filed on the qubit, can now be
written as Ωd,q cosωdt τz, with

Ωd,q = Ωq,1 + Ωq,3,

Ωq,n = gn Ωr,n

(
1

ωd − ωn
−

1
ωn + ωd

)
, (A-7)

where |Ωq,n| being the effective Rabi frequency of the driving
field on the flux qubit via the nth-mode of the resonator. When
the linewidth of the cavity mode is considered, ωn in Eq. (A-5)
is replaced by ωn + iκn/2, where κn is the total photon damp-
ing rate of the nth cavity mode, which can be written as the
sum of the individual contributions from the external and in-
ternal channels, i.e. κn = κn,in + κn,ex [38]. Here in our system,
the loss rate associated with the waveguide-resonator inter-
face κn,ex is much larger than the loss rate inside the resonator
κn,in, i.e. κn,ex ≈ κn � κn,in, and thus we ignore κn,in for the
following numerical estimation. We measured the total cavity
photon loss rates of κ1/2π ≈ 2.07 MHz, κ2/2π ≈ 9.90 MHz
and κ3/2π ≈ 18.01 MHz for the λ/2−, λ− and 3λ/2−mode,
respectively.

In this case, the qubit driving term becomes

2 gn Ωr,n ωn

 ω2
d − ω

2
n − κ

2
n/4

(ω2
d − ω

2
n − κ

2
n/4)2

+ ω2
dκ

2
n

cosωdt +
ωdκn

(ω2
d − ω

2
n − κ

2
n/4)2

+ ω2
dκ

2
n

sinωdt

 , (A-8)

where the second term in Eq. (A-8) can be safely ignored since
κn � {ωn, ωd}, and Ωq,n then reads

Ωq,n = 2 gn Ωr,n ωn
ω2

d − ω
2
n − κ

2
n/4

(ω2
d − ω

2
n − κ

2
n/4)2

+ ω2
dκ

2
n

. (A-9)

Since Ωr,n can be directly expressed in terms of the driving
power as [39]

Ωr,n =

√
Pdκn,ex

2 ~ωn
, (A-10)

Ωq,n can then be written as

Ωq,n = gn

√
2 Pd ωnκn,ex

~

ω2
d − ω

2
n − κ

2
n/4

(ω2
d − ω

2
n − κ

2
n/4)2

+ ω2
dκ

2
n

. (A-11)

Note that the effective Rabi frequency |Ωq,n| of the driving
field on the qubit depends not only on the driving power Pd
but also on the frequency detuning ωn − ωd. In the dispersive
region of the measured spectra where the sideband transitions
appear, the driving frequency ωd is largely detuned from the
frequency ωn of the resonator, i.e. |ωn − ωd | � gn. The ef-
fective Rabi frequency |Ωq,n| of the driving field on the qubit
is much reduced compared to the Rabi frequency Ωr,n of the
driving field on the resonator, i.e., |Ωq,n| � Ωr,n. In Fig. A2,
the effective Rabi frequencies |Ωq,n| (n = 1, 3) are plotted as
a function of the corresponding frequency detunings ωn −ωd.
Indeed, |Ωq,n| is greatly reduced when |ωn−ωd | � gn, indicat-
ing that the effective driving power on the qubit is extremely
weak in this dispersive regime, as compared to the driving
power originally applied to the resonator.

B. Average photon number calibration

The average number of photons in the resonator that come
from the driving field can be calculated from [38, 40]

n̄d,n =
κn,ex/2

(ωn − ωd)2 + κ2
n/4

Pd

~ωd
, (A-12)

where we have used the same external loss rate for both sides
of the resonator because they are nearly symmetric in our
setup. It is clear from Eq. (A-12) that the mean number n̄d,n
of the intracavity photons for the nth-mode, which are in-
jected by the driving field, has a Lorentzian line shape cen-
tered around the frequency ωn of the nth-mode with a width
of κn,ex. Therefore, although the driving field may provide
thousands of photons into the resonator when it is on reso-
nance with the resonator mode, the intracavity photon number
n̄d,n drops dramatically when the detuning |ωn −ωd | is getting
larger. We see from Fig. A3 that even for a small detuning
(i.e., |ωn − ωd | is on the order of gn), the mean number of the
intracavity photons injected by the driving field is already re-
duced to a single-photon level, and for a large detuning with
|ωn − ωd | � gn, the average photon number n̄d,n is almost
zero. It indicates that in our experiment the power of the driv-
ing filed is irrelevant to the high-order effects observed in the
dispersive regime of the transmission spectra, where the neg-
ligible photons are injected by the driving field. This provides
a clear and convincing evidence that the observed high-order
processes are measured at the quantum limit of single or even
fewer photon level.
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C. Schrieffer-Wolff transformation and higher-order couplings

In the qubit eigenbasis {|g〉, |e〉}, the displaced Hamiltonian
Eq. (A-4) can now be rewritten as

H̃ =
1
2
~ωqσz + Ωd,q cosωdt (cos θσz − sin θσx)

+
∑
n=1,3

[~ωna†nan + ~gn(a†n + an)(cos θσz − sin θσx)]

(A-13)

which includes both a σz-component and a σx-component.
The σz-component in the pump Hamiltonian induces periodic
oscillations of the qubit frequency, which produces effective
qubit resonances at frequencies ωq ∓ sωd, with s being an in-
teger. When one of the effective resonances is near the fre-
quency of a resonator mode, energy exchange between the
qubit and the resonator will be enabled by the pump field.
As a result, spectral lines in addition to the qubit frequency
can be observed. The σx-component in the pump Hamilto-
nian flips the qubit state when the pump frequency is on res-
onance with the qubit frequency. Furthermore, when com-
bined with (higher-order) qubit-resonator coupling, it can also
induce high-order transitions at appropriate pump frequen-
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FIG. A2. Rabi frequency of the driving field on the flux qubit for
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near-resonance region between the driving field and the correspond-
ing mode.

0-0.5-1 0.5 1

0-1-2 1 2

(ωd-ω1)/2π (GHz)

(ωd-ω3)/2π (GHz)

(a)

(b)

n d
,1 

10-2

100

102

104

n d
,3 

10-2

100

102

1.5 210.5
0

0.05

0.1

0.15

0.2

0.8 10.60.4
0

0.05

0.1

0.15

0.2

FIG. A3. Average number of photons in the resonator that come
from the driving field. (a) λ/2-mode and (b) 3λ/2-mode. Each inset
is a zoom of the off-resonance region between the driving field and
the corresponding mode.

cies. Below we analyze the possible transitions in the qubit-
resonator system in the dispersive limit with |∆±n | � gn, where
∆±n = ωq ± ωn. In this limit, although the qubit and resonator
modes cannot exchange energy directly due to frequency mis-
match, higher-order processes can be induced by the Rabi
coupling even for a very weak pumping field.

We apply a generalized Schrieffer-Wolff transformation to
the Hamiltonian H̃,

H̃eff = U†H̃U, (A-14)

where the displacement operator U is

U = exp
{∑
n=1,3

[
λn,−(σ−a†n − σ+an) + λn,+(σ−an − σ+a†n)

]}
,

(A-15)

with λn,± = −gn sin θ/∆±n [18, 35]. We then divide the Hamil-
tonian H̃eff into terms of different orders of the small parame-
ter λn,±,

H̃eff = H0 +
∑

s

H̃(s). (A-16)
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In this expression,

H0 =
1
2
~ωqσz +

∑
n=1,3

(Hn + Hac), (A-17)

describes the uncoupled system Hamiltonian modified by the
Stark and Bloch-Siegert shifts

Hac = −
~

2

[
gn sin θ(λn,− + λn,+)(2a†nan + 1)σz

]
. (A-18)

The term H̃(s) is to the s-th order of λn,±, which contains a
time-dependent factor cosωdt due to the pump field.

To gain more insight into the physics of the above higher-
order terms, we now consider the Hamiltonian H̃eff in the in-
teraction picture of H0 with

σ± → σ±e±iωqt, a†n → a†neiωnt, an → ane−iωnt. (A-19)

Below we study different order couplings under the rotating-
wave approximation by neglecting all fast oscillating terms.

Zeroth-order term H̃(0). With a pump frequency ωd = ωq
and under the rotating-wave approximation, the zeroth-order
term becomes

H̃(0) = X(0)
n σx, (A-20)

with X(0)
n = −Ωd,q sin θ/2, which generates a transition be-

tween the two qubit states. This transition gives the measured
qubit spectrum in Fig. 2.

First-order term H̃(1). At the pump frequency ωd = ωq ∓

ωn, the driving on the σz-component of the qubit yields an
effective Hamiltonian describing the first-order red (“−”) or
blue (“+”) sideband transitions.

Another contribution to the first-order couplings occurs at
the pump frequency ωd = ωn. Here the driving on the σx-
component of the qubit, together with the qubit-resonator cou-
pling, produces an indirect driving on the resonator modes.
The effective driving on the resonator then reads

Heff = Z(1)
n (an + a†n)σz, (A-21)

with

Z(1)
n =

Ωd,q

2
sin θ(λn,− + λn,+). (A-22)

Second-order term H̃(2). The σz-component driving gen-
erates second-order terms in the forms of

Heff = Z(2)
n (a2

n + a†2n )σz, (A-23)

with

Z(2)
n = −Ωd,q cos θλn,−λn,+ (A-24)

at the pump frequency ωd = 2ωn, which are two-photon pro-
cesses. The σz-component also generates cross-mode cou-
pling terms between different resonator modes in the forms
of

Heff = Z(2)
1̄3

(a†3a1 + a†1a3)σz, (A-25)

with

Z(2)
1̄3

= −Ωd,q cos θ(λ1,−λ3,− + λ1,+λ3,+), (A-26)

at ωd = ω3 − ω1, and

Heff = Z(2)
13 (a†3a†1 + a1a3)σz, (A-27)

with

Z(2)
13 = − cos θ(λ1,−λ3,+ + λ1,+λ3,−) (A-28)

atωd = ω3+ω1, respectively. These terms cause effective cou-
plings between different resonator modes with the frequency
difference compensated by the pump frequency.

The σx-component driving generates second-order cou-
pling terms between the qubit and the resonator modes, which
are responsible for the second-order single-photon-driven
sideband transitions observed in the measurement. Similarly,
higher-order terms can be analyzed. In particular, at the fre-
quencyωd = ωq−3ω1, a third-order single-photon-driven red-
sideband transition can be generated. Discussions on these
sideband terms will be straightforward using our approach.

D. Sideband transitions

In the above, we have analyzed possible higher-order terms
induced by the pump field and the qubit-resonator coupling.
Here we discuss dominant contributions among all terms that
are directly connected to the measured red and blue-sideband
transitions in the experiment.

First, at pump frequencies ωd = ωq − sωn (s = 1, 2, 3), the
interaction terms that are not rapidly oscillating are described
by the effective Hamiltonian

H(s)
n,red = R(s)

n

(
a†n

s
σ− + as

nσ+

)
, (A-29)

with the coefficients

R(1)
n = −Ωd,q cos θλn,−, (A-30)

R(2)
n = −

Ωd,q

2
sin θ λn,−(λn,− + λn,+), (A-31)

R(3)
n =

2Ωd,q

3
cos θ λ2

n,−λn,+. (A-32)

We denote these terms as the sth-order single-photon-driven
red-sideband transition for the nλ/2-mode. These terms gen-
erate exchanges between the states |g,Nn〉 and |e,Nn − s〉 with
amplitudes ∝ λs

n,±, which can effectively convert a qubit ex-
citation into s photon excitations of frequency ωn. Note
that if there are no counter-rotating terms in the Hamiltonian,
λn,+ = 0 in the displacement operator U given in Eq. (A-15).
Thus, the third-order process related to the nonzero coefficient
in Eq. (A-32) is due to the existence of the counter-rotating
terms.

Similarly, when driving at ωd = ωq + sωn (s = 1, 2, 3), we
obtain single-photon-driven blue-sideband transition for the
nλ/2-mode with

Hn,blue = B(s)
n

(
a†n

s
σ+ + as

nσ−
)
, (A-33)
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where the coefficients are

B(1)
n = −Ωd,q cos θλn,+, (A-34)

B(2)
n = −

Ωd,q

2
sin θλn,+(λn,− + λn,+), (A-35)

B(3)
n =

2Ωd,q

3
cos θ λn,−λ

2
n,+. (A-36)

It couples the states such as |g,Nn〉 and |e,Nn + s〉 and pro-
duces a qubit excitation and s photon excitations in the nλ/2-
mode simultaneously. Obviously, the blue-sideband transi-
tions related to the nonzero coefficients in Eqs. (A-34)-(A-36)
are also due to the existence of the counter-rotating terms in
the Hamiltonian, because these coefficients are proportional
to either λn,+ or λ2

n,+.
Interestingly, within our measured spectral range, the

single-photon-driven second-order terms also include a cross-
mode red-sideband transition when driving at ωd = ωq ±ω1 −

ω3 with the coupling Hamiltonian

H(2)
c,red = σ−a†3

(
R(2)

1̄3
a1 + R(2)

13 a†1
)

+ h.c., (A-37)

and a single-photon-driven cross-mode blue-sideband transi-
tion when driving at ωd = ωq ± ω1 + ω3

H(2)
c,blue = σ−a3

(
B(2)

13̄
a†1 + B(2)

1̄3̄
a1

)
+ h.c.. (A-38)

The coupling coefficients for these cross-mode sideband tran-
sitions are

R(2)
1̄3

= −
Ωd,q

2
sin θ [λ1,+(λ3,− + λ3,+) + λ3,−(λ1,− + λ1,+)],

R(2)
13 = −

Ωd,q

2
sin θ [λ1,−(λ3,− + λ3,+) + λ3,−(λ1,− + λ1,+)],

B(2)
13̄

= −
Ωd,q

2
sin θ [λ1,−(λ3,− + λ3,+) + λ3,+(λ1,− + λ1,+)],

B(2)
1̄3̄

= −
Ωd,q

2
sin θ [λ1,+(λ3,− + λ3,+) + λ3,+(λ1,− + λ1,+)].

(A-39)

The single-photon-driven cross-mode red-sideband transi-
tions are |e10〉 ↔ |g01〉 and |e00〉 ↔ |g11〉. The
single-photon-driven cross-mode blue-sideband transitions
are |e11〉 ↔ |g00〉 and |e01〉 ↔ |g10〉. Note that other cross-
mode sideband transitions could appear if we include higher-
order terms in the effective Hamiltonian.

The amplitude of the sth-order sideband transition depends
on λs

n,± with λn,± � 1, and thus it decreases very quickly as the
order s increases. For illustration, we choose ωq/2π = 6.85
GHz and ωq/2π = 14.53 GHz to calculate the coupling coef-
ficients for the first mode and the third mode, respectively, as
shown in Table I. Here the first-order transitions have normal-
ized amplitudes ∼ 1 × 10−2 and the amplitudes of the third-
order transitions decrease to ∼ 1 × 10−5.

TABLE I. Sideband transition coefficients normalized to the driving strength Ωd,q.

ωq/2π(GHz) X(0)
1 R(1)

1 R(2)
1 R(3)

1 B(1)
1 B(2)

1 B(3)
1 R(2)

1̄3
B(2)

13̄
6.85 −4.4 × 10−1 3.5 × 10−2 −3.1 × 10−3 −4.5 × 10−5 1.3 × 10−2 −1.2 × 10−3 −1.7 × 10−5 9.5 × 10−3 3.5 × 10−3

ωq/2π(GHz) X(0)
3 R(1)

3 R(2)
3 R(3)

3 B(1)
3 B(2)

3 B(3)
3 R(2)

13 B(2)
1̄3̄

14.53 −2.1 × 10−1 3.8 × 10−2 −4.4 × 10−4 −9.7 × 10−6 8.2 × 10−3 −9.5 × 10−5 −1.6 × 10−6 −2.8 × 10−4 −1.1 × 10−4
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