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Heralded near-deterministic multi-qubit controlled phase gates with integrated error detection
have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015)]. This pro-
tocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational
qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for
two distant resonators without the cavity bus between the heralding and operational atoms. Specif-
ically, we analyze the two-qubit controlled-Z gate and its multi-qubit-controlled generalization (i.e.,
a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their suc-
cessful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator.
Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and
phase qudits in linearly-coupled transmission-line resonators with dissipation. These methods offer
a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

PACS numbers: 32.80.Qk, 42.50.Pq

I. INTRODUCTION

The ability to carry out quantum gates is one of
the central requirements for a functional quantum com-
puter [1]. For this reason, quantum gates have been ex-
tensively studied in theoretical and experimental in vari-
ous systems. These include (for reviews see [2, 3] and
references therein): superconducting circuits, trapped
ions, diamond nitrogen-vacancy centers, semiconductor
nanostructures, or linear-optical setups. Despite of such
substantial efforts, the environment-induced decoherence
still represents a major hurdle in the quest for perfect
quantum gates. To protect quantum systems from de-
coherence, three basic approaches have been explored;
namely, quantum error correction, dynamical decoupling,
and decoherence-free subspaces (for reviews see [4, 5] and
references therein). Such approaches try to cope with de-
coherence, and thus, to prevent the leakage of quantum
information from a quantum system into its environment.

Alternatively, there exists a very distinct way, where
decoherence acts as a resource, rather than as a tradi-
tional noise source [6–10]. Recent progress in treating
open quantum systems has yielded an effective operator
formalism [11, 12]. As in Ref. [12], (i) when the inter-
actions between the ground- and excited-state subspaces
of an open system initially in its ground state are suf-
ficiently weak (so it can be considered as perturbations
of the two subspaces) and also (ii) when the interactions
inside the ground-state subspace are much smaller than
those inside the excited-state subspace, one can adiabat-
ically eliminate these excited states in the presence of
both unitary and dissipative dynamics, and obtain an
effective master equation containing the effective Hamil-

tonian, as well as the effective Lindblad operators, associ-
ated only with the ground states. In addition to reducing
the complexity of the time evolution for an open quan-
tum system, this approximation treatment is applicable
to the explorations of decay processes, hence may lead
to a better performance than that in the case of relying
upon coherent-unitary dynamics.

So far, such a formalism has been widely used for dis-
sipative entanglement preparation [11, 13–18], quantum
phase estimation [19] and other applications [20–23]. In
particular, Borregaard et al. presented a heralded near-
deterministic method for quantum gates in a single opti-
cal cavity [24], with a significant improvement in the er-
ror scaling, compared to deterministic cavity-based gates.
However, in order to carry out scalable quantum infor-
mation processing, a distant herald for quantum gates
in coupled resonators is of a great importance concern-
ing both experimental feasibility and fundamental tests
of quantum mechanics.

The goal of this paper is to propose and analyze an
approach to heralding controlled quantum gates in two
macroscopically distant resonators, by generalizing the
single-resonator method of Borregaard et al. [24]. We
use an auxiliary quartit atom, which is located in one
resonator and driven by two coherent fields, to distantly
herald controlled phase gates acting on the two lowest
levels of qutrit atoms, which are located in the other res-
onator. These controlled phase operations studied here
include the two-qubit controlled-Z gate (controlled-sign
gate) and its multi-qubit-controlled version referred to as
a Toffoli-like gate. We also propose a realization of these
gates using superconducting artificial atoms in a dissipa-
tive circuit quantum electrodynamics (QED) system.
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Circuit-QED systems, which are composed of super-
conducting artificial atoms coupled to superconducting
resonators, offer promising platforms for quantum engi-
neering and quantum-information processing [2, 25–29].
Although artificial and natural atoms are similar in var-
ious properties including, for example, discrete anhar-
monic energy levels [30–32], superconducting atoms have
some substantial advantages over natural atoms. These
include: (i) The spacing between energy levels, decoher-
ence rates, and coupling strengths between different cir-
cuit elements are tunable by adjusting external parame-
ters, thus, providing flexibility for quantum information
processing [2, 3]; (ii) The potential energies of natural
atoms have an inversion symmetry, leading to a well-
defined parity symmetry for each eigenstate. Thus, an
allowable dipole transition requires a parity change, and
can only occur between the two eigenstates having dif-
ferent parities. However, the potential energies of su-
perconducting artificial atoms can be controlled [33] by
external parameters and, in turn, the inversion symme-
try can be broken or unbroken. When the symmetry is
unbroken, each eigenstate of an artificial atom can have
a well-defined parity symmetry and, thus, exhibit a tran-
sition behavior similar to natural atoms. But when the
symmetry is broken then there is no well-defined parity
symmetry for each eigenstate and, thus, the microwave-
induced single-photon transition between any two eigen-
states can be possible. That is, the selection rules can
easily be modified [34]; (iii) The couplings between dif-
ferent circuit elements can be strong, ultrastrong (for re-
views see [3, 32]), or even deep strong [35], which, in par-
ticular, enable efficient state preparation within a short
time and with a high fidelity.

Specifically, based on circuit QED we realize a distant
herald for a multi-qubit Toffoli-like gate, whose the fi-
delity scaling is quadratically improved as compared to
unitary-dynamics-based gates in cavities [24, 36]; more-
over, heralded controlled-Z gates even with more signifi-
cant improvements can also be achieved by using single-
qubit operations. Note that the conditional measure-
ment on the heralding atom is performed to remove the
detected errors from the quantum gate. Thus, these de-
tected errors can only reduce the success probability but
not the gate fidelity. When the gate is successful, the
gate fidelity can still be very high as limited only by
the undetected errors. In contrast to previous works, a
macroscopically distant herald for quantum gates is pro-
posed in superconducting circuits via the combined effect
of the dissipative and unitary dynamics, thereby having
the potential advantage of high efficiency in experimental
scenarios. By considering only the d lowest energy levels
of a superconducting artificial atom, one can use them
as a logical qudit for performing quantum operations. In
special cases, one can operate with a qubit (for d = 2),
qutrit (for d = 3), or quartit (ququart, for d = 4). Here
we will analyze these special qudits.

This paper is organized as follows. In Sec. II, we de-
scribe a physical model for heralded quantum phase gates

and propose a superconducting circuit for its realization.
In Sec. III, we derive the effective master equation which
is used in Sec. IV to realize a multi-qubit Toffoli-like
gate. Working with single-qubit operations, Sec. V then
presents a heralded controlled-Z gate. The last section
is our summary. A detailed derivation of the effective
master equation, which is applied in Sec. III, is given in
the Appendix.

II. PHYSICAL MODEL IN
SUPERCONDUCTING CIRCUITS

The basic idea underlying our protocol is schemati-
cally illustrated in Figs. 1 and 2. Figure 1 shows our
proposal of the circuit-QED implementation of the pro-
tocol based on superconducting qudits, while the corre-
sponding energy-level diagrams of the qudits are depicted
in Fig. 2. Specifically, we consider two superconducting
transmission-line resonators A and B, connected by a
capacitor [39]. The coupling Hamiltonian, of strength J ,
for the two resonators can be expressed as (hereafter we
set ~ = 1)

HAB = J(aAa
†
B + a†AaB), (1)

where aA (aB) is the annihilation operator of the res-
onator A (B). We assume that superconducting artificial
atoms, which are treated as qudits (i.e., d-level quantum
systems) [38, 40], are coupled to the resonators. Specifi-
cally, a superconducting phase quartit is directly confined
inside the resonator A, and is used as an auxiliary quar-
tit atom to herald the success of quantum gates. Such a
quartit consists of two ground levels |g1〉 and |g2〉, as well
as two excited levels |e1〉 and |e2〉, depicted in Fig. 1(b).
Because the potential energy of the phase quartit is al-
ways broken, the quartit levels have no well-defined par-
ity symmetry [38, 41, 42]. Thus, we can couple any two
levels by applied fields. We assume that the transition
between |g2〉 and |e2〉 is coupled to the resonator A by an
inductance, with a Hamiltonian

HA = gA (aA|e2〉〈g2|+ H.c.) , (2)

where gA > 0 is a coupling strength.
In a similar manner, we couple the resonator B to N

Λ-type qutrits, for example, superconducting flux three-
level atoms [33, 43]. Each qutrit consists of two ground
levels |0〉 and |1〉, together with one excited level |2〉, de-
picted in Fig. 2(c). The lowest two levels of an atomic
qutrit are treated as qubit states. With current technolo-
gies, superconducting atoms can be made almost identi-
cal. Thus, for simplicity, we can assume that these qutrits
are identical and have the same coupling, of strength gB ,
to the resonator B. Such a coupling can be ensured by
adjusting the control signals on the qutrits and by tun-
ing the separation between any two qutrits to be much
smaller than the wavelength of the resonator B, respec-
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TABLE I. Basic notations used in this paper. Here, x = 1, 2 and z = 0, 1, 2.

notation Meaning
ωg(e),x |gx〉-(|ex〉-) level frequency
ωz |z〉-level frequency
ωc Common resonance frequency of resonators A and B
ωm,x Microwave drive x frequency
Ωx Microwave x driving amplitude strength

gA (gB) Coupling strength between the quartit (qutrit) atom and resonator A (B)
J Inter-resonator coupling strength
γg,x Decay rate from level |ex〉 to |gx〉
γx−1 Decay rate from level |2〉 to |x− 1〉
γ Total decay rate, γ = γ0 + γ1, of each qutrit atom
κ Resonator decay rate
CB Atom-resonator cooperativity, CB = g2

B/ (κγ),
∆e,1 Microwave detuning, ∆e,1 = ωe,1 − ωg,1 − ωm,1

∆e,2 Microwave detuning, ∆e,2 = ωe,2 − ωg,1 − ωm,1 − ωm,2

δ Resonator detuning, δ = ω2 − ω1 − ωm,1 − ωm,2 − ωg,1 + ωg,2

tively. The corresponding Hamiltonian is

HB = gB

N∑
k=1

(aB |2〉k〈1|+ H.c.) . (3)

where k labels the qutrits and gB > 0 is the coupling
strength of the resonator B. Note that the direct dipole-
dipole coupling between the qutrits has been neglected,
owing to their large spatial separations. Nevertheless,
these qutrits can interact indirectly via the common field
aB of the resonator B, analogously to the model of three-
level quantum dots in a resonator studied for quantum-
information processing in Refs. [44, 45]. Because the
Josephson junctions are nonlinear circuits elements [32],
and therefore the resulting levels are highly anharmonic
compared to the driving strengths as well as to the atom-
resonator coupling strengths, all transitions of the quartit
and the qutrits can be driven or coupled separately by
the control lines, as shown in Fig. 2(a).

We also assume that a microwave field at the frequency
ωm,1 drives the |g1〉 ↔ |e1〉 transition, with a driving
strength Ω1 and at the same time, the excited states
|e1〉 and |e2〉 are also coupled by means of a microwave
field at the frequency ωm,2, with a coupling strength Ω2.
The interaction Hamiltonian describing the effect of these
external drives reads as

HD =
1

2

(
Ω1e

iωm,1t|g1〉〈e1|+ Ω2e
iωm,2t|e1〉〈e2|+ H.c.

)
.

(4)
Define ωg,x, ωe,x, and ωz as the frequencies of the atomic
levels |gx〉, |ex〉, and |z〉, respectively, with x = 1, 2 and
z = 0, 1, 2. Thus, the total Hamiltonian for our system
is

HT = H0 +HA +HB +HAB +HD, (5)

where

H0 =
∑
x=1,2

(ωg,x|gx〉〈gx|+ ωe,x|ex〉〈ex|)

+

N∑
k=1

∑
z=0,1,2

ωz|z〉k〈z|+ ωc

(
a†AaA + a†BaB

)
, (6)

is the free Hamiltonian.
Upon introducing the symmetric and antisymmetric

optical modes, a± = (aA ± aB) /
√

2, the total Hamilto-
nian in a proper rotating frame reads HT = He+V +V †,
with

He =

N∑
k=1

{
δ|2〉k〈2|+

gB√
2

[(a+ − a−) |2〉k〈1|+ H.c.]

}
+ ∆e,1|e1〉〈e1|+ ∆e,2|e2〉〈e2|+ 2Ja†+a+

+
gA√

2
[(a+ + a−) |e2〉〈g2|+ H.c.]

+
Ω2

2
(|e2〉〈e1|+ H.c.) , (7)

and

V =
Ω1

2
|e1〉〈g1|. (8)

Note that we have applied the rotating-wave approxi-
mation (RWA), which directly drops the fast oscillating
terms of the total Hamiltonian. The detunings are de-
fined as (see Fig. 2):

δ = ω2 − ω1 − ωm,1 − ωm,2 − ωg,1 + ωg,2, (9)

∆e,1 = ωe,1 − ωg,1 − ωm,1, (10)

∆e,2 = ωe,2 − ωg,1 − ωm,1 − ωm,2, (11)

In Eq. (7) we have assumed

ωc = ω2 − δ − ω1 + J, (12)
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FIG. 1. (Color online) (a) Schematic diagram of a supercon-
ducting circuit layout, which shows our implementation of a
heralded near-deterministic controlled multi-qubit Toffoli-like
gate and, in a special case, the two-qubit controlled-Z (CZ)
gate. Two transmission-line resonators (TLRs), labeled by
A and B, are linearly coupled via a capacitor. Resonator A
is coupled to a phase quartit (e.g., a four-level qudit) via a
capacitance, while resonator B is coupled to N identical flux
qutrits (e.g., three-level qudits). Such circuit elements can
be controlled via ac and dc signals through the control lines.
The distance between the qudit and qutrits can be of order
of cm due to the macroscopic length of the resonators. Panel
(b) shows an energy-level diagram for a prototypical phase
quartit, while panel (c) depicts that diagram for a typical
flux qutrit. Here we assume that the energy potential for the
quartit is cubic and for the qutrit is an asymmetric double
well. Note that both flux and phase qudits can be tuned (for
example, by adjusting the flux bias in the qudit loop) to ob-
tain exactly two, three, or four levels. For example, following
the method of Refs. [37, 38], the phase qudit state can be
controlled by an ac signal ISC, while a dc signal IB is used
to bias the circuit. Moreover, a short measurement pulse IM
is applied to decrease the barrier in the energy potential well
of panel (b) to enable given upper states to tunnel out of the
well. These tunneling currents can be detected by another
SQUID which, for brevity, is not plotted here. Thus, the pro-
posed quantum gates can be realized, based solely on flux or
phase qudits, or other superconducting qudits. The successful
operation of this Toffoli-like gate is heralded by the detection
of the quartit in its ground state |g1〉.

such that the three-photon Raman transition between
the levels |g1〉 ↔ |e1〉 ↔ |e2〉 ↔ |g2〉, is resonant when
mediated by the antisymmetric mode a−, but is detuned
by 2J when mediated by the symmetric mode a+. We
further assume that |e1〉 and |e2〉 decay to |g1〉 and |g2〉,
respectively, with rates γg,1 and γg,2, and for each qutrit
atom, |2〉 can decay either to |0〉 with a rate γ0 or to |1〉
with a rate γ1. In addition, both resonators are assumed
to have the same decay rate κ. All basic symbols used in
this paper are shown in Table I.

III. MASTER EQUATION

Here we present a standard approach based on the
master equation in the Lindblad form to study the dis-
sipative dynamics of our system. The master equation
is valid under a few fundamental assumptions which in-
clude [46–48]: (A1) the approximation of the weak cou-
pling between the analyzed system and its reservoir (en-
vironment), (A2) the Markov approximation, and (A3)
the secular approximation. The approximations (A1)
and (A2) are often referred to as the Born-Markov ap-
proximation. By applying (A2), one assumes that the
environmental-memory effects are short-lived, such that
the system evolution depends only on its present state.
This approximation is valid if the environmental correla-
tion time (which can be evaluated by the decay timescale
of the two-time correlation functions of the environmen-
tal operators coupled to the system) is much shorter than
a typical system-evolution timescale over which the sys-
tem experiences a significant evolution. For example, the
Born-Markov approximation is valid if an environment
is large and weakly coupled to a system. The approxi-
mation (A3) is applied to cast a given Markovian mas-
ter equation into the Lindblad form. This corresponds
to ignoring fast-oscillating terms in the master equation
based on (A1) and (A2). Thus, (A3) is sometimes called
the RWA, although it is usually applied at the level of
a given master equation, and not necessarily at the level
of the system-reservoir interaction Hamiltonian. There
are numerous references showing the excellent agreement
between the experimental and theoretical results based
upon the master equation in the Lindblad form describ-
ing the lossy interaction of quantum systems (includ-
ing superconducting artificial atoms) and resonator fields
(see, e.g., [49, 50] and references therein). The validity
of these approximations for a single-qudit version of our
system was also experimentally analyzed in Ref. [15].

The standard master equation in the Lindblad form for
the system described by the Hamiltonian given in Eq. (5),
assuming the zero-temperature environment (bath), can
be given by [46–48]:

ρ̇T (t) = i [ρT (t) , HT ] +
1

2

∑
j

[
2LjρT (t)L†j

−ρT (t)L†jLj − L†jLjρT (t)
]
, (13)
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FIG. 2. (Color online) Energy-level diagram showing allowed transitions and couplings in the circuit-QED system depicted in
Fig. 1. Two single-mode resonators, labeled by A and B are coupled with a strength J . An auxiliary, quartit atom, which acts
as a heralding device, is confined in the resonator A. Two microwave fields drive off-resonantly the transitions |g1〉 → |e1〉 and
|e1〉 → |e2〉 of the auxiliary quartit, with strengths Ω1 and Ω2, respectively. Moreover, the states |g2〉 and |e2〉 are coupled by
the resonator mode aA with strength gA. In the resonator B, there are confined N qutrit atoms, for which the two lowest-energy
levels can be treated as qubits. For each qutrit atom, only the state |1〉 is coupled to |2〉 by the resonator mode aB with strength
gB . Upon restricting our discussion to sufficiently weak microwave drive Ω1, we could adiabatically eliminate the excited states
of the total system to yield an effective Lindblad-type master equation, which involves the ground states only. The resulting
dynamics allows for the realization of the controlled-phase gates, which can successfully occur if the auxiliary quartit in the
state |g1〉 is measured.

where ρT (t) is the density operator of the total system.
The Lindblad operators associated with the resonator
decay and atomic spontaneous emission are accordingly
given by

L± =
√
κa±,

Lg,x =
√
γg,x|gx〉〈ex|, (14)

Lk,x−1 =
√
γx−1|x− 1〉 k〈2|,

where k labels the qutrit atoms, and x = 1, 2.
We now consider a weak microwave drive Ω1, so that{

Ω1/∆e,1,Ω1/gA(B)

}
� 1. In this situation, both the

resonator modes and excited atomic states can be adia-
batically eliminated if the system is initially in its ground
state. Following the procedure in Ref. [12], the dynamics
is therefore described by the effective Hamiltonian,

Heff = −1

2
V †
[
H−1

NH +
(
H−1

NH

)†]
V, (15)

and the effective Lindblad operators,

Lj
eff = LjH

−1
NHV. (16)

Here,

HNH = He −
i

2

∑
j

L†jLj (17)

accounts for the no-jump Hamiltonian, where the sum
runs over all dissipative processes as mentioned in
Eq. (14). The effective Lindblad master equation then

has the form

ρ̇ (t) = i [ρ (t) , Heff] +
1

2

∑
j

{
2Lj

eff ρ (t)
(
Lj

eff

)†
−
[(
Lj

eff

)†
Lj

eff ρ (t) + ρ (t)
(
Lj

eff

)†
Lj

eff

]}
, (18)

assuming the reservoir at zero temperature. Here ρ (t) is
the density operator of the quartit and qutrit atoms.

As explained in detail in the Appendix, when working
within the limits Ω2 � ∆e,1 and κ � J , we can more
explicitly obtain the effective Hamiltonian

Heff = |g1〉〈g1| ⊗
N∑

n=0

∆nPn, (19)

where Pn represents a projector onto a subspace charac-
terized by n atomic qutrits in |1〉, and

∆n = − Ω̃2

4γ
Re

{
1

Zn

(
iδ̃ + nCB

)}
(20)

refers to an AC stark shift with

Zn = iδ̃∆̃e,2 + CB

(
αδ̃ + n∆̃e,2

)
− nαC2

B/G. (21)

Here, we have defined the overall decay rate γ =

γ0 + γ1, of each qutrit atom, the effective drive Ω̃ =
Ω1Ω2/ (2∆e,1), and the following dimensionless quanti-
ties: the atom-resonator cooperativity CB = g2

B/ (κγ),
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the strength G = J/κ, the complex detunings δ̃ =

δ/γ − i/2, ∆̃e,2 = ∆e,2/γ − iβ/2, and the parameters

α = (gA/gB)
2
, β = γg,2/γ. (22)

In all our numerical simulations we set α = β = 1. The
term, −Ω2

1/ (4∆e,1), of ∆n has been removed since it only
causes an overall phase. Equation (19) indicates that the
time evolution under the effective Hamiltonian gives rise
to a dynamical phase imprinted onto each state of the
qutrits, while making the state of the quartit atom un-
changed. Correspondingly, the effective Lindblad opera-
tors are found to be

L±eff = |g2〉〈g1| ⊗
N∑

n=0

r±,nPn, (23)

Lg,x
eff = |gx〉〈g1| ⊗

N∑
n=0

rgx,nPn, (24)

Lk,x−1
eff = |g2〉〈g1| ⊗

N∑
n=1

rx−1,n|x− 1〉k〈1|Pn, (25)

with x = 1, 2. Here the effective decay rates r±,n, rgx,n,
and rx−1,n are expressed, respectively, as

r+,n =
Ω̃
√
αCB

4GZn

√
2γ

(
iδ̃ + 2nCB

)
,

r−,n = − Ω̃
√
αCB

Zn

√
2γ

[
iδ̃ − nCB/ (2G)

]
,

rg1,n =
Ω1
√
γg,1

2∆e,1
, (26)

rg2,n = − Ω̃
√
β

2Zn
√
γ

(
iδ̃ + nCB

)
,

rx−1,n = −
Ω̃
√
αγx−1

2γZn
CB ,

as derived in the Appendix. According to these effective
Lindblad operators, we find that all dissipative processes,
except the one corresponding to Lg,1

eff independent of n,
cause the |g1〉 → |g2〉 decay. The errors induced by this
decay are detectable by measuring the state of the quartit
atom, and can be removed by conditioning on the quartit
atom being measured in |g1〉. Upon solving the effective
master equation of Eq. (18), the probability of detecting
the quartit atom in the state |g1〉 is given by

P =

N∑
n=0

Tr [(|g1〉〈g1| ⊗ Pn) ρ (t)] , (27)

where Tr is the trace operation over the subspace spanned
by the ground states of the quartit and qutrit atoms,

and
∑N

n=0 Pn = IG is the identity operator acting on
the ground state manifold of qutrit atoms. Such a detec-
tion could be performed using the method developed in

Refs. [37, 38] for a phase qudit, which we have briefly de-
scribed in the caption of Fig. 1. We note that also other
schemes for the detection of phase and flux qudit states
can be applied including the dispersive read-out meth-
ods [51–53]. After this measurement, the conditional
density operator of the qutrits is then

ρqutrit (t) =
1

P

N∑
n,n′=0

e−i(∆n−∆n′ )te−(Γn+Γn′ )t/2

× Pn [〈g1|ρ (0) |g1〉]Pn′ , (28)

with the following total decay rate:

Γn = |r+,n|2+|r−,n|2+|rg2,n|2+n
(
|r0,n|2 + |r1,n|2

)
.

(29)

Thus, by measuring the quartit atom and referring to the
P as the success probability, we could realize heralded
quantum controlled phase gates as discussed below. In
this approach, the detectable errors only reduce the suc-
cess probability, instead of reducing the gate fidelity. If
we successfully measure the quartit in |g1〉, then the re-
sulting gate has a very high fidelity, which is limited only
by the undetectable errors induced, for example, by the
differences between the decay rates Γn for different states
of the qutrit atoms. Thus, the underlying key idea is to
remove the detectable errors by a heralding measurement
and, then, to achieve quantum gates with very high fi-
delities in two macroscopically-distant resonators.

TABLE II. The action of a heralded multi-qubit Toffoli-like
gate. Note that ∆0 6= ∆1 = ∆2 = · · · = ∆N , and we have
also ignored an overall phase, exp(−iπ), of the output states.

n Input states
Time evolution−−−−−−−−−→ Output states

0 |000 · · · 0〉 exp (−i∆0tToff)−−−−−−−−−−→ −|000 · · · 0〉

1

|100 · · · 0〉

exp (−i∆1tToff)−−−−−−−−−−→

|100 · · · 0〉
|010 · · · 0〉 |010 · · · 0〉

...
...

|0 · · · 001〉 |0 · · · 001〉

2

|110 · · · 0〉

exp (−i∆2tToff)−−−−−−−−−−→

|110 · · · 0〉
|101 · · · 0〉 |101 · · · 0〉

...
...

|0 · · · 011〉 |0 · · · 011〉
...

...
...

...

N |111 · · · 1〉 exp (−i∆N tToff)−−−−−−−−−−→ |111 · · · 1〉

IV. HERALDED MULTI-QUBIT
TOFFOLI-LIKE GATE

In this section we will demonstrate a heralded near-
deterministic multi-qubit Toffoli-like gate, which is de-
fined as the multi-qubit controlled-Z gate. Thus,
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TABLE III. The action of the heralded controlled-Z gate.
Note that ∆0, ∆1, and ∆2 are not equal to each other.
Thus, some unitary operations should be applied on qubits
to achieve their proper phase evolution.

n Input states
Time evolution−−−−−−−−−→ Output states

0 |00〉 exp (−i∆0tCZ)−−−−−−−−−→ |00〉

1
|10〉 exp (−i∆1tCZ)−−−−−−−−−→

|10〉
|01〉 |01〉

2 |11〉 exp (−i∆2tCZ)−−−−−−−−−→ −|11〉

the action of our Toffoli-like gate on N qubits in
a state |ψ〉 = |q1, q2, ..., qN 〉 is given by |ψ〉 →
(−1)(q1⊕1)(q2⊕1)···(qN⊕1)|ψ〉. In our case these logical
qubits correspond to the two lowest states of the qutrits
in the resonator B. The successful action of this Toffoli-
like gate is heralded by the detection of the quartit in
its ground state |g1〉. Note that the standard three-qubit
Toffoli gate is defined as the double-controlled NOT (CC-
NOT) gate and given by the map [1]: |q1, q2, q3〉 →
|q1, q2, q3 ⊕ q1q2〉, rather than the map |q1, q2, q3〉 →
(−1)(q1⊕1)(q2⊕1)(q3⊕1)|q1, q2, q3〉, which is applied here as
in, e.g., Ref. [24].

In order to realize our multi-qubit Toffoli-like gate,
we can make ∆n>0 independent of n, and ensure that
|∆0| � |∆n>0|. To this end, we tune δ = 0 and
∆e,2/γ = αCB (R+ 1/G), where

R =

√
1

2

(
1

G2
+

β

αCB
+

1

CB

)
. (30)

In the limit of min{G,CB} � 1, this choice can lead to

∆0 = − Ω̃2

4γ

1

αCB
(R+ 1/G) , (31)

∆n>0 = − Ω̃2

4γ

1

αCBR
, (32)

which satisfies the condition |∆0| � |∆n>0|. Therefore,
our N -qubit Toffoli-like gate can be achieved by applying
a driving pulse of duration tToff = π/|∆n>0|. Up to an
overall phase, such a gate flips the phase of the qubit
state with all qubits in |0〉, but has no effect on the other
qubit states. However, the particular detunings δ and
∆e,2 also yield

Γ ≡ Γ0 = Γ1 =
Ω̃2

2γ

1

αCB
, (33)

Γn>1 =
Ω̃2

4γ

1

αCB

(
2− 1− 1/n

CBR2

)
, (34)

again in the limit of min{G,CB} � 1. According to
Eq. (27), the decay factor exp[− (Γn + Γn′) /2] cannot
be completely removed conditional on the quartit being
measured in |g1〉, thus, leading to gate errors.
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FIG. 3. (Color online) Success probability, PToff, of our multi-
qubit Toffoli-like gate as a function of (a) the cooperativ-
ity CB or (b) the inter-resonator-coupling strength λ, and
for N = 5 (solid black curves), 10 (dashed red curves), 15
(dashed-dotted blue curves), and 20 (dashed-double dotted
olive curves) three-level atoms. Here, we have assumed that
λ = 5 in (a) and CB = 100 in (b). In both panels, the damp-
ing rates are set as γg,1 = γg,2 = γ, γ0 = γ1 = 0.5γ, gA = gB ,
CB = g2

B/ (κγ), λ = J/
(
κ
√
CB

)
, and α = β = 1.

In order to quantify the quality of this gate, we need
to define a conditional fidelity as

FToff = 〈φ|ρqubit (tToff) |φ〉, (35)

where |φ〉 is assumed to be the desired state after the
gate operation. Correspondingly, the gate error is char-
acterized by 1−FToff. Considering a generic initial state
of the quartit and qutrit atoms,

|Φ〉ini = |g1〉

[
1

2N/2

N∏
k=1

(|0〉+ |1〉)k

]
, (36)

the success probability and the conditional fidelity is
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given by

PToff =
1

2N

N∑
n=0

Cn
N exp (−ΓntToff) , (37)

FToff =
1

22NPToff

[
N∑

n=0

Cn
N exp (−ΓntToff/2)

]2

, (38)

respectively, with Cn
N = N !/ [n! (N − n)!] being the bi-

nomial coefficient. Again in the limit {G,CB} � 1, we
have ΓntT � 0, which in turn results in

PToff = 1− Tp
π√
CB

, (39)

FToff = 1− Tf
π2

CB
, (40)

where the scaling factors Tp and Tf are written as

Tp = 2r +
1

r

[
1

2N
(1 + S1)− 1

]
, (41)

Tf =
1

2N+2r2

[
(1 + S2)− 1

2N
(1 + S1)

2

]
, (42)

respectively. Here, r =
√

(1/λ2 + β/α+ 1) /2 with λ =

G/
√
CB , and Sx =

∑N
n=1 C

n
N/n

x for x = 1, 2. Together
with a success probability

PToff ∝ 1− 1/
√
CB . (43)

Thus, the proposed protocol for our multi-qubit Toffoli-
like gate has an error scaling as

1− FToff ∝ 1/CB , (44)

which is a quadratic improvement as compared to gate
protocols making use of coherent unitary dynamics in
cavities [36], as explained in Ref. [24]. The latter gate
suffers errors from the resonator decay and atomic spon-
taneous emission. Instead our protocol exploits the com-
bined effect of the unitary and dissipative processes, thus,
resulting in the above improvement. In fact, the atom-
resonator cooperativity CB could experimentally reach
> 104 in superconducting circuits [3, 54], thus, making
the gate error very close to zero and the success proba-
bility close to unity.

The success probability is plotted as a function of ei-
ther the cooperativity CB or the inter-resonator coupling
J , illustrated in Fig. 3. There we have assumed that
γg,1 = γg,2, γ0 = γ1 = 0.5γ, and the quartit atom is
the same as the qutrit atoms, such that α = β = 1.
Similarly, we also plot the corresponding gate error in
Fig. 4. As expected, we find that increasing the cooper-
ativity not only makes the success probability very high
[see Fig. 3(a)], but it also makes the gate error very low
[see Fig. 4(a)]. For example, the success probability of up
to ∼ 0.9 and the gate error of up to ∼ 2.0× 10−6 can be
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FIG. 4. (Color online) Analytical results for the gate error
(gate infidelity), 1−FToff, of our multi-qubit Toffoli-like gate
as a function of (a) the cooperativity CB or (b) the inter-
resonator coupling strength λ, and for N = 5 (solid black
curves), 10 (dashed red curves), 15 ( dashed-dotted blue
curves), and 20 (dashed-double dotted olive curves) three-
level atoms (qutrits). The other parameters are also set to be
the same as in Fig. 3. There the success probability is in a
one-to-one correspondence with the gate error here.

achieved when N = 20, λ = 5 and CB = 103. Within the
limit λ � 1, the |g1〉 ↔ |e1〉 ↔ |e2〉 ↔ |g2〉 three-photon
Raman transition off-resonantly mediated by means of
the symmetric mode a+ could be neglected, yielding

r →
√

(β/α+ 1) /2; hence, according to Eqs. (39) and
(40), the gate error is limited by an upper bound [see
Fig. 4(b)], along with the corresponding success proba-
bility also upper bounded [see Fig. 3(b)].
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V. HERALDED CONTROLLED-Z GATE

Let us now consider the heralded near-deterministic
realization of the two-qubit controlled-Z (CZ) gate. This
gate is also known as the two-qubit controlled-sign
gate, controlled-phase-flip gate, or controlled-phase gate.
Specifically, the action of the CZ gate in our system can
be explained as follows: Conditioned on the detection
of the quartit in its ground state |g1〉, the CZ gate flips
the phase of the state |11〉 of an arbitrary two-qubit pure
state |ψ〉 = c0|00〉+ c1|01〉+ c1|01〉+ c1|11〉 or any mix-
ture of such states, where ck are the complex normalized
amplitudes and the qubit states correspond to the two
lowest-energy levels of the two qutrits in the resonator
B.

It follows from Eq. (28) that, in order to completely
remove the gate error, the decay rate Γn needs to be
independent of the qutrits. To this end, we retune the
detunings δ and ∆e,2 to be

δ

γ
=

1

2 (2D +G−1)
, (45)

∆e,2

γ
= αCB

(
D +G−1

)
, (46)

where D =
√

[1/G2 + β/ (αCB)] /2. Thus, in the limit
{G,CB} � 1, retuning δ and ∆e,2 as above yields an
n-independent decay rate

Γn = Γ, (47)

for all n, while Eq. (33) is valid only for n = 0, 1. The
corresponding energy shifts are given by

∆0 = −ΓD

2
, (48)

and

∆n>0 = − Ω̃2

2γ

n (2D + 1/G)

αCB (4nD2 + 2nD/G+ 1/CB)
. (49)

Subsequently, according to Eq. (28), the conditional den-
sity operator of the qutrits becomes

ρqutrit (t) =

N∑
n,n′=0

e−i(∆n−∆n′ )tPn [〈g1|ρ (0) |g1〉]Pn′ ,

(50)
where the decay factor, exp (−Γt), has been eliminated
through a measurement conditional on the quartit atom
being detected in the state |g1〉. Together with single-
qubit operations, we can utilize the dynamics described
by the ρqutrit (t) of Eq. (50) to implement a heralded CZ
gate for N = 2.

For this purpose, the duration of the driving pulse is
chosen to be

tCZ = π|∆2 − 2∆1 + ∆0|−1, (51)
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FIG. 5. (Color online) Numerical simulations (marked by
symbols) for the success probability, PCZ, of the heralded
CZ gate, and for the cooperativity CB = 20 (black down-
triangles), 50 (red stars), 100 (blue up-triangles), and 200
(olive diamonds). The success probability is displayed versus
the detuning ∆e,1 given in terms of the overall decay rate γ
in (a), as well as versus the inter-resonator coupling strength
λ in (b). For comparison, we also plot the analytical success
probability (curves), and find that the analytical results are
in good agreement with the exact numerics. Here, we have
assumed λ = 1.84 in (a) and ∆e,1 = 150γ in (b). In both pan-
els we have set that γg,1 = γg,2 = γ, γ0 = γ1 = 0.5γ, κ = 10γ,
gA = gB , CB = g2

B/ (κγ), λ = J/
(
κ
√
CB

)
, α = β = 1,

Ω1 = ∆e,1/(10C
1/4
B ), and Ω2 = 4γC

1/4
B .

and the unitary operation on each qubit, applied after
the pulse, has the following action

U|0〉 = ei∆0tCZ/2|0〉, U|1〉 = ei(2∆1−∆0)tCZ/2|1〉, (52)

so as to ensure the right phase evolution. The resulting
gate is either to flip the phase of the qubit state |11〉,
or to leave the otherwise qubit states unchanged. The
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associated success probability for any initial pure state is

PCZ = exp (−ΓtCZ) , (53)

which can, as long as {G,CB} � 1, be approximated as

PCZ = 1− Zp
π√
CB

, (54)

with a scaling factor

Zp = 2d+
3

2 (2d+ 1/λ)
+

1

4d (2d+ 1/λ)
2 , (55)

where d =
√

(1/λ2 + β/α) /2. If assuming that the de-
sired state is |ψ〉, we can calculate the conditional fidelity
for this gate via

FCZ = 〈ψ| (U ⊗ U) ρqutrit (tCZ) (U ⊗ U)
† |ψ〉, (56)

and then can directly find FCZ = 1. This implies that
with the single-qubit operation, we achieve a more sig-
nificant improvement than that shown in Eq. (44), and,
thus, by decreasing Ω1 and increasing ∆e,1, an arbitrarily
small gate error can even be achievable.

In order to confirm the heralded CZ gate, we now
perform numerical simulations exactly using, instead of
the effective master equation in Eq. (18), the full zero-
temperature master equation, given by Eq. (13), for the
density operator ρT (t) of the total system initially in

|Ψ〉ini = |Φ〉ini ⊗ |vac〉, (57)

with |vac〉 being the vacuum state of the coupled res-
onators and |Φ〉ini is given in Eq. (36). The numeri-
cal simulations calculate the success probability PCZ, the
conditional density operator ρqutrit (tCZ) and fidelity FCZ

using the expressions below:

PCZ =
∑

n=0,1,2

Tr [(|g1〉〈g1| ⊗ Pn ⊗ I) ρT (tCZ)] , (58)

ρqutrit (tCZ) =
1

PCZ
Trcav [〈g1|ρT (tCZ) |g1〉] , (59)

FCZ = 〈ψ| (U ⊗ U) ρqutrit (tCZ) (U ⊗ U)
† |ψ〉, (60)

where Tr and Trcav are trace operations over the to-
tal system and the resonators, respectively, and I is an
identity operator related to the two resonators. For the
simulations, we assume that γg,1 = γg,2, γ0 = γ1 =
0.5γ, and α = β = 1; moreover, we take κ = 10γ,

Ω1 = ∆e,1/(10C
1/4
B ), Ω2 = 4γC

1/4
B , and determine the

detunings δ and ∆e,2 according to Eqs. (45) and (46),
respectively. Then, we calculate the success probability
PCZ and the gate error 1 − FCZ, as a function of either
the detuning ∆e,1 or the inter-resonator coupling J , for
different cooperativities [55, 56]. The numerical results
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FIG. 6. (Color online) Numerical simulations for the gate er-
ror, 1−FCZ, of the heralded CZ gate, and for the cooperativity
CB =20, 50, 100, and 200. Upon setting the same parameters
as used in Fig. 5, the gate error is displayed versus the detun-
ing ∆e,1/γ in (a), as well as versus the inter-resonator cou-
pling strength λ in (b). There is a one-to-one correspondence
between the gate error here and the numerically calculated
success probability PCZ in Fig. 5.

(marked by symbols) are plotted in Fig. 5 for the success
probability and in Fig. 6 for the gate error. The ana-
lytical success probability, which we use curves to rep-
resent, is also plotted in Fig. 5, and shows good agree-
ment with the exact results. In Fig. 6(a) we find that as
the detuning ∆e,1 increases, the gate error first decreases
and then increases. This is because, in addition to sup-
pressing the error from the |e1〉 → |g1〉 decay (see the
Appendix), such an increase in ∆e,1, however, increases

the driving strength Ω1 = ∆e,1/(10C
1/4
B ), and hence the

non-adiabatic error. There is a trade-off between the two
errors. Again within the limit λ � 1, the off-resonant
Raman transition could be removed as before, yielding
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d →
√
β/ (2α). As a result, one finds that the scaling

factor, given by Eq. (55), is equal to

Zp → 2d+
3

4d
+

1

16d3
. (61)

Hence, when λ is sufficiently large, both the success prob-
ability and the gate error will be independent of λ, illus-
trated in Figs. 5(b) and 6(b). It should be noted that
to calculate the success probability in Fig. 5(a), and the
gate error in Fig. 6(a), we have chosen λ = 1.84, because
this value can lead to the shortest driving pulse for the
two-qubit gate if α = β.

Finally, we note that the energy shifts, ∆n, for both
Toffoli-like and CZ gates involve only the ground states,
because the effective master equation (18) is obtained
by adiabatically eliminating the excited states. Accord-
ing to the effective Hamiltonian of Eq. (19), a quantum
state, with n, of the qutrit atoms has an energy shift,
∆n. Consequently, a dynamical phase, exp(−i∆nt), can
be imposed by choosing the appropriate evolution times
for a given quantum state. Thus, the quantum gates,
including the multi-qubit Toffoli-like (see Table II) and
two-qubit CZ gates (Table III), are realized by choosing
appropriate evolution times.

VI. CONCLUSIONS

We have described a method for performing a her-
alded near-deterministic controlled phase gates in two
distant resonators in the presence of decoherence, in-
cluding the two-qubit controlled-Z (CZ) gate and its
multi-qubit-controlled generalization known, which can
be referred to as a Toffoli-like gate. Our proposal is
a generalization of the single-resonator method intro-
duced by Borregaard et al. [24]. The method in our pa-
per uses an auxiliary microwave-driven four-level atom
(quartit) inside one resonator to serve as both an intra-
resonator photon source and a detector, and, thus, to
control and also herald the gates on atomic qutrits inside
the other resonator. In addition to the quantum gate
fidelity scalings, which are superior to traditional cavity-
assisted deterministic gates, this method demonstrates
a macroscopically-distant herald for controlled quantum
gates, and at the same time avoids the difficulty in indi-
vidually addressing a microwave-driven atom. We note
that the original method of Ref. [24] is based on the
heralding and operational atoms coupled to the same res-
onator mode acting as a cavity bus. Here, we are not
applying this cavity bus.

The operator formalism used in our paper to calculate
the effective Hamiltonian [i.e., Eq. (15)] and the effective
Lindblad operators [i.e., Eq. (16)] follows the approach in
Ref. [12]. The dynamical behavior of the system can be
fairly-well approximated by the effective master equation.
For example, the results obtained respectively by using
the full and effective master equations in Figs. 4 and
6 in Ref. [12], or in Figs. 5 and 6 in our paper, are in

good agreement. The physics of this approximation can
be understood by the simple qutrit atom in Fig. 2. A
direct picture is that the three-level atom in state |0〉 is
first excited to the state |2〉, then can go to the state
|1〉 by an atomic decay, or can go back to the state |0〉
also by another atomic decay. If starting in the state
|1〉, the atom has a similar behavior. Roughly speaking,
there exists an indirect interaction between the states
|0〉 and |1〉, as well as the direct interaction between the
states |0〉, |1〉, and the state |2〉, mediated by the atomic
decays. Thus, after adiabatically eliminating the state
|2〉, the energy shifts of the states |0〉, |1〉, and even a
direct interaction between them, would be induced by
the atomic decays. Upon combining the above processes,
mediated by the atom decays with the coherent drives
and other interactions, the effective master equation was
obtained here in analogy to that in Ref. [12].

We have also proposed a circuit-QED system with su-
perconducting qutrits and quartits implementing the pro-
posed protocol as shown in Fig. 1. Our circuit includes
two coupled transmission-line resonators, which are lin-
early coupled via a SQUID. These resonators can be cou-
pled to qudits via a capacitance. For example, we as-
sumed a phase quartit coupled to one of the resonators
serving a herald, and N identical flux qutrits coupled to
the other resonator for performing the controlled phase
gates. Typically, the length of a transmission-line res-
onator can be of up to the order of cm [57], but the size
of a superconducting atoms is of ∼ µm [3].

We assume realistic parameters from experiments with
superconducting quantum circuits [54, 57]. Specifically:
γ/2π = 10 MHZ, κ/2π = 6 MHz, CA = CB = 170
(α = β = 1), ∆e,1/2π = 420 MHz, Ω1/2π = 70 MHz,
λ = 1.84, J/2π = 144 MHz, and Ω2/2π = 87 MHz. The
implementation of the CZ gate with these parameters can
result in a success probability of ∼ 0.55, a gate error of
∼ 0.006, and a gate time of ∼ 6 µs. These gate perfor-
mance parameters are quite good for a coupled-resonator
system. Indeed by increasing the capacitance of the ca-
pacitor between the TLRs, it is possible to achieve a
stronger J [39] and, thus, a smaller gate error and a
shorter gate time. Furthermore, the decoherence time
T2 of a flux qubit can be improved to ∼ 85 µs [58],
which is much larger than 6 µs. This justifies neglect-
ing such decoherence effect on the flux qutrits. But for
a phase qubit, T2 reaches ∼ 1 µs, which is smaller than
6 µs [41]. Nevertheless, the phase quartit in our protocol
works only as an auxiliary atom to herald the quantum
gate by measuring the |g1〉 population on which the de-
coherence, quantified T2, has no effect. Hence, such de-
coherence of both phase quartit and flux qutrits can be
effectively neglected in our protocol.

Another possible implementation can be based on ul-
tracold atoms coupled to nanoscale optical cavities. In
this situation, the atoms 87Rb can be used for both quar-
tit and qutrit atoms [24, 59, 60]. Furthermore, nanoscale
optical cavities have been realized by the use of defects
in a two dimensional photonic crystal, and one can place
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such nanocavities very close to each other to directly cou-
ple them by evanescent fields [61], or one can use a com-
mon waveguide (a quantum bus) to indirectly couple such
cavities [62].

Although we have chosen to discuss the specific case of
two coupled resonators, this description may be extended
to a coupled-cavity array [63–67]. Hence, it would enable
applications such as scalable quantum information pro-
cessing and long-distance quantum communication.
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Appendix: Derivation of effective master equation

In this Appendix, we will derive the effective master
equation by using the method in Ref. [12]. We start
with the total Hamiltonian HT in the main text. Upon
introducing the symmetric and antisymmetric modes,
a± = (aA ± aB) /

√
2, of the coupled resonators, and then

switching into a rotating frame with respect to

Hrot =

N∑
k=1

[
(ωc + ω1 − J) |2〉k〈2|+

∑
z=0,1

ωz|z〉k〈z|

]
+ ω̄|e1〉〈e1|+ (ω̄ + ωm,2) |e2〉〈e2|

+
∑
x=1,2

ωg,x|gx〉〈gx|+ (ωc − J)
(
a†+a+ + a†−a−

)
,

(A.1)

where ω̄ = ωm,1 + ωg,1, the total Hamiltonian is trans-
formed to

HT = He + V + V †, (A.2)

as given in the main text. With the Lindblad operators
in Eq. (14), we obtain the no-jump Hamiltonian of the

form

HNH =

N∑
k=1

{
δ̄|2〉k〈2|+

gB√
2

[(a+ − a−) |2〉k〈1|+ H.c.]

}
+ ∆̄e,1|e1〉〈e1|+ ∆̄e,2|e2〉〈e2|+ J̄a†+a+

− iκ

2
a†−a− +

gA√
2

[(a+ + a−) |e2〉〈g2|+ H.c.]

+
Ω2

2
(|e2〉〈e1|+ H.c.) , (A.3)

where ∆̄e,1 = ∆e,1 − iγg,1/2, ∆̄e,2 = ∆e,2 − iγg,2/2,
δ̄ = δ − iγ/2, and J̄ = 2J − iκ/2. Following the formal-
ism in Ref. [12], the effective Hamiltonian and Lindblad
operators are given, respectively, by

Heff =
1

2
V †
[
H−1

NH +
(
H−1

NH

)†]
V, (A.4)

Lj
eff = LjH

−1
NHV. (A.5)

To proceed, we work within the single-excitation sub-
space and, after a straightforward calculation, obtain

∆n = − Ω1

2
√
γg,1

Re (rg1,n) , (A.6)

r+,n =
Ω1Ω̃m

√
CA

4J̃Xn

√
2γ

(
iδ̃ + 2nCB

)
, (A.7)

r−,n = −Ω1Ω̃m

√
CA

2Xn

√
2γ

(
δ̃ − nCB/J̃

)
, (A.8)

rg1,n =
Ω1
√
γg,1

2γXn

[
iδ̃∆̃e,2 +

(
CAδ̃ + nCB∆̃e,2

)
×
(

1− i/2J̃
)
− 2nCACB/J̃

]
, (A.9)

rg2,n = −
Ω1Ω̃m

√
γg,2

4γXn

{
iδ̃ + nCB

[
1− i/(2J̃)

]}
,

(A.10)

rk,n = −Ω1Ω̃m

√
γkCACB

4γXn

[
1 + i/(2J̃)

]
, (A.11)

where CA = g2
A/ (κγ), ∆̃e,1 = ∆e,1/γ − iγg,1/ (2γ),

J̃ = 2J/κ − i/2, Ω̃2 = Ω2/γ, Z = ∆̃e,1∆̃e,2 −
(

Ω̃m/2
)2

,

Xn = iZδ̃ +
(
CAδ̃∆̃e,2 + nCBZ

) [
1− i/(2J̃)

]
−

2nCACB∆̃e,1/J̃ , and k = 0, 1. In the limit Ω2 � ∆e,1,
we can make a Taylor expansion around Ω2/∆e,1 = 0,
yielding

∆n = − Ω2
1

4∆e,1
− Ω̃2

4γ
Re

{
1

Yn

{
iδ̃ + nCB

[
1− i

2J̃

]}}
,

(A.12)
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r+,n =
Ω̃
√
CA

2J̃Yn
√

2γ

(
iδ̃ + 2nCB

)
, (A.13)

r−,n = − Ω̃
√
CA

Yn
√

2γ

(
iδ̃ − nCB/J̃

)
, (A.14)

rg1,n =
Ω1
√
γg,1

2∆e,1
+

Ω̃
√
γ̃g,1

2γYn

{
iδ̃ + nCB

[
1− i

2J̃

]}
,

(A.15)

rg2,n = −
Ω̃
√
γg,2

2γYn

{
iδ̃ + nCB

[
1− i/(2J̃)

]}
, (A.16)

rk,n = − Ω̃
√
γkCACB

2γYn

[
1 + i/(2J̃)

]
, (A.17)

where Ω̃ = Ω1Ω2/ (2∆e,1), γ̃g,1 = γg,1Ω2
2/
(
4∆2

e,1

)
,

and Yn = iδ̃∆̃e,2 +
(
CAδ̃ + nCB∆̃e,2

) [
1− i/(2J̃)

]
−

2nCACB/J̃ . In Eq. (A.12), the term, −Ω2
1/ (4∆e,1),

of ∆n can be removed because it has no effect on the
phase gates. Meanwhile, in Eq. (A.15), we find that the
|e1〉 → |g1〉 decay is suppressed by increasing ∆e,1, such
that the second term of rg1,n can be removed as long as
γ̃g,1 � 1. Thus, Eqs. (A.12)–(A.17), under the assump-
tion that κ � J , reduce to Eqs. (20) and (26) in the
main text.
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[24] J. Borregaard, P. Kómár, E. M. Kessler, A. S. Sørensen,
and M. D. Lukin, “Heralded quantum gates with inte-
grated error detection in optical cavities,” Phys. Rev.
Lett. 114, 110502 (2015).

[25] J. Q. You and F. Nori, “Superconducting circuits and
quantum information,” Phys. Today 58, 42 (2005).

[26] J. Clarke and F. K. Wilhelm, “Superconducting quantum
bits,” Nature (London) 453, 1031 (2008).

[27] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M.
Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H.
Devoret, and R. J. Schoelkopf, “Preparation and mea-
surement of three-qubit entanglement in a superconduct-
ing circuit,” Nature (London) 467, 574 (2010).

[28] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni,
A. Megrant, P. OMalley, D. Sank, A. Vainsencher,
J. Wenner, Y. Yin, A. N. Cleland, and J. M. Marti-
nis, “Computing prime factors with a Josephson phase
qubit quantum processor,” Nat. Phys. 8, 719 (2012).

[29] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum
simulation,” Rev. Mod. Phys. 86, 153 (2014).

[30] J. Q. You and F. Nori, “Quantum information processing
with superconducting qubits in a microwave field,” Phys.
Rev. B 68, 064509 (2003).

[31] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, “Cavity quantum electrodynamics for
superconducting electrical circuits: An architecture for
quantum computation,” Phys. Rev. A 69, 062320 (2004).

[32] J. Q. You and F. Nori, “Atomic physics and quantum
optics using superconducting circuits,” Nature (London)
474, 589 (2011).

[33] Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori,
“Optical selection rules and phase-dependent adiabatic
state control in a superconducting quantum circuit,”
Phys. Rev. Let. 95, 087001 (2005).

[34] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx,
S. Saito, K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba,
H. Takayanagi, E. Solano, and R. Gross, “Two-photon
probe of the Jaynes-Cummings model and controlled
symmetry breaking in circuit QED,” Nat. Phys. 4, 686
(2008).

[35] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi,
S. Saito, and K. Semba, “Superconducting qubitcoscilla-
tor circuit beyond the ultrastrong-coupling regime,” Nat.
Phys. 13, 44–47 (2017).

[36] A. S. Sørensen and K. Mølmer, “Measurement induced
entanglement and quantum computation with atoms in
optical cavities,” Phys. Rev. Lett. 91, 097905 (2003).

[37] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina,
“Rabi oscillations in a large Josephson-junction qubit,”
Phys. Rev. Lett. 89, 117901 (2002).

[38] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz,
E. Lucero, A. D. O’Connell, D. Sank, H. Wang, J. Wen-
ner, A. N. Cleland, M. R. Geller, and J. M. Martinis,
“Emulation of a quantum spin with a superconducting
phase qudit,” Science 325, 722–725 (2009).

[39] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch,
and A. A Houck, “Observation of a dissipative phase
transition in a one-dimensional circuit qed lattice,”

arXiv:1607.06895 (2016).
[40] F. Nori, “Quantum football,” Science 325, 689–690

(2009).
[41] J. M. Martinis, “Superconducting phase qubits,” Quan-

tum Inf. Process. 8, 81–103 (2009).
[42] Y. X. Liu, “Selection rules in superconducting artificial

atoms,” AAPPS Bull. 24, 5–8 (2014).
[43] Y. Yu, D. Nakada, J. C. Lee, B. Singh, D. S. Crankshaw,

T. P. Orlando, K. K. Berggren, and W. D. Oliver, “En-
ergy relaxation time between macroscopic quantum lev-
els in a superconducting persistent-current qubit,” Phys.
Rev. Lett. 92, 117904 (2004).
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V. Vuletić, and M. D. Lukin, “Nanophotonic quantum
phase switch with a single atom,” Nature (London) 508,
241–244 (2014).

[61] M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale
arrays of ultrahigh-Q coupled nanocavities,” Nat. Pho-
ton. 2, 741–747 (2008).

[62] Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano,
and S. Noda, “Strong coupling between distant photonic
nanocavities and its dynamic control,” Nat. Photon. 6,
56–61 (2012).

[63] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Ple-
nio, “Quantum many-body phenomena in coupled cavity
arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[64] L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori,
“Controllable scattering of a single photon inside a one-
dimensional resonator waveguide,” Phys. Rev. Lett. 101,
100501 (2008).

[65] L. Zhou, H. Dong, Y.-X. Liu, C. P. Sun, and F. Nori,
“Quantum supercavity with atomic mirrors,” Phys. Rev.
A 78, 063827 (2008).

[66] J. Lu, L. Zhou, L.-M. Kuang, and F. Nori, “Single-
photon router: Coherent control of multichannel scat-
tering for single photons with quantum interferences,”
Phys. Rev. A 89, 013805 (2014).

[67] W. Qin and F. Nori, “Controllable single-photon trans-
port between remote coupled-cavity arrays,” Phys. Rev.
A 93, 032337 (2016).

http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/ncomms12964
http://science.sciencemag.org/content/340/6137/1202.abstract
http://dx.doi.org/10.1038/nature13188
http://dx.doi.org/10.1038/nature13188
http://dx.doi.org/10.1038/nphoton.2008.226
http://dx.doi.org/10.1038/nphoton.2008.226
http://dx.doi.org/10.1038/nphoton.2011.286
http://dx.doi.org/10.1038/nphoton.2011.286
http://dx.doi.org/10.1002/lpor.200810046
http://link.aps.org/doi/10.1103/PhysRevLett.101.100501
http://link.aps.org/doi/10.1103/PhysRevLett.101.100501
http://link.aps.org/doi/10.1103/PhysRevA.78.063827
http://link.aps.org/doi/10.1103/PhysRevA.78.063827
http://link.aps.org/doi/10.1103/PhysRevA.89.013805
http://link.aps.org/doi/10.1103/PhysRevA.93.032337
http://link.aps.org/doi/10.1103/PhysRevA.93.032337

	Heralded quantum controlled phase gates with dissipative  dynamics in macroscopically-distant resonators
	Abstract
	introduction
	Physical model in superconducting circuits
	Master equation
	Heralded multi-qubit Toffoli-like gate
	Heralded controlled-Z gate
	conclusions
	acknowledgments
	Derivation of effective master equation
	References


