
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Capacity of optical communications over a lossy bosonic
channel with a receiver employing the most general

coherent electro-optic feedback control
Hye Won Chung, Saikat Guha, and Lizhong Zheng
Phys. Rev. A 96, 012320 — Published 17 July 2017

DOI: 10.1103/PhysRevA.96.012320

http://dx.doi.org/10.1103/PhysRevA.96.012320


On capacity of optical communications over a lossy bosonic channel with a receiver
employing the most general coherent electro-optic feedback control

Hye Won Chung,∗ Saikat Guha†, and Lizhong Zheng◦
∗School of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141

†Quantum Information Processing group, Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA USA 02138
◦ EECS Department, MIT, 77 Massachusetts Avenue, Cambridge, MA USA 02139

We study the problem of designing optical receivers to discriminate between multiple coherent
states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control
and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum
error probability in discriminating any two coherent states. We first derive and re-interpret Dolinar’s
binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information
efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using
this viewpoint, we propose a natural generalization of Dolinar’s receiver design to discriminate
M coherent states each of which could now be a codeword, i.e., a sequence of N coherent states
each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical
channel with a general coherent-processing receiver in the low-photon number regime and compare
it with the capacity achievable with direct detection and the Holevo limit (achieving the latter
would require a quantum joint-detection receiver). We show compelling evidence that despite the
optimal performance of Dolinar’s receiver for the binary coherent-state hypothesis test (either in
error probability or mutual information), the asymptotic communication rate achievable by such a
coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely-
long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by
designing a good code and direct detection, with no feedback within the receiver.

Over time t ∈ [0, T ), consider a coherent-state input
of constant amplitude S to a pure-loss optical channel,
where S ∈ C, and |S|2T is the mean photon number.
Coherent state is the quantum description of light gen-
erated by an ideal laser. In a noise-free environment, if
one uses an ideal quantum-noise-limited photon counter
to receive this optical signal, the output of the photon
counter is a Poisson point process, with rate λ = |S|2 over
the time period [0, T ), indicating arrivals of individual
photons. Clearly, one can generalize from a constant in-
put to an arbitrary temporal-mode shape of the coherent-
state pulse S(t), t ∈ [0, T ), which if detected with an ideal
photon counter would result in a non-homogeneous Pois-
son process of rate λ(t) = |S(t)|2. The mean number of

photons,
∫ T

0
|S(t)|2dt, expended in the transmitted pulse,

is the natural metric quantifying communication cost.
A photon counter with sub-unity detection efficiency
η ∈ (0, 1] can be modeled as a lossy channel of trans-
missivity η followed by ideal photon counting. Further, a
coherent state at the input of a lossy channel appears as a
coherent state at the output of the channel with its amp-
litude scaled by the channel’s transmissivity η ∈ (0, 1].
Therefore, without loss of generality, in this paper we
will assume a lossless channel and unity-efficiency photo-
detection, with an implicit scaling of any constraint im-
posed on the transmitted mean photon number per mode
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for all the communication-rate calculations. Receivers
that are based on counting photons, i.e., detecting the
intensity of the optical signals, are called direct-detection
receivers, and the resulting communication channel when
coherent states are used for input modulation, is called
a Poisson channel. The capacity of the Poisson channel
has been well studied [3–5].

Since a coherent-state optical signal can be described
by a complex amplitude S, it is of interest to design co-
herent receivers that measure the phase of S, and thus
allow information to be modulated on the phase. The
standard optical receivers that can detect the phase of
the input coherent state are homodyne and heterodyne
detection receivers, which mix the received coherent state
with a strong coherent-state local oscillator (at the same
carrier frequency as the input for homodyne, and at a
slight carrier-frequency offset for heterodyne) on a 50-50
beamsplitter and detect the two outputs of the beams-
plitter by a pair of linear-mode photodetectors followed
by integrating the difference of their output photocur-
rents. However, we will consider the following lesser-
known receiver architecture to detect the phase of an
optical signal, proposed by Kennedy (see Figure 1).

Instead of directly feeding the input coherent state
of complex amplitude S into the photon counter,
Kennedy’s receiver mixes the input signal with a fixed-
amplitude strong coherent-state local oscillator of amp-
litude l/

√
1− γ on a highly transmissive beamsplitter

(of transmissivity γ ≈ 1), and detects the output of the
beamsplitter, which is a coherent state of amplitude S+l,
with an ideal photon detector. The output of the photon
counter therefore is a Poisson process with rate |S + l|2.
In principle, l can be chosen as an arbitrary complex
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number, with any desired phase difference from the in-
put signal S. Thus, the output of this processing can
be used to extract phase information in the input. In a
sense, the local control signal is designed to control the
channel through which the optical signal S is observed.

Kennedy used this architecture to distinguish between
binary coherent-state hypotheses, i.e., two candid-
ate coherent-state temporal waveforms S0(t), S1(t), t ∈
[0, T ), with prior probabilities π0, π1, respectively, using
a control signal whose complex amplitude l was held con-
stant in [0, T ). This was later generalized by Dolinar [6],
who used a time-varying control waveform l(t), t ∈ [0, T ),
which flip-flopped between two pre-determined wave-
forms l0(t) and l1(t) adaptively at each photon arrival
instant at the detector. Dolinar showed that the local
signal waveforms l0(t) and l1(t) can be designed in a way,
such that the resulting average probability of error for the
aforesaid binary hypothesis test is given by:

Pe =
1

2

(
1−

√
1− 4π0π1e

−
∫ T
0
|S0(t)−S1(t)|2dt

)
. (1)

Rather surprisingly, this error probability exactly coin-
cides with the minimum average error probability for dis-
criminating the two coherent-state waveforms with any
measurement allowed by quantum mechanics, which we
will refer to as the Yuen-Kennedy-Lax (YKL) limit [7, 8].
The optimality of Dolinar’s receiver is an amazing res-
ult, as it shows that the minimum-probability-of-error
quantum measurement for the binary coherent-state hy-
pothesis test problem can be implemented with the very
simple receiver structure shown in Figure 1, whose func-
tioning can be described completely in terms of semi-
classical (shot-noise) theory of photo detection. Unfor-
tunately, this does not generalize to problems involving
discrimination of more than two coherent states, where it
appears that the receiver must employ truly non-classical
effects in order to exactly attain the YKL limit [9].

The goal of this paper is twofold. We are interested
in finding a natural generalization of Dolinar’s receiver
to general hypothesis testing problems with more than
two possible signals. In addition, we also consider us-
ing such receivers to receive coded transmissions, and
thus compute the asymptotic information rate that can
be reliably carried through the optical channel. Our in-
vestigation will be specifically tied to structure of the
receiver front-end shown in Figure 1, where we will allow
the control signal to be varied arbitrarily over the entire
received modulated codeword. In Section I, we will be-
gin by re-deriving Dolinar’s design of the optimal control
waveform l(t) for the binary case using a method different
from Dolinar’s, in order to motivate our more general ap-
proach. In Section II, we will discuss the performance of
the Dolinar receiver front end to discriminate M > 2 co-
herent states, when the time-incremental optimization of
a class of Rényi information metrics is used to design the
local control signal. In Section III, we consider the per-
formance of this receiver for optimizing the asymptotic
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Figure 1. Coherent receiver using local feedback signal.

information communication rate, and prove the follow-
ing no-go theorem. The Kennedy-Dolinar receiver acting
directly on the received codeword, where the control sig-
nal is kept constant over each modulation symbol but
is allowed to vary across the N symbols in a codeword,
can perform no better than an direct-detection receiver
with no internal feedback, in the limit of N → ∞. We
conjecture that even if we were to allow the coherent-
state codeword to be processed by an arbitrary passive
linear-optical mixer prior to feeding it into the Dolinar
receiver, and the control signal to be varied arbitrarily
over the entire time duration of that processed codeword,
the result of our no-go theorem would still apply. We
however leave open the proof of this fully general res-
ult. If this conjectured result were true, it would imply
that when the benefit of coding is available, that local
coherent feedback within the receiver does not help in-
crease communication rate, thereby suggesting that truly
non-classical joint optical processing and detection of the
codeword—not describable by the semi-classical theory of
photo-detection—would be needed to attain the ultimate
(Holevo) limit [10] of optical communications capacity.
We conclude the paper in Section IV.

I. BINARY HYPOTHESIS TESTING

Let us consider the binary hypothesis testing problem
with two candidate coherent state signals, {S0(t), S1(t)},
t ∈ [0, T ) under hypotheses H = 0, 1, respectively,
and denote π0(t) and π1(t) as the posterior distribu-
tions over the two hypotheses, conditioned on the out-
put of the photon counter up to time t. We assume that
S0(t), S1(t) ∈ R. This simplifying assumption accrues no
loss of generality for the binary case since we can always
choose an axis in the phase space passing through two
complex-valued input signals and call that as the ‘real’
axis. Based on the receiver’s knowledge of the posterior
probabilities π0(t) and π1(t) at time t, it chooses the
control signal l(t) (based on optimizing an incremental
information metric to be described shortly) whose value
is held constant over the infinitesimal interval [t, t+ ∆).
After observing the output of the photon counter dur-
ing this infinitesimal interval, i.e., based on whether a
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click appears or not, the receiver updates the posterior
probabilities of the hypotheses to obtain π0(t + ∆) and
π1(t + ∆), and then follows the above procedure again
to choose the control signal over the next infinitesimal
interval, and so on. In the following, we will focus on
solving the single step optimization of l (at time t) in the
above described recursive procedure, and will drop the
dependency on t to simplify the notation.

We first observe that the optimal value of l must be
real, as having a non-zero imaginary part in l simply adds
a constant rate to the two candidate Poisson point pro-
cesses (corresponding to the two hypotheses), which can-
not improve the quality of observation. When we write
λi = (Si + l)2, i = 0, 1 to denote the rate of the resulting
Poisson processes, the number of photon arrivals at the
output of photon counter during the interval ∆ follows
the Poisson distribution

Pr(k photon arrivals in ∆ interval|H = i)

=
(λi∆)ke−λi∆

k!
,

(2)

conditioned on which hypothesis (H = 0, 1) is true. Over
a very short period of time, i.e., when ∆ → 0, under
either hypothesis, the realized Poisson process generates
with a high probability either 0 or 1 photon arrival, with
probabilities e−λi∆ and 1−e−λi∆, respectively [11]. Over
this short period of time, the receiver front end induces a
binary-input binary-output channel as shown in Figure 2,
whose parameters depend upon the value of the control
signal l. Our goal is to pick an l for each short interval
such that they contribute to the overall decision in the
best possible manner.

The difficulty here is that it is not obvious how we
should quantify the contribution of the observation over
a short period of time to the performance of the overall
decision. Let us consider the intuitive approach where
we choose the l that maximizes the mutual information
over the induced binary channel at each incremental time
step. For convenience, we write the input to the channel
asH ∈ {0, 1} and the output of the channel as Y ∈ {0, 1},
indicating either 0 or 1 photon arrival. The mutual in-
formation between H and Y is given by

I(H;Y ) =

1∑

h=0

πh




1∑

y=0

ln
PY |H(y|h)(∑1

h′=0 πh′PY |H(y|h′)
)




(3)
where {π0, π1} are input probabilities and PY |H(y|h) is
the channel distribution. The following result gives the
solution to this optimization problem of finding the con-
trol signal l∗ that maximizes I(H;Y ).

Lemma 1 The optimal choice maximizing the mutual
information I(H;Y ) in (3) for the effective binary chan-
nel is:

l∗ =
S0π0 − S1π1

π1 − π0
. (4)

H = 0

H = 1 Y = 1

Y = 0
e−λ0∆

e−λ1∆

1 − e−λ1∆

1 − e−λ0∆

Figure 2. Effective binary channel between input hypothesis
H ∈ {0, 1} and output of the photon counter Y ∈ {0, 1},
indicating either 0 or 1 photon arrival over an infinitesimal
time interval of length ∆.

With this choice of the control signal, the following rela-
tion holds:

π0

√
λ0 = π1

√
λ1. (5)

Proof. Appendix A
The relation in (5) lends some useful insights. If

π0 > π1, we have λ1 > λ0, and vice versa. That is,
by switching the sign of the control signal l, we always
make the Poisson rate corresponding to the hypothesis
with the higher probability smaller. In the short inter-
val where this control is applied, with a high probability
we would observe no photon arrival, in which case we
would confirm the more likely hypothesis. For a very
small value of ∆, this occurs with a dominating probab-
ility, such that the posterior distribution changes only by
a very small amount. On the other hand, when there is a
photon arrival, i.e., Y = 1, we would be quite surprised,
and the posterior distribution of the hypotheses moves
away significantly from the prior. Considering this latter
case, the updated distribution over the hypotheses can
be written as:

Pr(H = 1|Y = 1)

Pr(H = 0|Y = 1)
=
π1 · λ1∆

π0 · λ0∆
+O(∆) =

π0

π1
+O(∆). (6)

The posterior distributions under 0 or 1 photon arrival
turn out to be inverse of one another in the ∆→ 0 limit.
In other words, the larger one of the two probabilities
π0(t) and π1(t) remains the same no matter if there is an
arrival in the interval or not. As we apply such optimal
control signals recursively, this larger value smoothly pro-
gresses towards 1 at a predictable rate in t ∈ [0, T ), re-
gardless of when and how many photon arrivals were ac-
tually observed. In other words, the random photon ar-
rivals only affect the decision on which is the more likely
hypothesis, but do not affect the quality of this decision.
The following lemma describes this recursive control sig-
nal and the resulting receiver performance. Without loss
of generality, we assume that at t = 0, the prior distri-
bution satisfies π0 ≥ π1. Also we let N(t) denote the
number of photon arrivals observed in the interval [0, t).
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Lemma 2 Let g(t) satisfy g(0) = π0/π1 and

g(t) = g(0) exp

[∫ t

0

(S0(t)− S1(t))2(g(τ) + 1)

g(τ)− 1
dτ

]
.

(7)
The recursive mutual-information-maximization proced-
ure described above yields a control signal

l∗(t) =

{
l0(t) if N(t) is even
l1(t) if N(t) is odd

(8)

where,

l0(t) =
S1(t)− S0(t)g(t)

g(t)− 1
, l1(t) =

S0(t)− S1(t)g(t)

g(t)− 1
.

(9)
Furthermore, at time T , the decision of the hypothesis

testing problem is Ĥ = 0 if N(T ) is even, and Ĥ = 1
otherwise. The resulting probability of error coincides
with (1).

Proof. Appendix B
Figure 3 shows an example of the optimal control sig-

nal. The plot is for a case where Si(t)’s are constant on-
off-keying waveforms; i.e., S0(t) = 0 and S1(t) = S ∀t ∈
[0, T ). As shown in the plot, the control signal l(t) jumps
between two prescribed curves, l0(t), l1(t), corresponding
to the cases π0(t) > π1(t) and π0(t) < π1(t), respect-
ively. With the optimal choice of the control signal, at
each instant of a photon arrival, the receiver is maximally

surprised and it flips its choice of the hypothesis Ĥ. How-
ever, g(t) = max{π0(t), π1(t)}/min{π0(t), π1(t)}, indic-
ating how much the receiver is committed to the more
likely hypothesis, increases at a steady rate regardless of
the actual arrival events.

Before we go on to the more general M -ary setting,
a few comments are in order. Takeoka generalized Do-
linar’s original result—which was derived specifically for
optimally discriminating between two coherent states—
to show that the receiver front end shown in Figure 1 can
actually realize an arbitrary binary projective measure-
ment on an arbitrary set of (one of two) input states [12].
Takeoka posed the problem of minimum-error discrimin-
ation of two non-orthogonal states as the (zero-error) dis-
crimination of two mutually orthogonal states that cor-
respond to the YKL measurement projectors. He chose
the control signals in such a way that if the receiver is
fed with one of these two orthogonal states, that at every
incremental time step in [0, T ), the conditional states un-
der the two hypotheses remain orthogonal. Takeoka’s
construction proved a special case of an earlier result by
Walgate et al. [13] which states that when presented with
many copies of one of two pure states, there always ex-
ists a sequence of projective measurements that act on
each copy individually while feeding forward the meas-
urement result towards determing the measurement to
be performed on the next copy—also termed local opera-
tions and classical communications (LOCC)—which can

Photon arrivals

Optimal feedback

t

t

l0(t)

l1(t)

l⇤(t)

Figure 3. An example of the control signal l∗(t), which
jumps between two pre-determined waveforms l0(t) and l1(t)
adaptively at each photon arrival instant at the detector.
This control signal achieves the minimum probability of error
for binary hypothesis testing for discriminating on-off keying
coherent-state signals.

attain the quantum minimum error probability in choos-
ing between the two hypotheses, and in turn also sat-
isfy the aforesaid condition of incremental orthogonality
of YKL projectors as one progresses through the copies
that Takeoka’s construction guarantees. Given Walgate
et al.’s result on an LOCC strategy being always optimal
for binary multi-copy pure state discrimination, the fact
that Dolinar’s receiver exactly attains the YKL limit is
not so surprising in hindsight. In the same paper [13],
Walgate et al. argue that for M -ary hypothesis testing,
an LOCC strategy is not always globally optimal. Even
though this does not imply that the Kennedy-Dolinar re-
ceiver front end will not attain the YKL limit of M -ary
coherent state discrimination, it is highly indicative of
that being so.

Finally, it is well known that for an ensemble of M = 2
pure states, the measurement that minimizes the error
probability (i.e., attains the YKL conditions) is the same
as the measurement that maximizes the mutual inform-
ation (or, accessible information), and is a 2-output pro-
jective measurement. Hence, it is not surprising that
our derivation of the control signal l∗(t), which was
based on maximizing the incremental mutual informa-
tion, results in the same answer as what Dolinar de-
rived. It is worth noting however that for M > 2 pure
states, the YKL measurement—which is an M -output
projective measurement—is in general different from the
one that maximizes the accessible information, which
in general is d-output measurement described by pos-
itive operator valued measure (POVM) operators with
M ≤ d ≤M(M + 1)/2.
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II. GENERALIZATION TO M-ARY
HYPOTHESIS TESTING

Our success in interpreting the binary hypothesis test-
ing problem as an incremental maximization of mutual
information gives us useful insights on designing a gen-
eral communications receiver. Regardless of the phys-
ical channel that one communicates over, one can always
contemplate designing a receiver that builds up a “slow
motion” understanding of the received signal by studying
how the posterior distribution over the messages evolves
over time (during the demodulation and decoding of the
modulated message). This evolving posterior distribu-
tion, conditioned on more and more observations at the
receiver, would be expected to drive the uniform prior
towards an eventual deterministic distribution, thus al-
lowing the receiver to “lock in” on a particular message.
This viewpoint is more general than the conventional
setup in information theory, and is particularly useful
in understanding dynamic problems, as it is not based
on any notion of sufficient statistics, block codes, or any
predefined notions of reliability. As we measure how far
the posterior distribution moves at each time instant, we
can quantify how the communication transmission and
reception process at each time instant contributes to the
overall decision making.

The optimality result in Lemma 2 is, however, diffi-
cult to duplicate for general M -ary problems. We can
of course always mimic the procedure, i.e., choose the
control signal that maximizes the incremental mutual
information over an M -input-binary-output channel at
each time instant (binary output corresponding to no
photon arrival and one photon arrival in the incremental
interval). However, we have found that the resulting con-
trol signal does not always give the minimum probability
of error. The reason for this is intuitive. There is a
fundamental difference between maximizing mutual in-
formation and minimizing the probability of error for an
ensemble of size M > 2. A posterior distribution with a
lower entropy does not necessarily correspond to a lower
probability of error in discriminating the states in the
ensemble. These two coincide only for the binary case,
since the posterior distribution over two messages lives
in a single-dimensional space. In general, the goal of de-
cision making favors the posterior distribution that has a
dominating largest element, whereas maximizing mutual
information does not impose such a requirement on the
posterior and is agnostic to the exact form of the pos-
terior as long as ‘information’ conveyed is maximized.

Consequently, it is hard to define a metric on the ef-
ficiency of communication over a small time interval in
the middle of a communication session that can precisely
measure how well the measurement performed in the in-
terval serves the overall purpose (of choosing between
the encoded-modulated messages at a minimum probab-
ility of error, for instance). Even if one could define such
a metric, it is conceivable that an analytical solution of
the optimal control signal by a time-incremental optimiz-

ation of that metric might be hard. Such an incremental
metric, if one exists, should be time-varying, i.e., should
be able to adapt itself based upon how much time is left
before the decision must be finalized. Intuitively, at an
early instant in time (i.e., when a longer time remains
before the final decision needs to be made), since the cur-
rent observation is yet to be combined with many more
future observations, the receiver should be more keen to
take risk and extract any kind of ‘information’ that is
available, and hence it makes sense to maximize mutual
information. On the other hand, as the decision deadline
approaches, the receiver ought to become progressively
more picky in choosing what information to extract from
subsequent measurements, and demand only information
that helps the receiver lock in to one particular message.
Thus, the control signal should be optimized accordingly
over the entire duration of receiving the modulated mes-
sage.

To test this intuition, we restrict our attention to the
family of Rényi entropy. Rényi entropy of order α of a
given distribution P over an alphabet X is defined as

Hα(P ) =
1

1− α log

(∑

x∈X
Pα(x)

)
. (10)

It is easy to verify that as α→ 1, Hα(P ) is the Shannon
entropy, and as α→∞, H∞(P ) = − log(maxx∈X P (x)),
which is a measure of the probability of error in guessing
X, with distribution P , since X̂ = arg maxx P (x).

Now for general M -ary hypothesis testing problems,
we consider a recursive design of the control signal l sim-
ilar to that introduced in Section I, except that at each
time instant, rather than maximizing the mutual inform-
ation over the effective channel, which is equivalent to
minimizing the conditional Shannon entropy of the mes-
sages, we instead minimize the average Rényi-α entropy,
i.e., we solve the optimization problem:

min
l

∑

y

PY (y) ·Hα(PH|Y=y(·)), (11)

where Y indicates 0 or 1 photon arrival at each time
instant.

Intuitively, for α ∈ [1,∞), as α grows larger, the op-
timization in (11) tends more in favor of posterior distri-
butions that are concentrated on a single entry. Smaller
values of α, on the other hand, correspond to being more
agnostic to what type of information is obtained as long
as the quantity of information being obtained is max-
imized. A good design should use smaller values of α
at the beginning of the communication session and in-
crease α as the decision deadline approaches. We show
a numerical example in Figure 4 to illustrate this point.
We consider discriminating M = 3 coherent states each
with a constant real amplitude, and compare the follow-
ing two cases: one in which α = 1 is held fixed throughout
t ∈ [0, T ] and another in which α = 100 is held fixed in
t ∈ [0, T ]. Our intuition says that choosing a smaller α is
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Figure 4. Empirical average of detection error probability
(after 10,000 Monte Carlo simulations) for ternary hypothesis
testing, using control signals that minimize the average Rényi
α-entropy for different values of α; Ternary inputs {|5〉, | −
6〉, |3〉} are used with prior probabilities p = {0.8, 0.1, 0.1}.

desirable, when we have enough time to collect informa-
tion before the final decision. On the other hand, when
we need to make a final which-message decision imme-
diately, a larger α is preferable. We observe that using
α = 1 yields better error-probability performance if T is
longer, whereas α = 100 yields a lower error probability
when T is small. In our simulations with different sets of
inputs and their prior distributions, we find that the gap
between the two error probabilities and the time at which
the two error-probability curves cross each other are dif-
ferent depending on the input states and their prior dis-
tributions. However, for every case, the anticipated trend
that the probability of detection error from the feedback
control of α = 1 eventually wins that of α = 100 as time
increased is observed.

In this section, we considered Rényi-α entropy as a
metric to optimize the feedback control signal. Another
type of entropy, which is also a monotonic function of∑
x∈X P

α(x), is Tsallis entropy, defined as

Sα(P ) =
1

α− 1

(
1−

∑

x∈X
Pα(x)

)
(12)

for a given distribution P over an alphabet X . As α→ 1,
Sα(P ) is the Shannon entropy, but as α → ∞, Tsal-
lis entropy converges to 0 and becomes independent of
P . Therefore, we can anticipate that the feedback con-
trol signal that minimizes Tsallis entropy with a large α
would not provide as good performance as that of Renyi
entropy with the same α in minimizing the detection er-
ror probability. We also verified this intuition in our sim-
ulations.

It will be interesting in future work, to examine the
error-probability performance of the Kennedy-Dolinar re-

ceiver front end with a control signal designed by us-
ing the above incremental Rényi-information optimizing
technique with an optimal α(t). Moreover, it will be
interesting to investigate utilizing a non-coherent-state
control signal, for instance a squeezed state.

III. CODED TRANSMISSIONS AND
CAPACITY RESULTS

Even though the discussion in Section II and the nu-
merical example therein with three coherent states gave
us useful insight on optimizing the control signal for hy-
pothesis testing problem, intuition from channel coding
tells us that this optimization is a more pertinent ques-
tion when exponentially many (M = eNR) messages are
each encoded into a sequence of N coherent states, form-
ing a codebook. Coding-theory intuition further tells us
that those M coherent-state sequences, for a good code,
should get close to perfectly distinguishable as the code-
word length N becomes long, if the rate R of the code is
smaller than the capacity C, where C is a function of the
channel induced by the choice of the optical receiver. In
this section, we study the capacity of an optical channel
with the Kennedy-Dolinar receiver acting directly on the
received codeword, where a control feedback signal in the
receiver is chosen to maximize the information rate of the
induced channel.

The transmission of an ideal laser-light pulse over a
lossy optical channel can be modeled as a pure-state clas-
sical quantum channel Nη : S → |√ηS〉, where S ∈ C is
the complex field amplitude (of the coherent state |S〉) at
the input of the channel, η ∈ (0, 1] is the transmissivity
(the fraction of input power that appears at the output),
and |√ηS〉 is a coherent state at the channel’s output.
We are interested in attaining the classical capacity of
this channel, i.e., the number of information bits that
can be modulated into the optical signals, and reliably
decoded with the receiver architecture shown in Figure
1. Since a coherent state |S〉 of mean photon number
E = |S|2 transforms into another coherent state |√η S〉
of mean photon number ηE over the lossy channel, we
will henceforth, without loss of generality, subsume the
channel loss in the energy constraint, and pretend that
we have a lossless channel (η = 1) with a mean-photon-
number constraint E[|S|2] ≤ E per mode (or per ‘channel
use’).

We consider the case where the average number E of
transmitted photons per mode is small, and hence a high
photon information efficiency, in bits/photon, is achiev-
able. We are particular interested in analyzing the gap
between the capacity with the Kennedy-Dolinar receiver
and the Holevo limit, the ultimate achievable capacity
with any joint quantum measurement. At high transmit
powers, it is well-known that the Shannon capacity asso-
ciated with heterodyne detection is close to the Holevo
limit. In the analysis of the capacity under the mean-
photon-number constraint, we will use o(·) and O(·) nota-
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tions to describe the behavior of functions of the mean
photon number E in the regime of E → 0. A function de-
scribed as o(f(E)) and that described as O(f(E)) satisfies

lim
E→0

∣∣∣∣∣
o(f(E))

f(E)

∣∣∣∣∣ = 0, lim sup
E→0

∣∣∣∣∣
O(f(E))

f(E)

∣∣∣∣∣ <∞, (13)

respectively.
The capacity of the pure-loss (η = 1) optical chan-

nel without the constraint in the receiver architecture is
studied in [14, 15]. It is shown [16] that the capacity of
the channel (in nats per channel use) is given by

CHolevo(E) = (1 + E) log(1 + E)− E log E , (14)

where E is the average number of photons transmitted
per channel use. To achieve this data rate, an optimal
joint quantum measurement over a long sequence of sym-
bols must be used. In practice, however, such measure-
ment is very hard to implement. We are therefore inter-
ested in finding the achievable data rate when a simple
receiver structure is adopted. Nevertheless, (14) serves
as a performance benchmark. In our regime of interest,
i.e., E → 0, it is useful to approximate (14) as

CHolevo(E) = E log
1

E + E + o(E). (15)

As another performance benchmark, let us consider
the Shannon capacity of the channel induced by an ideal
direct-detection receiver (no local oscillator mixing or
feedback). The capacity of this channel—the Poisson
channel—was studied in [3, 4], and the regime of low aver-
age photon numbers was studied in [17]. For our purposes
of performance comparison, we need a more precise scal-
ing law of rate performance, which the following lemma
states.

Lemma 3 (Capacity of Direct Detection) As E →
0, the optimal input distribution to the optical channel
with a direct-detection receiver is on-off-keying, with

|S〉 =

{ |0〉, with prob. 1− p∗, and

|
√
E/p∗〉, with prob. p∗,

(16)

where limE→0
p∗

E
2 log 1

E
= 1, and the resulting capacity is

CDD(E) = E log
1

E − E log log
1

E +O(E). (17)

Proof. Appendix C.
Comparing (15) and (17), we observe that the two

capacities have the same first-order term. This means
as E → 0, the optimal photon information efficiency of
log(1/E) nats/photon can be achieved even with a very
simple direct-detection receiver that acts directly and in-
dividually on each of the N symbols of the N -mode mod-
ulated codeword.

In practice, however, the second-order terms in these
two capacity expressions result in a significant difference
in the high-photon-efficiency regime. For example, if one
wishes to achieve a photon information efficiency of 10
bits/photon, one can solve for E that satisfies C(E)/E =
10 bits/photon in both cases, and get EHolevo ≈ 0.0027
and EDD ≈ 0.00010. The resulting capacities (bits/mode,
or equivalently the bits/sec-Hz spectral efficiencies) dif-
fer by more than one order of magnitude (by a factor
of ≈ 26 to be precise). So, if one is operating in a
photon-starved regime, for instance in a deep space com-
munications scenario where the mean photon number E
per (temporal) mode is extremely small due to techno-
logical constraints on the transmit laser power and the
large channel loss (η � 1), a Holevo-capacity-achieving
receiver would attain more than an order of magnitude
higher data rate for a given temporal bandwidth that can
be supported by the transmit modulator and the receiver.
This example indicates that although (15) and (17) have
the same limit as E → 0, the rates at which this limit
is approached are quite different, which can be of prac-
tical importance in photon-starved communication set-
tings. Similar phenomena have also been observed for
wideband wireless channels [18, 19].

Therefore, the second-order terms in the capacity ex-
pressions (15) and (17) cannot be ignored. In fact, any
reasonable scheme that employs feedback-assisted coher-
ent processing along with photon detection in the receiver
should at the very least achieve a rate higher than that
with direct detection alone, and thus should have the
leading term as E log 1

E . It is the second-order term in
the achievable rate that indicates whether a new receiver-
structure proposal would make a significant step towards
achieving the Holevo-capacity limit. In the following, we
will study the achievable rate over the pure-loss optical
channel with the Kennedy-Dolinar receiver front end as
shown in Figure 1, and evaluate its rate performance and
how it scales for small E .

The problem of coded transmission and finding the
maximum information rate that can be conveyed through
an optical channel with a coherent-processing receiver
is in fact easier than the problem of M -ary hypothesis
testing we considered in Section II, even though there
are exponentially many possible messages to discriminate
between. The key observation is that when communic-
ating with a long block of N symbols (with N → ∞),
there is no issue of a pressing deadline for making a
which-message decision for most of the time during the
reception of a codeword. Therefore, it makes sense to al-
ways use the mutual information maximization to decide
which control signal to apply. This argument is stated
rigorously in Theorem 4 and proved in Appendix A. A
straightforward generalization of the Dolinar receiver for
the coded transmissions can be described as follows:

During the i-th channel use, i ∈ {1, . . . , N}, the en-
coding map can be written fi : {1, 2, . . . ,M = eNR} →
Xi ∈ X , where Xi is the symbol transmitted in the
i-th use of the channel. This map ensures that Xi
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has a desired input distribution PX , computed under
the assumption that all messages are equally likely, i.e.,

1
eNR |{m : fi(m) = x}| = PX(x), ∀x ∈ X .

The receiver keeps track of the posterior distribution
over the messages. Given PMs|Y i−1

1
(·|yi−1

1 ), which is the

distribution over the messages conditioned on the pre-
vious observations, the effective input distribution when
the receiver is about to act on the i-th channel sym-
bol, P ′X(x) =

∑
m:fi(m)=x PMs|Y i−1

1
(m|yi−1

1 ) can be com-

puted. Using this as the prior distribution of the trans-
mitted symbol, the receiver can apply the control signal
that maximizes the mutual information.

Upon observing the output Poisson process in the i-th
symbol period, denoted as Yi = yi, the receiver com-
putes the posterior distribution of the transmitted sym-
bol P ′′X(x) = PXi|Yi

(x|yi). We omit the conditioning on

the history Y i−1
1 here to emphasize that the update is

based on the observations in a single symbol period. The
receiver uses P ′′X(x) to update its knowledge of the mes-
sages in the following manner:

PMs|Y i
1
(m|yi1) = PMs|Y i−1

1
(m|yi−1

1 ) · P
′′
X(x)

P ′X(x)
(18)

for all m such that fi(m) = x. This can be shown from

PMs|Y i
1
(m|yi1)

= PMs|Y i−1
1

(m|yi−1
1 )

PYi|Ms,Y
i−1
1

(yi|m, yi−1
1 )

PYi|Y i−1
1

(yi|yi−1
1 )

= PMs|Y i−1
1

(m|yi−1
1 )

PYi|Xi,Y
i−1
1

(yi|x, yi−1
1 )

PYi|Y i−1
1

(yi|yi−1
1 )

= PMs|Y i−1
1

(m|yi−1
1 )

PXi|Yi,Y
i−1
1

(x|yi, yi−1
1 )

PXi|Y i−1
1

(x|yi−1
1 )

.

(19)

Repeating this process, we have a coherent-processing
receiver based on updating the receiver knowledge.

There are two assumptions we make to simplify the
analysis of capacity with a general coherent processing.
Below are these assumptions.

First, we assume that the control signal li is kept con-
stant within each symbol period (let us say, ∆). Sup-
pose that the i-th input symbol Xi is transmitted over
the symbol period ∆. During this symbol period, the
receiver would be able to continuously update the pos-
terior distribution of Xi, which makes the effective input
distribution deviate from the prior distribution. With
the updated input distribution, the optimal control sig-
nal that maximizes the mutual information at each time
instant might also change. But, here we assume that the
control signal li is determined at the beginning of each
symbol period and kept constant during ∆.

Second, we will approximate the output Poisson pro-
cess in each symbol period as a Bernoulli process, indic-
ating either 0 or 1 photon arrival. This assumption may
not degrade the rate performance in a significant way

when the mean photon number E per symbol is small
enough.

The main result of our paper is the following theorem:

Theorem 4 Consider a receiver front end as shown in
Figure 1, and a control signal that is kept constant within
each symbol of a codeword but updated from one symbol
to the next. The photon counter at the receiver detects
whether or not there are any photon arrivals within each
symbol period. Suppose that the transmitted symbols are
drawn from a finite alphabet, i.e., for the i-th channel,
i = 1, . . . , N , the transmitted optical signal |Xi〉 is chosen
from Xi ∈ X ⊂ C with |X | finite. Input symbols satisfy
a mean-photon-number constraint E[|Xi|2] = E per mode
(per channel use). Then the achievable photon informa-
tion efficiency (nats/photon) is bounded above as

Ccoherent(E)

E ≤ log
1

E − log log
1

E +O(1) (20)

when E → 0.

Proof. Appendix D.
Thus the achievable photon information efficiency with

the Kennedy-Dolinar receiver front end is not signific-
antly different from that of ideal direct detection alone.
The intuition behind this theorem might be explained
by the power of coding technique: the feedback control
signal can adjust the channel according to the evolving
posterior distribution of the channel input, in order to
maximize the information efficiency. After each channel
use, the posterior distribution of the input moves away
from the optimal input distribution. However, when a
new input symbol is transmitted, the proper encoding
can adjust the input distribution back to be close to
the optimal input distribution. Therefore, there is no
much effect the feedback control signal can bring in to
the coded transmission until the very end of the commu-
nication, when the input distribution cannot be adjusted
back to be optimal by the encoding since there are only a
few particular messages that dominate the posterior dis-
tribution over the possible messages. Note that despite
the capacities in Eqs. (20) and (17) being identical, the
codes that the respective receiver may employ to attain
this capacity may be very different.

This theorem is a useful step in understanding the
performance of a more general coherent-processing re-
ceiver with joint processing over multiple symbols. Let
us consider the general receiver construct shown in
Fig. 5, which is the natural generalization of the ori-
ginal Dolinar receiver idea as we describe below. The
received codeword |X1〉|X2〉 . . . |XN 〉, where each Xi

is drawn from an alphabet, is processed by a gen-
eral passive linear optical transformation—a circuit that
can be composed of beamsplitters and phase shifters—
to produce an K-mode product coherent state vec-
tor |Z1〉|Z2〉 . . . |ZK〉, where Z = U1X with Z =
[Z1, Z2, . . . , ZK ]T, X = [X1, X2, . . . , XN , 0, . . . , 0]T, and
U1 is a K-by-K complex-valued unitary matrix. Fig. 5
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Figure 5. General coherent-processing receiver with joint pro-
cessing over multiple symbols. At the first stage, the receiver
codeword |X1〉|X2〉 . . . |XN 〉 augmented with (K − N) auxil-
iary modes |0〉 . . . |0〉 is processed by a set of beam splitters
and phase shifters to generate a sequence of K coherent states∑N

i=1 αijXi, where
∑

j |αij |2 ≤ 1, ∀i and
∑

i |αij |2 ≤ 1,∀j.
The receiver applies control signal l1 to the first mixed sig-
nal

∑N
i=1 αi1Xi, to obtain Y1 =

∑N
i=1 αi1Xi + l1 and detect

the state with a photon counter. Given observations, a new
set of parameters for the next passive mode transformation
and the second control signal l2 are determined. We repeat
the similar process until all the K output states are detected.
With this general coherent-processing receiver, the number K
of total output states detected at the receiver can be much
larger than the number N of received states.

shows K −N auxiliary modes at the input in a product
of vacuum states. In the limit of infinite K, the mode
transformation U1 can produce arbitrarily-many out-
put amplitudes that are each arbitrarily small. Thus
the output sequence of K coherent states have complex

amplitudes,
∑N
i=1 αijXi, where

∑
j |αij |2 ≤ 1,∀i and∑

i |αij |2 ≤ 1,∀j, with equalities when the linear mode
transformation is lossless. This translates to the phys-
ical constraint of energy conservation and the fact that
duplication or noiseless amplification of coherent states
is not possible. This action, a passive mode transform-
ation, can always be broken down into O(K2) 2-input
2-output beamsplitters and phase shifters [20]. The re-
ceiver then applies an arbitrary control signal (coherent
displacement) l1 to the first output mode of U1, to ob-

tain Y1 =
∑N
i=1 αi1Xi + l1 and uses a photon detector

to detect it. The detection outcome (a click or not) is
then used to determine another linear mode transforma-
tion U2 that mixes the K − 1 remaining coherent states
as well as to determine the coherent displacement l2 ap-
plied to the first output mode produced by U2 to produce

Y2 =
∑N
i=1 α

′
i2Xi + l2, and so on. The receiver progress-

ively detects output coherent states |Y1〉, |Y2〉, . . . , |YK〉,
while allowing for the control signals lj as well as the
mixing parameters to be updated adaptively in each step
based on the earlier observations. Note here that the
original Dolinar receiver is a special case of this general
receiver strategy (shown in Fig. 5) where the input is a

one-mode (N = 1) coherent state and each of the linear-
optical mode transformations U1, U2, . . . are uniform mix-
ers. One example of a uniform mixer is the linear-optical
Hadamard unitary, considered in [21].

Following the spirit of Theorem 4, we state the follow-
ing conjecture.

Conjecture 5 The maximum achievable photon inform-
ation efficiency using an optical receiver as shown in Fig-
ure 5—a collective-measurement multi-mode generaliza-
tion of the Dolinar receiver—is given by (20).

While this conjecture is a negative one, it is of immense
practical importance in understanding the power of linear
optical processing and photon detection, and may have
implications to other applications of quantum-limited op-
tical processing such as in linear optical quantum com-
puting (LOQC). Even though the codewords being dis-
criminated are a product (sequence) of (classical) coher-
ent states, the optimal capacity-achieving receiver must
use non-classical joint processing over the modulated
codeword prior to detecting it. We believe that (20)
quantifies the ultimate rate performance achievable by
absolutely any optical receiver whose workings can be de-
scribed quantitatively correctly using the semi-classical
(shot noise) theory of photo detection. Direct detec-
tion without any feedback or coherent pre-processing can
already attain this performance. This conjecture’s truth
would imply that in order to achieve the photon inform-
ation efficiency predicted by the Holevo limit, it would
be necessary to use truly quantum processing within the
receiver. Examples of such actions include replacing the
coherent-state local control signals with squeezed states,
or mixing the received codeword with a locally prepared
N -mode entangled state prior to detection. In order to
analyze such receivers, we can no longer use shot-noise
(Poisson-limited) noise models, and must resort to the
full quantum theory of photo detection.

In recent work, Rosati et al. proved the aforesaid con-
jecture for a receiver structure we consider above, but
restricted to the case of no auxiliary vacuum modes, i.e.,
U1 acting on N modes, U2 on N−1 modes, and so on [22].
It will be interesting to consider whether their proof tech-
nique applies to the more general case.

Finally, we would like to note that even though we
believe that the receiver structure described in Conjec-
ture 5 (a collective-measurement multi-mode generaliza-
tion of the Dolinar receiver) is ineffective in attaining ca-
pacity that is any better than what ideal direct detection
alone can, this type of all-optical pre-processing can im-
mensely lessen the peak-power requirements compared to
the high-peak-power OOK modulation that must be used
by the direct-detection receiver to attain rate perform-
ance as stated in (17). An example of such a receiver was
described in [21], using which a binary-phase-shift-keying
modulation (which has the minimum possible peak power
in the E � 1 regime) could achieve the same rate scal-
ing as in (17). The scheme in [21] uses a passive linear-
mode mixing on the codeword symbols, but does not use
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any local signals prior to detection. In order to attain
10 bits/photon using OOK (or, pulse-position) modu-
lation with direct detection, one would require roughly
3 orders of magnitude higher peak power compared to
this scheme. For deep-space communications, reduction
in the peak laser-power requirement could translate to
much longer ranges being made possible.

IV. CONCLUSION

We studied the general coherent-state hypothesis-
testing problem and the capacity of the pure-loss optical
channel with a general coherent-processing receiver—a
receiver that uses ideal direct detection, and coherent
electro-optic feedback control that mixes a coherent-state
local oscillator with the incoming signal while it is being
detected. We re-interpreted Dolinar’s receiver for optim-
ally discriminating binary coherent-state hypotheses as
an instantaneous optimization of the communication effi-
ciency using recursively-updated knowledge based on the
observed photon-arrival events. Using this viewpoint, we
presented a natural generalization of Dolinar’s receiver
design to the general M -ary coherent-state hypothesis-
testing problem. We analyzed the information capacity
attained with this generalized Kennedy-Dolinar receiver
front end (shown in Figure 1), and compared the result
with that of an ideal direct-detection receiver (with no in-
ternal feedback or coherent processing) as well as to that
achievable by an unconstrained quantum-limited joint-
detection receiver (the Holevo limit), using appropriate
scalings in the low photon-number-per-mode regime.

Our main result in Theorem 4 is a negative result,
but is of practical importance. It implies that in order
to achieve the photon information efficiency predicted
by the Holevo limit, it is necessary to resort to truly
quantum-limited processing that may include using en-
tanglement or squeezing locally within the receiver, des-
pite the fact that the state of the codeword being de-
modulated is completely classical. We conjectured that
no semi-classical receiver strategy, even one that mixes
the received codeword symbols using an arbitrary cir-
cuit of passive elements prior to applying adaptive local
control signals, would yield any significant performance
improvement over direct detection. Finally, we argued
that even if the aforesaid conjecture is true, coherent pre-
processing and electro-optic coherent-feedback-control-
based optical receiver can immensely reduce the strain on
the transmitter and coding fronts, for instance by redu-
cing the peak-transmit-power requirements over a highly
lossy optical channel.
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Appendix A: Proof of Lemma 1

In Lemma 1, we show that the optimal choice of the
control signal l of Dolinar receiver that maximizes the
mutual information I(H;Y ) between binary hypothesis
H ∈ {0, 1} and receiver output Y ∈ {0, 1} equals

l∗ =
S0π0 − S1π1

π1 − π0
, (A1)

where {π0, π1} and {S0, S1} are input probabilities and
signal amplitudes for hypothesis H ∈ {0, 1}, respect-
ively. The channel distribution PY |H between hypothesis
H and receiver output Y is

PY |H(j|i) =

{
e−λi∆, j = 0,

1− e−λi∆, j = 1,
(A2)

where λi = |Si + l|2 for i = 0, 1. The mutual information
I(H;Y ) of this channel with input probabilities {π0, π1}
equals

I(H;Y )

=π0

(
e−λ0∆ log

e−λ0∆

π0e−λ0∆ + π1e−λ1∆

+
(
1− e−λ0∆

)
log

1− e−λ0∆

1− π0e−λ0∆ − π1e−λ1∆

)

+ π1

(
e−λ1∆ log

e−λ1∆

π0e−λ0∆ + π1e−λ1∆

+
(
1− e−λ1∆

)
log

1− e−λ1∆

1− π0e−λ0∆ − π1e−λ1∆

)
.

(A3)

As ∆→ 0, this mutual information can be approximated
as

I(H;Y ) =

(π0λ0 log λ0 + π1λ1 log λ1

−(π0λ0 + π1λ1) log(π0λ0 + π1λ1)) ∆ +O(∆2).

(A4)

With the control signal l∗ in (A1), the mutual inform-
ation I(H;Y ) is equal to

I(H;Y )|l=l∗ =

(
(S0 − S1)2π0π1

π1 − π0
log

π1

π0

)
∆ +O(∆2).

(A5)
We next show that with any other value for the control

signal l, the resulting mutual information cannot exceed
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the right-hand side of (A5). To show this, we use the
results in [10, 23] that when binary input states of amp-
litudes {S0, S1} with probabilities {π0, π1} are measured
by any single-symbol (unentangling) measurement, the
resulting mutual information is bounded above by

I(H;Y ) ≤ HB (π0)−HB (P ∗e ) (A6)

where

HB(p) = −p log p− (1− p) log(1− p),

P ∗e =
1−

√
1− 4π0π1e−(S0−S1)2∆

2
.

(A7)

As ∆→ 0, P ∗e in (A7) can be approximated as

P ∗e =

1

2

(
1− |π0 − π1|

(
1 +

2π0π1(S0 − S1)2∆

(π0 − π1)2

))
+O(∆2).

(A8)

By using this, we can show that the right hand side
of (A6) is

HB(π0)−HB(P ∗e )

=

(
(S0 − S1)2π0π1

π1 − π0
log

π1

π0

)
∆ +O(∆2).

(A9)

This proves that l∗ in (A1) is the optimal choice of l that
maximizes I(H;Y ) in (A4).

Appendix B: Proof of Lemma 2

In Lemma 2, we find the optimal control signal l∗(t)
of the coherent receiver from the recursive mutual-
information-maximization procedure and show that the
resulting probability of error for binary hypothesis test-
ing achieves the YKL limit [7, 8], the lower bound on
the detection error probability over all possible quantum
receivers.

To find the optimal control signal l(t) over time t,
we consider S0(t), S1(t) and l(t) for each infinitesimal
interval t ∈ [k∆, (k + 1)∆) of length ∆ > 0 for k ∈
{0, 1, . . . }. When S0 and S1 denote the constant values
of S0(t) and S1(t), respectively, for a very small inter-
val t ∈ [k∆, (k + 1)∆), the optimal control signal l∗ that
maximizes the mutual information between input hypo-
thesis of probabilities {π0,π1} and receiver output over
the symbol period ∆ is

l∗ =
S0π0 − S1π1

π1 − π0
(B1)

as shown in Lemma 1. When we choose the control sig-
nal l(t) by recursive mutual-information-maximazation
procedure and make ∆ → 0, the optimal control signal
becomes

l∗(t) =
S0(t)π0(t)− S1(t)π1(t)

π1(t)− π0(t)
(B2)

where π0(t) and π1(t) are posterior probabilities over the
two hypotheses, conditioned on the trace of output of the
coherent receiver until time t. The question is then how
the two posterior probabilities π0(t) and π1(t) evolve over
time t.

We first focus on the first length-∆ interval, i.e, t ∈
[0,∆), and find π0(∆) and π1(∆). Define π0 := π0(0),
π1 := π1(0) and assume that π0 ≥ π1 without loss of
generality. We define

g(t) := max{π0(t)/π1(t), π1(t)/π0(t)}. (B3)

Note that g(0) = π0/π1 ≥ 1. When the output of the
receiver during the first ∆ interval is denoted as Y0 ∈
{0, 1}, for Y0 = 0

Pr(H = 0|Y0 = 0)

Pr(H = 1|Y0 = 0)
=
π0

π1
· Pr(Y0 = 0|H = 0)

Pr(Y0 = 0|H = 1)

=
π0

π1
· e
−(S0(0)+l(0))2∆

e−(S1(0)+l(0))2∆
.

(B4)

By plugging the optimal control signal l(0),

l(0) =
S0(0)π0 − S1(0)π1

π1 − π0

=
S1(0)− S0(0)g(0)

g(0)− 1
,

(B5)

which maximizes the mutual information over the first
symbol period ∆, we obtain

Pr(H = 0|Y0 = 0)

Pr(H = 1|Y0 = 0)
=
π0

π1
· e(S0(0)−S1(0))2 g(0)+1

g(0)−1
∆. (B6)

Note that Pr(H = 0|Y0 = 0)/Pr(H = 1|Y0 = 0) ≥ π0/π1

since g(0) ≥ 1.
When Y0 = 1, on the other hand, the ratio between

the two posterior probabilities becomes

Pr(H = 0|Y0 = 1)

Pr(H = 1|Y0 = 1)
=
π0

π1
· Pr(Y0 = 1|H = 0)

Pr(Y0 = 1|H = 1)

=
π0

π1
· 1− e−(S0(0)+l(0))2∆

1− e−(S1(0)+l(0))2∆
.

(B7)

As ∆→ 0,

Pr(H = 0|Y0 = 1)

Pr(H = 1|Y0 = 1)
=
π0

π1
· (S0(0) + l(0))2

(S1(0) + l(0))2
+O(∆)

=
π1

π0
+O(∆).

(B8)

The ratio between the two posterior probabilities condi-
tioned on Y0 = 1 in (B8) is approximately inverse of that
conditioned on Y0 = 0 in (B6). Therefore, g(t) in (B3),
indicating how much the receiver is committed to the
more likely hypothesis, is uniquely determined and in-
creases at a prescribed rate regardless of photon arrivals
over time [0, t).
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To find how g(t) evolves over time t, without loss of
generality we focus on a particular case where no photon
arrives during [0, t). From (B6),

g(∆) =
π0

π1
· e(S0(0)−S1(0))2 g(0)+1

g(0)−1
∆. (B9)

Under the assumption that no photon arrives for the next
(N−1) intervals, i.e., for the sequence of all-zero outputs
Y1 = · · · = YN−1 = 0, we obtain the following recursive
equation for g(N∆):

g(N∆) =
Pr(H = 0|Y N−1

0 = 0)

Pr(H = 1|Y N−1
0 = 0)

=
π0

π1
e(

∑N−1
k=0 ((S0(k∆)−S1(k∆))2 g(k∆)+1

g(k∆)−1
∆)).

(B10)

By taking ∆→ 0, we obtain

g(t) =
π0

π1
exp

[∫ t

0

(
(S0(τ)− S1(τ))

2 · g(τ) + 1

g(τ)− 1

)
dτ

]

=g(0) exp

[∫ t

0

(
(S0(τ)− S1(τ))

2 · g(τ) + 1

g(τ)− 1

)
dτ

]
.

(B11)

Let N(t) be the number of photon arrivals observed
during [0, t). We showed that whenever a photon arrives
at the receiver, the ratio π0(t)/π1(t) between two pos-
terior probabilities gets flipped. Therefore, starting from
g(0) = π0/π1 ≥ 1, g(t) defined in (B3) equals π0(t)/π1(t)
if N(t) is even, and equals π1(t)/π0(t) if N(t) is odd.
By using this relation, the optimal control signal l∗(t)
in (B2) can be written in terms of g(t) as

l∗(t) =

{
l0(t) if N(t) is even
l1(t) if N(t) is odd

(B12)

where

l0(t) =
S1(t)− S0(t)g(t)

g(t)− 1
, l1(t) =

S0(t)− S1(t)g(t)

g(t)− 1
.

(B13)
Furthermore, the final decision of more likely hypothesis

at t = T is Ĥ = 0 if N(T ) is even, and Ĥ = 1 otherwise.
The average probability of error is then equal to Pe =
min{π0(t), π1(t)}, and by the definition of g(t),

Pe =
1

1 + g(t)
. (B14)

When we solve the recursive equation on g(t) in (B11),
we obtain

g(t) =
(1 + g(0))2

2g(0)
em(t) − 1

+
1 + g(0)

2g(0)

√
(1 + g(0))2e2m(t) − 4g(0)em(t)

(B15)

where m(t) =
∫ t

0
(S0(τ)−S1(τ))2dτ . The resulting Pe is

Pe =
1

1 + g(t)

=
1

2

(
1−

√
1− 4π0π1e

−
∫ t
0

(S0(τ)−S1(τ))2dτ

)
,

(B16)

which is equal to the YKL limit.

Appendix C: Proof of Lemma 3

In Lemma 3, we show that the capacity of optical chan-
nel with direction direction is

CDD(E) = E log
1

E − E log log
1

E +O(E) (C1)

where E is the mean photon number per channel use.
This capacity is achievable with on-off keying inputs

|S〉 =

{ |0〉, with prob. 1− p∗
|
√
E/p∗〉, with prob. p∗

(C2)

where limE→0
p∗

E
2 log 1

E
= 1.

The converse part of this lemma, i.e., that the capa-
city of optical channel with direction detection can never
exceed

E log
1

E − E log log
1

E +O(E), (C3)

is implied from the converse proof of Theorem 4, which
considers a more general receiver type, which makes the
direct detection as a special case.

Here we prove the achievability of the capacity in (C1)
with on-off-keying inputs (C2). When direct-detection
receiver measures the off signal, i.e., |S〉 = |0〉, which
is transmitted with probability 1 − p∗, the output of
direction-detection receiver, which counts the number
of photon arrivals per symbol period, equals 0 with
probability 1. On the other hand, when on-signal
|S〉 = |

√
E/p∗〉 is transmitted with probability p∗, the

direction-detection receiver observes 0 photon with prob-
ability e−E/p

∗
and at least 1 photon with probability

1 − e−E/p∗ . The mutual information between the on-off
keying input S and binary output Y of the direction-
detection receiver equals

I(S;Y ) = HB

(
p∗
(

1− e− Ep∗
))
− p∗HB

(
1− e− Ep∗

)

(C4)

where HB(p) = −p log p− (1− p) log(1− p).
For p∗ = E

2 log 1
E , by using the Taylor expansion, we

can approximate

1− e− Ep∗ =
2

log(1/E)
+O

(
1

(log(1/E))2

)
,

p∗
(

1− e− Ep
)

= E +O

(
1

(log(1/E))

)
,

(C5)
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as E → 0. By using these approximations and HB(q) =
−q log q + q +O(q2) as q → 0, we can show that

HB

(
p∗
(

1− e− Ep∗
))

= E log
1

E +O(E),

p∗HB

(
1− e− Ep∗

)
= E log log

1

E +O(E).

(C6)

From (C4) and (C6), we obtain

I(S;Y ) = E log
1

E − E log log
1

E +O(E). (C7)

By combining with the converse part, this achievability
result implies (C1).

Appendix D: Proof of Theorem 4

In Theorem 4, we show that the achievable photon
information efficiency for pure-state optical channels with
coherent-processing receiver is bounded above by

Ccoherent(E)

E ≤ log
1

E − log log
1

E +O(1) (D1)

where E is the mean-photon-number constraint for the
input coherent state |Xi〉, Xi ∈ X ⊂ C, for finite |X |,
i.e.,

E[|Xi|2] ≤ E . (D2)

From Lemma 3, it can be easily shown that the equality
in (D1) is achievable with coherent-processing receiver,
since coherent-processing receiver is equivalent to direct-
detection receiver when the control signal is fixed to 0
over all communication periods, and Lemma 3 shows
that the right hand side of (D1) is achievable with the
direct-detection receiver for on-off-keying input signal-
ing. The remaining thing to show is the converse part of
the theorem, i.e., the claim that with coherent-processing
receiver one can never achieve photon information effi-
ciency better than the right hand side of (D1).

Suppose that a message is chosen from a set
{1, . . . , eNR} with equal probabilities and is transmitted
by N uses of the optical channel. The i-th transmit-
ted optical signal (coherent state) is denoted by |Xi〉,
Xi ∈ X ⊂ C, and the associated output of the coherent-
processing receiver is denoted by Yi ∈ {0, 1}, indicating
0 or 1 photon arrival during a very short symbol period.
We use the notation Y ji , j > i, to indicate a sequence
of output random variables (Yi, Yi+1, . . . , Yj). When Ms

and M̂s(Y
N
1 ) denote the transmitted message and the

estimate of it based on the output sequence Y N1 , respect-
ively, decoding error probability after N uses of the chan-
nel is defined as

P (N)
e = Pr(Ms 6= M̂s(Y

N
1 )). (D3)

From Fano’s inequality [24], the decoding error probab-

ility P
(N)
e is bounded below as

P (N)
e ≥ 1− I(XN

1 ;Y N1 )

NR
− ln 2

NR
. (D4)

If R >
I(XN

1 ;Y N
1 )

N , this lower bound is larger than 0,

meaning that P
(N)
e does not converge to 0 even when

N →∞. Therefore, the capacity Ccoherent(E) of coherent-
processing receiver, which is the maximum information

rate that guarantees P
(N)
e → 0 as N → ∞, is bounded

above by

Ccoherent(E) ≤ I(XN
1 ;Y N1 )

N
. (D5)

We next find an upper bound on I(XN
1 ;Y N1 ). First note

that

I(XN
1 ;Y N1 ) =

N∑

i=1

(
H(Yi|Y i−1

1 )−H(Yi|XN
1 , Y

i−1
1 )

)

=

N∑

i=1

(
H(Yi|Y i−1

1 )−H(Yi|Xi, Y
i−1
1 )

)

=

N∑

i=1

I(Xi;Yi|Y i−1
1 )

=

N∑

i=1

EY i−1
1

[I(Xi;Yi|Y i−1
1 = yi−1

1 )],

(D6)

where the first equality is from the chain rule and defin-
ition of the mutual information, and the second equality
is from the fact that Yi is independent of {Xi−1

1 , XN
i+1}

conditioned on the i-th input Xi and the past obser-
vations Y i−1

1 . The third and the fourth equalities are
from the definition of the conditional mutual information
I(Xi;Yi|Y i−1

1 ).

We next provide an upper bound on I(Xi;Yi|Y i−1
1 =

yi−1
1 ), which is independent of Y i−1

1 = yi−1
1 . Since

the transmitter does not know the past channel outputs
Y i−1

1 = yi−1
1 at the receiver, the i-th input symbol Xi

is independent of Y i−1
1 = yi−1

1 . On the other hand, the
i-th output symbol Yi depends not only on the i-th input
Xi but also on the past channel outputs Y i−1

1 = yi−1
1

through the control signal li(y
i−1
1 ) as

Pr(Yi = 0|Xi, Y
i−1
1 = yi−1

1 ) = e−|Xi+li(y
i−1
1 )|2 ,

Pr(Yi = 1|Xi, Y
i−1
1 = yi−1

1 ) = 1− e−|Xi+li(y
i−1
1 )|2 ,

(D7)

for Xi ∈ X ⊂ C. Here, for simplicity, we subsume the
symbol period ∆ into the input signal Xi and the con-
trol signal li, i.e., for symbol period ∆, complex field
amplitudes of the input and the control signal are kept
constant as Xi/

√
∆ and li/

√
∆, respectively. Due to

the constraint on mean photon number per channel use,
the input random variable Xi in (D7) should satisfy
E[|Xi|2] ≤ E .

For a complex constant value l, which is fixed during
a symbol period ∆, define a channel distribution PY |X
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such that

PY |X(Y = 0|X) = e−|X+l|2 ,

PY |X(Y = 1|X) = 1− e−|X+l|2 .
(D8)

When we define Il(PX , PY |X) as the mutual information
between X and Y with input distribution PX and chan-
nel distribution PY |X in (D8), the conditional mutual

information I(Xi;Yi|Y i−1
1 = yi−1

1 ) with some input dis-
tribution PXi

and channel distribution (D7) is bounded
above as

I(Xi;Yi|Y i−1
1 = yi−1

1 ) ≤ max
PX ,l

Il(PX , PY |X). (D9)

From (D6) and (D9), we obtain

I(XN
1 ;Y N1 ) ≤ N

(
max
PX ,l

Il(PX , PY |X)

)
, (D10)

which implies

Ccoherent(E) ≤ max
PX ,l

Il(PX , PY |X) (D11)

from (D5).
We next show that maxPX ,l Il(PX , PY |X) is bounded

above by

max
PX ,l

Il(PX , PY |X) ≤ E log
1

E −E log log
1

E +O(E). (D12)

To show this, we use the mathematical induction. We
first show that for every binary input states, i.e., when
|X | = 2, the bound (D12) holds. We next assume
that the bound (D12) holds when the input set X is
constrained to have L number of elements, i.e., when
|X | = L. We then show that the same bound holds when
|X | = L+ 1. This will imply that the bound (D12) holds
for any finite |X |.

Let RL(E) denote maxPX ,l Il(PX , PY |X) under the con-
straint on the cardinality of the input set |X | = L, i.e.,

RL(E) := max
|X |=L

(
max
PX ,l

Il(PX , PY |X)

)
. (D13)

We first show that

R2(E) ≤ E log
1

E − E log log
1

E +O(E) (D14)

for |X | = 2. This bound can be implied by using Lemma
1 in [25]. Lemma 1 in [25] shows that when binary-input
coherent state with mean-photon-number constraint of
E is detected by optimal single-symbol receiver measure-
ment, which maximizes the mutual information of the in-
duced channel, the resulting maximum mutual informa-
tion is bounded above by the the right hand side of (D14).
The coherent-processing receiver, which is composed of
a mixture of a feedback signal followed by the direction-
detection receiver, is a special case of the single-symbol

receiver measurement. Therefore, Lemma 1 in [25] im-
plies that the bound in (D14) holds for every binary-
input states of mean photon number E detected by the
coherent-processing receiver.

We next show that the same upper bound holds for
RL+1, i.e.,

RL+1(E) ≤ E log
1

E − E log log
1

E +O(E), (D15)

when we assume that

RL(E) ≤ E log
1

E − E log log
1

E +O(E). (D16)

We first consider real-valued input signals, i.e., X ∈
X ⊂ R, and then later generalize the result for complex-
valued input signals. For a fixed feedback control sig-
nal l ∈ R and the input set X = {S′1, . . . , S′L+1} ⊂ R,
without loss of generality, we can rearrange those (L+1)
amplitudes such that

|S1 + l|2 ≤ · · · ≤ |SL+1 + l|2. (D17)

We denote the input distribution over the re-arranged
input set {S1, . . . , SL+1} as {p1, · · · , pL+1}, i.e., Pr(X =
Si) = pi. The resulting mutual information for the given
input distribution and a fixed l is

Il(PX , PY |X)

= HB

(
L+1∑

i=1

pie
−|Si+l|2

)
−
L+1∑

i=1

piHB

(
e−|Si+l|2

) (D18)

where the entropy HB(p) for some Bernoulli random vari-
able Z ∼ Bernoulli(p) is defined by

HB(p) = −p log p− (1− p) log(1− p). (D19)

Define a random variable N1 based on X such that

N1 =

{
0, when X ∈ {S1, . . . , SL},
1, when X = SL+1,

(D20)

Since N1 is deterministic given X,

Il(PX , PY |X) = I(N1, X;Y ) = I(N1;Y ) + I(X;Y |N1).
(D21)

We first find an upper bound on I(X;Y |N1). Note that

I(X;Y |N1)

=

(
L∑

i=1

pi

)
I(X;Y |N1 = 0) + pL+1I(X;Y |N1 = 1)

=

(
L∑

i=1

pi

)
HB




L∑

j=1

pj(∑L
i=1 pi

) · e−|Sj+l|2



−
L∑

j=1

pj(∑L
i=1 pi

)HB

(
e−|Sj+l|2

)



(D22)
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since I(X;Y |N1 = 1) = 0. Let E2 denote the average
number of effective photons used to encode the informa-
tion in X conditioned on N1 = 0:

E2 =

L∑

j=1

pj(∑L
i=1 pi

)
∣∣Sj − S

∣∣2 (D23)

where S =
∑L
i=1 (pi · Si) /

(∑L
i′=1 pi′

)
is

the average amplitude of the input signal
{S1, . . . , SL} with normalized probabilities

{p1/
(∑L

i′=1 pi′
)
, . . . , pL/

(∑L
i′=1 pi′

)
} conditioned

on N1 = 0. When we calculate the average number of
effective photons conditioned on N1 = 0, we consider
the amplitude |Si − S| instead of Si, since we can make
a common offset to the signals {S1, . . . , SL} by using the
common control signal l without any cost. From (D22)
and the definition of RL(E) in (D13),

I(X;Y |N1) ≤
(

L∑

i=1

pi

)
·RL(E2). (D24)

We next find an upper bound on I(N1;Y ) in (D21). Note

that the input distribution PN1
is {∑L

i=1 pi, pL+1} and
the channel distribution PY |N1

is

PY |N1
(Y |N1 = 0)

=





∑L
j=1

pj

(
∑L

i=1 pi)
e−|Sj+l|2 for Y = 0,

1−∑L
j=1

pj

(
∑L

i=1 pi)
e−|Sj+l|2 for Y = 1,

PY |N1
(Y |N1 = 1) =

{
e−|SL+1+l|2 for Y = 0,

1− e−|SL+1+l|2 for Y = 1,

(D25)

The corresponding mutual information between N1 and
Y is

I(N1;Y ) = HB

(
L+1∑

i=1

pi · e−|Si+l|2
)

−
(

L∑

i=1

pi

)
·HB




L∑

j=1

pj(∑L
i=1 pi

)e−|Sj+l|2



− pL+1 ·HB

(
e−|SL+1+l|2

)
.

(D26)

Define a new channel distribution QY |N1
such that

QY |N1
(Y |N1 = 0) =

{
e−|S+l|2 for Y = 0,

1− e−|S+l|2 for Y = 1,

QY |N1
(Y |N1 = 1) = PY |N1

(Y |N1 = 1), Y ∈ {0, 1}.
(D27)

For this channel distribution, when N1 = 0
a coherent state |S〉 is transmitted where S =

∑L
i=1 (pi · Si) /

(∑L
i′=1 pi′

)
, and when N1 = 1 a coherent

state |SL+1〉 is transmitted. The average number E1 of
photons to encode N1 for this new channel equals

E1 =

(
L∑

i=1

pi

)
· |S|2 + pL+1 · |SL+1|2 (D28)

From the definition of RL(E) in (D13), the maximum
mutual information between input N1 and output Y with
the channel QY |N1

is bounded above by

Il(PN1
, QY |N1

) ≤ R2(E1). (D29)

We next show that

Il(PN1 , PY |N1
) ≤ Il(PN1 , QY |N1

) (D30)

for any fixed l, which will imply that I(N1;Y ) in (D21)
is bonded above by

I(N1;Y ) ≤ R2(E1). (D31)

To show (D30), we will use the following lemma.

Lemma 6 For a binary channel WY |X with the binary
input distribution PX such that {p0, p1}, let the binary-
output channel distribution WY |X(Y |X = 1) be {t1, 1 −
t1} and WY |X(Y |X = 1) be {t0, 1 − t0} for t0 ≥ t1 ≥ 0.
Let f(t0) denote the mutual information I(PX ,WY |X)
for a fixed (t1, p0, p1) as a function of t0. Then, f(t0)
decreases monotonically as t0 decreases and approaches
t1.

Proof. For a fixed t1, let us denote the channel dis-
tribution WY |X as a function of t0 by a matrix Wt0 :=(
t0 1− t0
t1 1− t1

)
. For t2 such that t0 ≥ t2 ≥ t1, there exists

r ∈ [0, 1) such that r ·Wt0 + (1 − r) ·Wt1 = Wt2 . Since
mutual information I(PX ,WY |X) is convex in WY |X
for a fixed PX , f(t0) is also convex in t0. Therefore,
r · f(t0) + (1 − r) · f(t1) ≥ f(t2). Since f(t1) = 0, the
convexity gives f(t0) ≥ r · f(t0) ≥ f(t2) for any (t0, t2)
such that 1 ≥ t0 ≥ t2 ≥ t1 ≥ 0. This implies that
f(t0) decreases monotonically as t0(> t1) decreases and
approaches t1.

For PY |N1
in (D25) and QY |N1

in (D27), if we show

e−|SL+1+l|2 ≤
L∑

j=1

pj(∑L
i=1 pi

)e−|Sj+l|2 ≤ e−|S+l|2 ,

(D32)
Lemma 6 implies (D30). In (D32), the first inequality
is valid from the ordering of {S1, . . . , SL+1} that sat-
isfies (D17). The second inequality is also valid since

e−|x+l|2 is concave in x when |x+ l|2 ≤ 1/2, and |Sj + l|2
for j = 1, . . . , L as well as |S + l|2, which are the mean
photon number received per channel use for each input
signal Sj and S, respectively, are sufficiently small due
to our assumption of very short symbol period ∆ → 0.
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Therefore, (D32) is valid and by using Lemma 6 we can
show (D30), which implies (D31). By plugging the up-
per bounds on I(N1;Y ) in (D31) and on I(X;Y |N1) in
(D24) into (D21), we obtain

Il(PX , PY |X) ≤ R2(E1) +

(
L∑

i=1

pi

)
·RL(E2) (D33)

where E1 and E2 are defined as (D28) and (D23), respect-
ively. Moreover, it can be shown that

E1 +

(
L∑

i=1

pi

)
· E2

=

L∑

i=1

pi
∣∣Si − S

∣∣2 +

(
L∑

i=1

pi

)
|S|2 + pL+1|SL+1|2

=

(
L∑

i=1

pi

)
(
2|S|2 + |Si|2 − 2SiS

)
+ pL+1|SL+1|2

=

L+1∑

i=1

pi|Si|2 = E .

(D34)

When we denote E1 = (1− α)E and E2 = αE/β for some

α ∈ (0, 1) and β :=
(∑L

i=1 pi

)
< 1, the upper bound on

Il(PX , PY |X) in (D33) becomes

Il(PX , PY |X) ≤ R2 ((1− α)E) + βRL (α · E/β) . (D35)

From (D14) and the assumption (D16), Il(PX , PY |X) in
the bound (D35) can be further bounded above as

Il(PX , PY |X) ≤ E log
1

E − E log log
1

E +O(E) (D36)

for any 0 < α, β < 1. This inequality holds for every
input set X of (L + 1) real-valued elements with peri >
0, for i = 1, . . . , L + 1, under the mean-photon-number
constraint of E , regardless of the choice of the control
signal l ∈ R.

We next extend this result for complex-valued input
signals with mean photon number E . Let ER denote
the mean photon number of complex-valued coherent
state embedded in real part of the signal, and EI be
that embedded in imaginary part of the signal. Then,
ER and EI should satisfy ER + EI = E . For the op-
tical channel of interest, which is generated by the co-
herent receiver, when the input coherent state |S〉 with
complex-field amplitude S ∈ C is mixed with a local
control signal to generate |S + l〉 for some l ∈ C, the
resulting channel output follows Poisson process of rate
|S + l|2 = (Re(S + l))2 + (Im(S + l))2. Moreover, this
output Poisson process can be decomposed into two in-
dependent Poisson processes of rate (Re(S + l))2 and
(Im(S + l))2, respectively. Therefore, the capacity of
the optical channel with complex-valued coherent states
of mean photon number E is equal to the sum of ca-
pacities of two optical channels, whose inputs are real-
valued coherent states satisfying the constraints on mean
photon numbers, ER and EI, respectively. By using the
upper bound (D36) on the capacity of the optical channel
with real-valued arbitrary (L+ 1) inputs, we can bound
the maximum capacity RL+1(E) with arbitrary (L + 1)-
complex-valued coherent states as

RL+1(E) ≤ ER log
1

ER
− ER log log

1

ER
+O(ER)

+ EI log
1

EI
− EI log log

1

EI
+O(EI).

(D37)

By using the fact that ER + EI = E , we can show that the
bound (D37) can be written as

RL+1(E) ≤ E log
1

E − E log log
1

E +O(E) (D38)

as E → 0. Finally, by mathematical induction, (D12) is
true for any input set X ⊂ C with finite cardinality. This
completes the proof of Theorem 4.
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