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We present an error correcting protocol that enhances the lifetime of stabilizer code based qubits
which are susceptible to the creation of pairs of localized defects (due to string-like error operators)
at finite temperature, such as the toric code. The primary tool employed is periodic application
of a local, unitary operator which exchanges defects and thereby translates localized excitations.
Crucially, the protocol does not require any measurements of stabilizer operators, and therefore can
be used to enhance the lifetime of a qubit in the absence of such experimental resources.

I. INTRODUCTION

For the past two decades, significant effort has gone
into devising schemes for encoding quantum informa-
tion in reliable and retrievable forms. Stabilizer error
correcting codes are thought to be an effective strategy
for performing this encoding, because they allow an ef-
ficient means of detecting and correcting errors. Among
these, topological stabilizer codes (or topological quan-
tum memories), are particularly promising strategies for
storing quantum information due to their intrinsic ro-
bustness to errors at zero temperature, their ability to
be efficiently implemented via a local Hamiltonian[1], as
well as the existence of efficient strategies for perform-
ing error detection and correction[2–4] which have been
demonstrated in recent experiments[5]. Several exhaus-
tive studies have been performed on calculating error
thresholds for these topological codes, like Kitaev’s toric
code, both in the presence and absence of error correcting
protocols[2, 3, 6–8].

However, these topological codes are well known to be
poor passive quantum memories at finite temperature in
less than four spatial dimensions[9–18] (for a thorough
review, see Ref. 19). For physically realistic coupling to
an environment, local noise processes drive the creation
of localized defects. In the absence of an error correct-
ing protocol, the propagation of these defects can then
lead to decoherence of the memory. For the case of the
toric code, these error strings are particularly pathologi-
cal, and cause the maximum lifetime of an encoded qubit
to decay exponentially with temperature with a timescale
independent of system size[12]. While experimentally in-
tractable, fault tolerant topological quantum memories
are known to exist in four and six dimensions[20, 21].

On the other hand, a variety of active error correc-
tion protocols exist for efficient detection and correc-
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tion of errors. As long as error rates and the temper-
ature are low or, alternatively, as long as detection and
correction are fast enough, the lifetime of these codes
can in principle be extended indefinitely. But these de-
coding strategies implicitly rely on resources that may
not always be available or efficiently physically imple-
mentable. For example, performing a measurement on a
quantum system requires a fresh ancilla qubit for each
measurement. Thus, continuously measuring any quan-
tum system requires continuously recycling ancilla qubits
for measurement—a procedure which will necessarily be
rate limiting for near term quantum architectures[22].

An error correcting strategy for topological codes with-
out the need for stabilizer measurement is desirable. At
face, ignoring the power of the stabilizer group will as-
suredly provide a suboptimal strategy. But given limited
resources and rates of measurement it is worthwhile to
understand the limits of strategies which do not require
syndrome measurements, and to determine if such strate-
gies can augment known decoding schemes.

We provide here a new protocol for error correction
of pairs of localized defects, using a periodic sequence of
unitary operators in the presence of thermal dissipation.
The required thermal dissipation may be due to an inter-
action with a physical bath or engineered via a dissipa-
tive protocol, but our protocol does not require explicit
measurements of stabilizer operators, thus significantly
reducing the required physical resources. This pattern
of operators is designed to encourage defects in the sys-
tem to dissipate more quickly. In this work, we explicitly
treat the theory for the 1D Ising model at finite temper-
ature, and describe how this approach may be extended
to other stabilizer codes, such as the toric code. While
dissipative protocols have previously been employed to
generate hamiltonians[23, 24], to prepare encoded ground
states[25], to mediate long range interactions[26–28], and
to “trap” defects[4, 29], a measurement-free protocol that
explicitly targets string-like error processes has not been
proposed to date. While it does not completely eliminate
errors, the protocol presented here provides a significant
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enhancement of the lifetime of a finite-size system.
It is known that stabilizer Hamiltonians at finite tem-

perature in dimension less than three have a system-size
independent upper bound to their lifetime[12, 14, 15, 30–
34]. These “no-go” theorems necessarily limit the extent
to which the method proposed here can be carried out.
In fact, a size-independent constant enhancement of a
system’s lifetime may be the best one can get with a
purely local unitary protocol like the one presented here.
Thus, this scheme, by itself, will not generate a topo-
logically protected quantum memory at finite tempera-
ture for one or two dimensions. It is nonetheless worth-
while to understand how far purely local protocols can be
pushed, because a large constant increase in the lifetime
of a quantum architecture could mean the difference be-
tween a physically realistic architecture that can be fault
tolerantly operated versus one that cannot, as discussed
in Sec. V C.

The rest of the paper is structured as follows: in Sec.
II, we briefly review the theory of stabilizer codes, discuss
where our strategy falls on the continuum of different
active and passive strategies used in the literature for
implementing these codes, and sketch how they can be
modeled at finite temperature. In Sec. III, we describe
how the 1D Ising model can be treated as a stabilizer code
and discuss the low temperature dynamics of the model.
In Sec. IV, we construct our autonomous protocol, built
out of local unitary operators, and discuss the scaling
behavior of the protocol. We also demonstrate evidence
for the enhancement of the lifetime of the 1D Ising model.
In Sec. V, we sketch how our protocol generalizes to
higher dimensions and to other stabilizer codes, including
the toric code.

II. STABILIZER CODES

A. Definitions

In this section, we briefly review the theory of stabilizer
error correcting codes[35, 36]. Given n qubits, a collec-
tion of operators Si, and 2k states |ψ〉i, i = 1, .., 2k which
span a subspace in which k encoded qubits are defined,
let,

Si|ψ〉i = +1|ψ〉i (1)

[Si, Sj ] = 0 (2)

for all i, j. Furthermore, suppose there are m error
operators Ej , j = 1, ..,m, and that for each of them, there
exists some not necessarily unique operator Sj such that

{Ei, Sj} = 0 (3)

Stabilizer codes are those collections of states |ψ〉i and
operators {Sj} which satisfy the above conditions for

error operators belonging to some subset of the Pauli
group—tensor products of Pauli operators with the iden-
tity.

For example, given three qubits, let |ψ〉1 = | ↑↑↑
〉 and |ψ〉2 = | ↓↓↓〉. Then the set of operators
Si satisfying (1) and (2) is {σzσzI, Iσzσz}. One
can easily determine that the set of error operators
Ei corresponding to these two stabilizer operators is:
{σxII, IσxI, IIσx, σxσxI, σxIσx, Iσxσx}.

More transparently, this 3-qubit stabilizer code en-
codes two protected states. If some noise source were
to apply any single qubit σx operator, or any two-qubit
σixσ

j
x operator, measurement of the set of stabilizer op-

erators would indicate the presence of an error. Further-
more, the code can actually detect and correct single σx
errors. For example, a meaurement result of −1,+1 of
the stabilizers σzσzI and Iσzσz, respectively, indicates
either an error on the first qubit or two errors on the lat-
ter two qubits. In a sufficiently noisy environment, these
two errors would be indistinguishable—i.e., degenerate—
, but for many noise models, the single error situation is
much more likely, thus a single σx operator applied to
the first qubit will more often than not return the qubit
back into the protected subspace.

B. Active State Preservation versus Dissipative
Hamiltonian Engineering

Here we will refine our discussion by broadly classifying
error correcting approaches into (1) active state preser-
vation strategies and (2) Hamiltonian engineering strate-
gies.

The target of both strategies is the same: the preserva-
tion of an encoded stabilizer state. In state preservation,
a stabilizer encoded state is preserved by the applica-
tion of a sequence of unitaries. However, ignoring noise
sources, the natural Hamiltonian which describes the sys-
tem is H = 0. The target of such a strategy is preser-
vation of the stabilizer state itself. Implicitly, some sort
of active error measurement and correction needs to be
performed once the state is initially prepared.

In contrast, in Hamiltonian engineering
approaches[37], the encoded state is preserved by
implementing a Hamiltonian on a set of qubits which has
a ground state manifold comprised of stabilizer encoded
states. The encoded state is then preserved by keeping
the quantum system at a sufficiently low temperature to
suppress errors.

Mixtures of these strategies exist. For example, one
could use a Hamiltonian engineering approach to gen-
erate a stabilizer encoded state, and then immediately
turn off the Hamiltonian once the desired encoded sub-
space was reached, preserving or preparing a particular
state at further times with active error correction or other
control fields. Alternatively, one could use Hamiltonian
engineering to preserve the state in the encoded subspace,
and then use a combination of dissipation with an addi-
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tional protocol to detect or correct errors. We will focus
here on this latter strategy. Specifically, we will be con-
cerned with systems being dissipatively driven towards
the ground state subspace of a Stabilizer Hamiltonian,
and we will build an autonomous error correction proto-
col to mitigate the ways in which dissipation alone fails
to keep the state in its initial encoded state. Further-
more, we are not explicitly concerned with the process of
state creation, and always assume that our systems are
initialized to an encoded state.

C. Error Correcting Master Equation

To dissipatively generate a stabilizer code, one forms
the system Hamiltonian as the sum of the stabilizer op-
erators for the code of interest, i.e., H = −∑i Si. This
guarantees that the ground state of that hamiltonian will
be the encoded subspace. Furthermore, this ensures that
configurations of the system with errors present are ex-
cited states.

To model dissipation in such a code, we employ here
a Lindblad master equation. Without loss of generality,
but to simplify analysis, we assume that the bath only
operates on the system with purely local errors, and that
these local errors correspond to the Ei (see (3)) of the sta-
bilizer code of interest. The dynamics may be described
by the Lindblad equation:

ρ̇ =
∑
ω

2cωρc
†
ω − c†ωcωρ− ρc†ωcω, (4)

Here ρ is the system density matrix for some candidate
system and {cω} = {√γωLω} are Lindblad operators
arising from interactions with a bath, where the Lω act on
the system with characteristic rates γω. Error processes
can then be represented by products of the Lindblad op-
erators: {c1ωc2ω · · · cnω}.

A necessary condition for error correction to occur to
nth order in the error processes is to apply the inverses
of the error processes sufficiently rapidly. If we restrict
ourselves to stabilizer codes on lattices, then the recipe
for error correction is straightforward: measure the sta-
bilizers of the code and apply correction operations con-
ditioned on the results of the stabilizer measurements.

While it is in principle possible to measure all of the
stabilizers of a given system simultaneously because they
all commute, it will be convenient to decompose a given
correction protocol into groups of terms involving oper-
ators only acting within a characteristic length scale λ.
This is useful because it provides a natural scale for treat-
ing stabilizer codes with fixed resources, and it allows the
interpretation of different protocols as the implementa-
tion of a certain kind of effective long-range interaction.

D. Error Correction Thresholds and Scaling

Much of the power of stabilizer codes arises from the
existence of error thresholds. Specifically, as the stabi-
lizer code is made sufficiently large, the probability of
returning to the original code state goes to 1 as long
as measurement/correction cycles occur sufficiently fast
compared to the threshold error rate. This can give rise
to a competition between the resources necessary to per-
form error correction/detection for stabilizer codes in-
volving many qubits, versus the scaling of the error rate
of the code with system size.

For concreteness, consider a stabilizer code, with cor-
rection/detection steps idealized by operators O acting
over a length scale λ as in Fig. 1. How these operators
scale with system size depends crucially on the partic-
ular code and the specific error correction scheme. For
example, it is known[38] that a purely local scheme with λ
independent of system size can achieve a threshold in the
toric code via a cellular automata construction at the ex-
pense of a reduction in the error threshold. This scheme
requires measurements and classical decoding. Contrari-
wise, the naive implementation of minimum weight per-
fect matching using Edmond’s algorithm to error correct
the toric code requires measurements as well as global
classical processing—that is, the lengthscale λ of the er-
ror correcting operator O which implements Edmond’s
algorithm grows with system size, but with the a larger
resulting threshold. In this way, global resources can be
converted to local resources at the expense of the mag-
nitude of the fault tolerance threshold.

For protocols like the on presented here that neither
yield a threshold nor use measurements, the tradeoff be-
tween resources and system lifetime is less obvious. In
anticipation of the following sections, one might expect a
larger λ protocol would dominate over a smaller λ proto-
col, because the larger λ protocol corrects “more” errors.
However, this is not generically the case, and the success
of a given error correcting procedure depends nontrivially
on λ, L, and the fundamental noise rates of the system.

We spend a large fraction of the remainder of the
manuscript elaborating on our protocol’s scaling proper-
ties. Because we seek a protocol without measurements,
we first motivate our construction with a summary of the
conventional error correction operator for the 1D Ising
model in Sec. IV A, discuss the most common finite tem-
perature error processes in Sec. IV B, and then detail
our measurement-free construction in Sec. IV C. Next,
we explicitly derive how the lifetime of the 1D Ising model
is improved by our measurement-free construction, and
connect the scaling of the enhanced lifetime to the scaling
properties of the protocol with λ in Sec. IV D. Finally,
we elaborate on how our protocol can be generalized to
higher dimensions in Sec. V, including its expected scal-
ing properties.
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Õ
...

|q2λ〉

|q2λ+1〉

Õ
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FIG. 1. A snapshot of a linear stabilizer code with detection/-
correction operators O. The optimal error correction operator
has nontrivial system size scaling, and in general depends on
the particular code being used.

III. 1D ISING MODEL

A. 1D Ising Model as a Stabilizer Code

The choice of 3-qubit stabilizer code introduced in II A
was deliberate, because it can naturally be extended and
interpreted as the ground state of a 1-dimensional Ising
model.

H1DIsing = −∆

L∑
i=1

σizσ
i+1
z (5)

The ground state subspace of this model is two-fold
degenerate and is comprised of the states | ↑ · · · ↑〉 and
| ↓ · · · ↓〉. These ground states are exactly the L-qubit
analogues of the 3-qubit code treated previously. These
states are stabilized by the set of all adjacent pairwise
σz operators {II · · · Iσizσi+1

z I · · · I}, where i runs from 1
to L. These are precisely the operators appearing in the
Hamiltonian of the 1D Ising model. For the remainder
of our analysis, we assume without loss of generality that
∆ = 1.

Furthermore, σx errors are equivalent to excited states.
In the simplest case, errors can be corrected by resort-
ing to a simple majority rule—if most spins point in a
particular direction, the correction protocol returns the
state to the encoded ground state corresponding to that
direction.

B. 1D Ising Model at Finite Temperature

By coupling the Ising model to an external reservoir,
one might hope to dissipatively drive the 1D Ising model
into one of these encoded states. However, the 1D Ising
model has no finite temperature ordered phase, so at

all finite temperatures, the system evolves towards the
unique thermal state. Furthermore, this timescale over
which the system relaxes to a thermal state is known to
be independent of the size of the chain, given modest bath
assumptions[39]. Thus, dissipation by itself cannot pro-
tect the 1D Ising model, and an additional protocol needs
to be implemented in order to correct thermal errors.
While dissipation cannot protect the 1D Ising Model at
finite temperature, it is instructive to understand the de-
tails of how thermal fluctuations lead to instability in this
simple case, because very similar processes are responsi-
ble for the instability of many other stabilizer codes at fi-
nite temperature. In previous work, we examined the dy-
namics of this model, as well as of the toric code, at finite
temperature[18]. In particular, we identified a low tem-
perature regime where the dynamics are well described
by a simple random walk model. We briefly summarize
the analysis below.

When studying the error dynamics, it is convenient to
consider the dual lattice of the Ising model: we imagine
a new 1D lattice with sites interleaved between the sites
of (5) and associate auxiliary spin values bi with them.
The auxiliary site’s spin values are uniquely determined
by the products bi = σizσ

i+1
z , where site bi defined by this

equation sits between site i and i + 1. We can identify
these extra variables with domain walls. If adjacent spin
variables disagree, then the auxiliary site sitting between
them will have bi = −1. If all but a contiguous block of
spins disagree, then all auxiliary sites will have bi = 1 ex-
cept for those two sites which sit at the two boundaries of
the contiguous blocks of spins. Describing the dynamics
of these domain walls is equivalent to describing the spin
dynamics, because if one knows all the auxiliary variables
plus any single spin value, σiz, one can reconstruct all of
the remaining spin variables σjz.

For simplicity, we assume a bath that operates on the
system only by creating, destroying, or translating do-
main walls. Then, for sufficiently low temperatures, oc-
casionally the bath will cause an adjacent domain wall
pair to appear in the system. Bath fluctuations will cause
this pair of domain walls to fluctuate across the system,
effectively causing the domain walls to undergo a 1D ran-
dom walk. When domain walls are adjacent, it is ener-
getically favorable for them to be dissipated. If domain
walls fuse before traversing the length of the system, the
encoded state will be preserved. But if domain walls un-
dergo a random walk such that one winds entirely around
the system, this effectively performs an uncorrectable er-
ror on the encoded qubit because the system will have
transitioned from one encoded ground state to the other
encoded ground state[18].

C. Microscopic Master Equation

When the bath operates on the system with purely lo-
cal spin flip errors which only create, destroy, and trans-
late domain walls, the Lindblad operators are of the form:



5

{cω} =
{√

γ0Tb,
√
γ+D

†
b ,
√
γ−Db

}
(6)

When resolved in the Pauli basis and factored, these
operators take a simple form:

D†b =
1

4
(IσxI) (1 + Iσzσz) (1 + σzσzI)

Db =
1

4
(IσxI) (1− Iσzσz) (1− σzσzI)

Tb =
1

4
(IσxI) (1− Iσzσz) (1 + σzσzI) (7)

A short calculation verifies
∑
i LiL

†
i = I. Physically,

these operators represent the creation of a domain wall

pair at dual lattice sites b and b+1 (D†b), annihilation of a
pair of domain walls at dual lattice sites b and b+1 (Db),
and the translation of a domain wall from b to b+ 1 (the
adjoint translates b + 1 to b) (Tb). Intuitively, these op-
erators are built from projectors (1± Iσzσz) which pick
out those configurations relevant to each process. For ex-
ample, the combination (1 + Iσzσz) (1 + σzσzI) projects
onto the subspace with no domain walls between the
first and second or second and third spins. The left-
most (IσxI) term then performs the spin flip, effectively
creating a domain wall.

Additionally, these operators only connect diagonal el-
ements of the density matrix to other diagonal elements.
This reduces the time evolution of the diagonal matrix
elements to a classical master equation:

dPn
dt

= γ0

∑
n0

(Pn0
− Pn) +

∑
n+

(
γ−Pn+

− γ+Pn
)

+
∑
n−

(
γ+Pn− − γ−Pn

)
(8)

Where Pn := ρnn, and the indices n0, n+, and n− run
over those eigenstates connected to nth state by a single

application of the operator Tb, D
†
b , or Db, respectively.

The rates with which these operators are applied, i.e.
γ0, γ+, and γ−, are set by the specific choice of bath
model. For simplicity, we consider here a Markovian
bath. The rates of such a bath are determined by:

γ (ω) = ξ

∣∣∣∣ ωn

1− e−βω
∣∣∣∣ (9)

Where ω is the amount of energy exchanged when a
particular Lindblad operator acts on the system. The
relevant rates for our study are γ−, γ+, and γ0, corre-
sponding to domain wall pair annihilation, pair creation,
and translation, with energy scales of −4∆, 4∆, and 0,
respectively. Different n correspond to different types of
baths–for n = 1 the bath is Ohmic, and for n ≥ 2, the
bath is Superohmic[13]. For our purposes, it will be more
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FIG. 2. Circuit for performing error suppression for a subre-
gion of the 1D Ising model. Qubits q1 through q4 are lattice
sites on an Ising chain. s1 through s3 are ancillas used to
read out the syndrome measurements of ZZ on the nearest-
neighbor Ising lattice sites. Based on the results of the syn-
drome measurements, the conditional unitary operator CU
corrects the errors present. A table which defines CU is pro-
vided in Appendix A. This entire circuit represents a possible
realization of one such operator O from Fig. 1.

convenient to treat γ0 as a tunable parameter to study
the scaling behavior of our protocol. Qualitatively, γ0

scales linearly with T for Ohmic baths and equals zero
for Superohmic baths. For simplicity, we work in units
where ξ = 1.

For more details of the master equation approach used
to study this model, see Ref. 18.

IV. THE PROTOCOL

A. Protocol Considerations for the 1D Ising Model
With Measurements

While we are interested in protocols that do not
use measurements, we first review a conventional
measurement-based protocol for performing error correc-
tion in the 1D Ising model.

In the absence of resource constraints, it is straightfor-
ward to construct the operators which correct errors in
the 1D Ising model. According to the schematic shown in
Fig. 1, the λ = 2 analogue of O is simply the domain-wall
annihilation operator, Db from (7). In more generality,
for larger λ the corresponding O is the operator which,
given an even number of domain walls, annihilates all do-
main wall pairs in the region being operated upon. For
example, the circuit for the λ = 3 version of this opera-
tor is depicted in Fig. 2. Note that for an odd number
of domain walls, there is not an unambiguous choice for
how to annihilate domain walls because a free, unpaired
domain wall is always left over.

Thus, the most straightforward conventional error cor-
recting protocol is simply to measure the system’s stabi-
lizers often enough that one can unambiguously locate
pairs of domain walls and then perform correction oper-
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ations, as indicated in Fig. 2. This can be represented by
a sequence of measurement operators, the stabilizer for
the 1D Ising model, Si, interleaved by conditional ap-
plication of corrective unitaries: DSWAP and DWALL.
These operators have the following representation in the
Pauli basis:

DWALL =
1

2
(III + IσxI − σzIσz + σzσxσz) (10)

DSWAP =
1

2
(III + IσxI + σzIσz − σzσxσz) (11)

where there is a pair of these operators for each triple
of lattice sites. In Fig. 2, the details of the 4-qubit
operator CU are abstracted away (see Appendix A),
but it can be decomposed into applications of DSWAPs
and DWALLs, conditioned on syndrome measurements.
A simple calculation shows [HIsing,DSWAP] = 0 and
[HIsing,DWALL] = +4∆.

Intuitively, DWALL destroys (creates) a domain wall
pair at the dual lattice site in-between the three qubits
being operated on if and only if a domain wall pair is
present (or, all of the spins are aligned), respectively.
DSWAP translates a domain wall, either left or right if
and only if a single domain wall exists between the 3
spins being operated on.

Error correction protocols for the 1D Ising model can
thus be understood as procedures for efficiently dissipat-
ing domains walls before they propagate too far. We
leverage this intuition in the following sections to build a
procedure that dissipates domain walls without explicit
knowledge of the locations of those domain walls.

B. A Protocol Without Measurements

Because we seek a protocol without explicit measure-
ments, the natural operators for such a procedure are
DWALL and DSWAP. DWALL is inconvenient, both be-
cause the bath already acts to dissipate excitations and
because it can lead to the generation of extra, uncon-
trolled domain walls more easily than the DSWAP oper-
ator. Consequently, we only use DSWAPs in our proto-
cols.

If we restrict our attention to the low temperature
regime with the rate assumption Lγ+ << 1, then the
lifetime of the Ising chain is governed by the dynamics of
single pairs of defects. For error correcting purposes, it
is convenient to classify the common geometries of pairs
of domain walls. First, correctable errors are those errors
for which the pair of domain walls is not yet separated
by L/2 or more. Non-correctable errors are those do-
main wall configurations in the complement of this set.
In the language of error correction, the distance for this
code is bL/2c–more transparently, correctable errors are
those errors which will be correctly matched by a perfect
decoder. Furthermore, we need to distinguish between
trivial and nontrivial defect pairs. A domain wall pair is

trivial if two domain walls sit on neighboring dual lattice
sites. Again, assuming we operate in the low temper-
ature regime, these trivial defect pairs annihilate with
rate γ−—that is, much faster than other time scales of
the problem. Nontrivial pairs are those pairs which are
not on neighboring dual lattice sites.

Designing a successful protocol for the Ising model
amounts to designing a sequence of DSWAPs that ef-
ficiently dissipates nontrivial, correctable defect pairs. If
we let χ be the rate at which DSWAPs can be applied,
then we expect an enhanced lifetime given the following
rate assumptions:

γ− >> χ/O(poly(L)) ∼ γ0 > γ+. (12)

To wit, DSWAPs are applied at a rate much slower
than the inherent annihilation rate of the system–this is
so DSWAPs do not turn trivial defect pairs into nontriv-
ial defect pairs. Furthermore, χ is chosen to be close to
the inherent translation rate so that correctable, nontriv-
ial defect pairs can be brought adjacent to one another
and then be dissipated by the bath before they have time
to translate out of the correctable range of the proto-
col. The O(poly(L)) factor multiplying χ accounts for
the fact that different protocol require some polynomial
in L number of swaps to sweep across the entire lattice.
For a proof of the polynomial scaling in L, see Appendix
B.

In the absence of a corrective protocol, this intrinsic
hopping rate of the Ising model gives rise to a simple,
background error rate[18, 39],

Γ0 =
γ0

1 + e∆/T
(13)

Thus, the natural lifetime of the system in the absence
of any corrective protocols can be defined as 1/Γ0.

C. Protocol Construction

In this section we construct an autonomous error cor-
rection protocol for the 1D Ising model with a variable
length-scale λ. The design of the protocol reduces to at-
tempting to perform a sequence of DSWAPs that will
necessarily cause any arbitrarily placed pair of domain
walls within a region of length 2λ to become neighbors.
We refer the reader to Appendix B for a more complete
discussion of this strategy.

There are a variety of ways to construct protocols
which achieve this in a number of DSWAPs that scales
polynomially in the length of the system. Here we focus
on protocols which we call λ-mixing. By definition, these
are protocols which, in the absence of errors, never trans-
late domain walls a distance λ or greater. For an Ising
model of length L, λ runs from 1 to bL/2c. In the lan-
guage of error correction, the protocol can be designed
to correct errors of distance 1 to distance bL/2c.
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|q1〉

D D D|q2〉

D D D D D D|q3〉

|q4〉

D D|q5〉

D|q6〉

|q7〉

FIG. 3. Sequence of DSWAPs, denoted C, for a λ = 3 λ-
mixing protocol. If a pair of domain walls exist anywhere
between sites q1 through q7, then they will necessarily be
brought adjacent to each other by this sequence of swaps.
Gates are applied sequentially with waiting time 1/χ between
each gate.

|b1〉
D D D

|b2〉
D D D D D D

|b3〉

|b4〉
D D

|b5〉
D

|b6〉

FIG. 4. The same sequence from Fig. 3 but shown acting
on domain-wall variables. Here, it is clear that the sequence
of DSWAPs is designed not to mix domain walls between the
two regions of size λ = 3. Site b1 sits between q1 and q2, b2
between q2 and q3, etc.

First, the dual lattice is subdivided into non-
intersecting subregions of length λ. Then, two adjacent
regions are chosen, and a λ-mixing protocol is applied
over that subregion of total length 2λ. DSWAPs are cho-
sen to move defects towards the shared boundary of the
two regions, but not to mix defects between the bound-
aries. The non-intersection of the two regions is crucial:
if the protocol did not have this feature, it would actually
increase the error rate, effectively increasing the inherent
translation rate, and thus diffusion rate of defects in the
system. Fig. 3 depicts a circuit for this protocol for λ = 3
and Fig. 4 depicts the same circuit acting on the domain
wall variables. Fig. 5 illustrates a snapshot of this entire
procedure for a representative error process involving two
domain walls sitting in neighboring λ-domains.

This circuit should be reminiscent of the cartoon
sketched in Fig. 1. For our purposes, the operator O
from Fig. 1 is the full sequence of DSWAPs in Fig. 3
dressed by the probabilistic action of creation/annihila-
tion/translation operators by the bath on the system.

We provide code for this algorithm in the Appendix C,
including how the λ-mixing subprotocols are constructed.

a)

b)

c)

FIG. 5. One possible snapshot of the error correction process.
a) depicts a system with two domain walls present, each sit-
ting in adjacent λ-domains. b) depicts the state of the system
after the protocol has been applied–domain walls have been
shuttled to the shared boundary. In c), the bath dissipates
the domain walls, and the system returns to the ground state.

D. Error Modes and Scaling

In this section, we examine how uncontrollable thermal
errors lead to loss of the qubit in the presence of the
protocol.

In the presence of a corrective protocol, and assuming
the correction rate χ is close to the translation rate of
the system but still much less than the annihilation rate,
the rate of the lowest order error process is given by,

Γ̃ = Lγ+
γ0

λχ

γ0

γ−

1

L− 2− 2λ

f(λ)

L
(14)

This rate is the product of (i) the baseline production
rate of defect pairs, Lγ+, (ii) the probability of a defect
pair not immediately annihilating, γ0

γ−
, (iii) the probabil-

ity of a defect exiting a corrective region, γ0
λχ , (iv) the

probability of a nontrivial random walk across the chain
1

L−2−2λ , divided by a factor proportional to the number
of correcting regions on the lattice. Thus, for fully par-
allel application f(λ) ∝ λ. Without the protocol, the
probability that a pair of domain walls undergoes a ran-
dom walk that winds around the entire system scales like

1
L−2 , but when the protocol is implemented, the effec-
tive lattice size is slightly reduced: the particle need only
come within approximately a distance 2λ of its partner
for the protocol to fuse them. Thus, Γ̃ is the leading or-
der estimate for the rate at which domain wall pairs are
“missed” by the protocol, and cause uncontrolled transi-
tions between the two ground states of the model.

This effective rate is valid as long as χ is fast enough
to compete with γ0, but not so fast as to compete with
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pair annihilation, γ−, and other higher order processes
in γ0

γ−
and γ0

χ . Further, we assume that random walks

occur much faster than the intrinsic creation rate, or
γ0/L

2 >> γ+, and that we can model the random walk
as occuring instantaneously—for sufficiently large lattice
sizes, the breakdown of this assumption would introduce
an additional γ0 dependence into this error rate to ac-
count for the nonzero amount of time it takes defects to
traverse the lattice. For regimes studied here, γ0 and χ
run from 10,000 to 100,000 times faster than the intrinsic
pair creation rate, γ+.

It might be tempting to examine the form of (14) and
expect that errors vanish in the limit of γ0 → 0, but a new
effective translation rate appears once γ0 << γ+. In this
regime, two pairs of domain walls can appear next to one
another, and a consecutive annihilation event produces
a lone of pair of domain walls separated by two dual-
lattice sites. In this way, an effective translation rate
is set by the rate at which these doubled-pair creation
events occur. We do not consider this limit further, but
it is the natural error process for superohmic baths at
low temperature.

To model the breakdown of (14) as χ is varied, we can
approximate the error timescale, 1

Γ̃
, as being effectively

reduced by some factor proportional to χ:

1

Γ̃
→ 1

Γ̃
(1−χg(λ, L, γ0, γ−, γ+)+O((

χ

γ−
)2+(

χ

γ0
)2), (15)

with g(λ, L) a protocol-dependent scaling function.
Heuristically, for fixed λ, one expects that g should scale
linearly with the number of parallel domains of size λ
because, for twice as many domains, twice as many pairs
will be pulled apart by the protocol that would have oth-
erwise fused. At the same time, for a fixed number of
domains, i.e. fixed L

λ , any given pair of lattice sites is
only ever operated on by a DSWAP for a fraction of the
corrective cycle. So, for fixed χ and fixed L

λ , as λ is in-
creased, domain walls may spend a longer amount of time
sitting on a boundary before being caught by the proto-
col. For the protocol used in this paper, this is cubic in
λ. Thus,

g(λ, L, γ0, γ−, γ+) ∝ g(γ0, γ−, γ+)λ3L

λ
= g(γ0, γ−, γ+)λ2L

(16)
This scaling behavior suggests a critical cycling rate,

χc, at which the lifetime is maximally improved by the
protocol. Differentiating (15) with respect to λ yields the
critical rate, up to the rate function g,

χc =
1

2λ2Lg(γ0, γ−, γ+)
, (17)

where any residual prefactors and terms involving γ0,
γ+, and γ− have been absorbed into g.

E. Memory Enhancement and Scaling

We now present numerical results demonstrating the
enhanced lifetime of the Ising Model when subjected to
λ-mixing protocols in serial and in parallel. For serial
application, only a single corrective operation was ap-
plied every 1/χ units of time. For parallel application,
L/(2λ) simultaneous corrective operations were applied
every 1/χ, where each operation acted on a nonintersect-
ing region of length (2λ).

For the following analysis, we define the lifetime as the
average time it takes a 1D Ising model initialized to the
spin up state to transition to the spin down state. In the
absence of the protocol, that is, in the low-χ limit, this
lifetime asymptotes to approximately the lifetime given
by (13).

For the details of the Monte Carlo algorithm, see
Ref. 18. The only nontrivial choice required at the level
of simulation is how to treat the competition between
the application DSWAPs and bath operators. For sim-
plicity, we assume if a bath operator takes longer than
1/χ to occur, that the DSWAP occurs unhindered. Like-
wise, if a bath operator takes less than 1/χ to occur,
the transformation associated with that bath operator
occurs unhindered, be that a pair creation, pair annihi-
lation, or single translation. More complicated choices
could be made, like choosing a probabilistic failure rate
of a DSWAP as a function of the ratio of the competing
timescales, but we do not expect the result of a such a
treatment to greatly affect our analysis.

Fig. 6 depicts the scaling of the 1D Ising model’s life-
time with λ at fixed L, where a smaller λ results in more
domains being operated on in parallel. Specifically, for
parallel simulations, the protocol was performed simul-
taneously on L/(2λ) domains. These domains were cho-
sen such that DSWAPs were only being applied on non-
overlapping regions of characteristic size λ. Here, in-
creasing parallelization manifestly increases the lifetime
of the model. For small χ, the protocol does nothing,
and the memory converges to the value of the memory
in the absence of any corrective protocol, i.e. (13). For
χ approaching γ−, the protocol begins to compete with
the process of pair annihilation, and begins turning triv-
ial defect pairs into nontrivial pairs. This actually re-
duces the lifetime below that of the protocol-free value.
In the intermediate regime, the optimal lifetime grows
linearly with the number of parallel blocks employed in
the algorithm. For this particular protocol, the number
of parallel blocks was 48/λ.

Fig. 7 depicts the scaling of lifetime with λ, as in Fig.
6, but for a serial application of the protocol. For serial
application, only a single DSWAP operator ever oper-
ates on the system over a timescale χ−1. Decreasing λ
also manifestly increases the maximum enhanced lifetime
of the protocol. Thus, for fixed-resource architectures,
smaller λ necessarily outperforms larger λ implementa-
tions.

Fig. 8 and Fig. 9 depict the scaling of the lifetime with
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10−2 10−1 100

χ/γ0

10−1

100

101
(Γ
/
Γ

0
)−

1

λ=16

λ=12

λ=8

λ=6

λ=4

λ=3

FIG. 6. Measured lifetime of the Ising model, Γ−1, expressed
in terms of inverse units of Γ0 (i.e., (13)) as a function of the
correction rate, χ, rescaled by the translation rate, γ0, for
different values of λ and for fixed system size L = 96, temper-
ature, T = .07, and translation rate, γ0 = .0007. Protocols
were implemented in parallel on 48/λ blocks (see text). In
the absence of the protocol, the lifetime of the Ising model
for these parameters corresponds to approximately Γ−1

0 , i.e.
(13). This is the value which all three protocols converge to-
wards in the limit of χ/γ0 << 1. Note the decrease in lifetime
for χ/γ0 ≈ 1, as well as the universal scaling in the lifetime up
until the λ-dependent cutoff (i.e., (17)), which increases as λ
decreases. The only remaining mismatch between the curves
is due to the residual λ dependence in the 1/(L−2−2λ) term
of (15).

L at fixed λ for parallel application. Remarkably, the L
dependence of the models can be completely removed
by rescaling the data by (14), and rescaling χ to χL as
depicted in Fig. 9. This rescaling reveals the turnaround
in the scaling of the lifetime for χL/γ0 = 54.2 ± 2.8,
whereafter it transitions from linear scaling in χ to a
power law decay.

Fig. 10 depicts the scaling of the critical cycling rate
χc versus the inverse system length 1/L. This scaling
agrees with the error ansatz of (17).

We note that substituting χc from (17) into (14) yields

1/Γ̃ ∼ L−2−2λ
L —or that the maximum enhanced lifetime

is asymptotically independent of system size. Thus, even
for much larger system sizes, the maximum achievable
lifetime will not greatly exceed the maximum lifetime for
the L = 192 result in Fig. 8.

V. HIGHER DIMENSIONS AND
GENERALIZATION

A. The Toric Code

The argument and construction from the previous sec-
tion immediately generalizes to any higher dimensional
stabilizer codes with stringlike error operators. The im-

10−1 100

χ/γ0

10−1

100

(Γ
/
Γ

0
)−

1

λ=6

λ=4

λ=3

FIG. 7. Lifetime of the Ising model as a function of the correc-
tion rate, χ, rescaled by the translation rate, γ0, for different
values of λ, and for fixed system size, L = 96, temperature,
T = .07, and translation rate, γ0 = .0007. Protocols were
implemented serially (see text). The scaling of lifetime with
χ is characteristically similar to the parallel case; however,
the maximal lifetime is correspondingly smaller for the se-
rial implementation. Note that smaller λ still yields a larger
enhanced lifetime.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

χ/γ0

1

2

3

4

5

6

7

8

(Γ
/Γ

0
)−

1

L=48

L=96

L=192

FIG. 8. Lifetime of the Ising model as a function of the cor-
rection rate, χ, rescaled by the translation rate, γ0, for dif-
ferent values of system size, L, and for fixed λ = 3, T = .07,
γ0 = .0007. Protocols were implemented in parallel on L/2λ
blocks (see text). Note the linear scaling in χ for small val-
ues, as well as the shift in the maximum of the lifetime as a
function of L.

mediate analogue is Kitaev’s Toric Code, whose Hamil-
tonian is defined as a sum over vertex and plaquette op-
erators acting on the edges of a square lattice,
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χL/γ0
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Γ̃
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FIG. 9. This figure contains the same data as Fig. 8, but
with the χ axis rescaled to χL, and the 1/Γ axis rescaled by
(14). Hence, the linear scaling in χ, and the slight residual
system size dependence have been removed. Note the steep,
sudden dropoff in lifetime after χL ∼ 55.

0.010 0.015 0.020 0.025 0.030 0.035 0.040

1/L
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χ
c
/γ

0

FIG. 10. The critical cycling rate, χc, rescaled by the transla-
tion rate, γ0, as a function of 1

L
for λ = 3, T = .07, γ0 = .0007.

Protocols were implemented in parallel on L/2λ blocks. This
scaling is consistent with the error model ansatz in (17). Fit
to 1/L in red. Errors are dominated by systematic effects,
not sampling error.

HTC = −Je
∑
v

Av − Jm
∑
p

Bp, (18)

Av ≡
∏
j∈v

σzj , Bp ≡
∏
j∈p

σxj , (19)

The low temperature dynamics of the toric code are
governed by the proliferation of localized excitations that
are created by string-like error operators, with dynam-
ics similar to to those of the 1D Ising model. However,
toric code dynamics differ in two ways: first, there are
now two types of defects in the toric code–defined as

−1 eigenstates of the Av and Bp operators, located on
the vertices and plaquettes of the square lattice, respec-
tively. Because of the non-trivial braiding statistics of
these two defects, a nontrivial winding resulting from
the interaction with the bath gives rise to uncontrolled
errors that can be mapped onto logical Z and logical X
operations, depending on which type of defect incurs the
nontrivial winding. These erroneous operations can be
suppressed by operating at low temperature and by tun-
ing the relative strength of the plaquette and star terms
in the Hamiltonian. Secondly, both of these defects un-
dergo two-dimensional random walks rather than one-
dimensional random walks. This difference in dimension
gives rise to a modified form of the toric code’s finite
temperature error rate, due to the differing nontrivial
topological random walk probability for two dimensions
versus one.

Operationally, these differences only require small
modifications of the autonomous protocol. Namely, there
need be two DSWAP operators:

DSWAPe
vv′ =

1

4
σxvv′ (1−Av) (1 +Av′)

+
1

4
σxvv′ (1 +Av) (1−Av′)

+
1

4
(1−Av) (1−Av′)

+
1

4
(1 +Av) (1 +Av′)

DSWAPm
pp′ =

1

4
σzpp′ (1−Bp) (1 +Bp′)

+
1

4
σzpp′ (1 +Bp) (1−Bp′)

+
1

4
(1 +Bp) (1 +Bp′)

+
1

4
(1−Bp) (1−Bp′) (20)

These unitary operators translate an A-type (B-type)
excitation from a vertex v (plaquette p) to an adjacent
vertex v′ (plaquette p′). Second, the λ-mixing protocol
shuttles defects towards a shared boundary of length λ
between subdomains of charactersitic area λ2.

Because subregions share a boundary of length λ rather
than a single site, as in the one-dimensional case, the cy-
cling protocols require at most a factor of λ more swaps
to complete a cycle. The protocol then takes the follow-
ing simple form:

1. Choose a species of quasiparticle
2. Divide the lattice into domains of characteristic area

λ2

3. Pick two λ-domains which share a boundary
4. Pick two candidate defect locations within these two

λ-domains.
5. If these defect locations are within the same λ-

domain, apply DSWAPs until they would be nearest
neighbors. If they are in different λ-domains, apply
DSWAPs until they meet at the shared boundary.
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6. Repeat (5) until all pairs of defect locations are
exhausted.

7. Repeat (3) through (6) until all pairs of λ domains
which share a boundary are exhausted.

8. Repeat (1) through (7) until all species of quasipar-
ticle are exhausted.

This protocol is also highly parallelizable, both by op-
erating on multiple pairs of λ-domains, and by acting
on simultaneous pairs of defect sites within pairs of λ-
domains.

B. The General Problem

We can always divide a d-dimensional lattice into N ≡
Ld/λd domains and try to devise an algorithm that fuses
defects between adjacent domains. For our protocol, de-
fects are shuttled towards d − 1-dimensional boundaries
between adjacent domains of volume λd. From this, we
can generalize the low temperature dynamics of equation
(14) to the d-dimensional case as follows:

Γ̃ ∝ Ldγ+
γ0

λχ

γ0

γ−
P dΩ(L, λ)

f(λd)

Ld
, (21)

where L is the edge length of the d-dimensional volume
enclosed by the system, P dΩ(L, λ) encodes the probabil-
ity of a nontrivial topological random walk of a pair of
defects in d dimensions with system size L and domain
lengthscale λ, and f(λd) ∝ λd is a protocol dependent
function which depends on the implementation details of
the algorithm.

Theorem (B.1) guarantees that an algorithm exists
which can perform the cycling in a number of steps poly-
nomial in the dimension of the lattice. However, this
Theorem does not guarantee that a λ-mixing protocol
exists which solves the problem. In general, for higher
dimensions, there are always defect patterns of distance
O(λ) which are uncorrectable by our λ-mixing protocol.
The design strategy is then to try and maximize this
minimum uncorrectable distance by careful tiling of the
graph of interest.

To be more explicit, if a single pair of defects appears
on the graph, uncorrectable errors are generated only
when one of the defects escapes to an adjoining region
which does not share a boundary with its pair. A car-
toon of this process is depicted in figure Fig. 11. For
one dimension, this cannot happen in one step after an
adjacent pair of defects appears. More specifically, if a
single pair of adjacent defects appears on the lattice, no
single DSWAP will cause such an error to occur, by de-
sign, and no single bath operation will cause an adjacent
pair of defects to be in nonadjacent regions of size λ. In
one dimension, at worst a pair will be created, shuttled
around by the protocol, and then translate by a bath op-
erator across a boundary, resulting in an uncorrectable
error.

.

.

FIG. 11. A single random application of the bath hopping
operator causes a defect to move between adjacent regions of
size λ. Once a pair of defects are separated by this distance,
the protocol will not be able to correct them with certainty.

This distinction is important because poor choice of
tiling in higher dimension can result in uncorrectable er-
rors that occur in a single step after pair creation. For
example, compare the single hop in the upper half of
Fig. 12 to the lower half. A defect pair appearing at a
corner can transition to an uncorrectable configuration
in a single step, whereas in the lower tiling, this is not
possible for any initial configuration of adjacent defect
pairs. This can be checked by simple enumeration of the
possible defect locations and single-hop geometries.

This shifted square lattice tiling depicted in the lower
half of Figure 12 generalizes to three dimensions, and is
necessary for equation (21) to describe the leading order
error process.

C. Hybrid DSWAP-Stabilizer Codes

While we have demonstrated that our protocol gives
rise to an enhanced lifetime for a topological code with
string-like error operators, it is also possible and desir-
able, to use our DSWAP cycling protocol with a more
traditional stabilizer detection-correction scheme simul-
taneously. We postpone numerical analysis of such a
scheme for future work, but we sketch such a protocol
in this section.

For concreteness, we specialize here to the case of the
toric code. Error detection and correction in the toric
code requires (1) measurement of all stabilizer syndrome
operators and (2) application of a perfect-matching al-
gorithm to determine which pairs of defects to fuse.
Whether or not such an algorithm will be successful de-
pends on the density of errors at the time of measure-
ment. Given a stabilizer measurement rate γ, in the “in-
finite temperature” limit (i.e., T →∞ in (9)), each edge
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(a) (b)

(c)

FIG. 12. A single random application of the bath hopping
operator causes a defect to move between nonintersecting re-
gions of size λ, depicted in (a) and (b). (c) depicts a new
lattice tiling where no single swap can move defects into two
λ regions which do not share a boundary.

is acted upon by an error operator with an error proba-
bility p. Operationally, the bath is equally likely to create
a pair of defects as it is to dissipate a pair. The resulting
dynamics are analogous to an uncorrelated “white noise”
model.

It is well known that if p is below some critical value,
pc, it is possible to correct the errors in the toric code
with certainty. Equivalently, pc sets the minimum rate
at which measurement must occur so that detection is
possible in principle. Call this rate γc.

For the protocol to have an effect, we must operate
in a regime where pair annihilation is favored over pair
creation. For simplicity, we work in the low tempera-
ture regime where single defect pairs dominate. In this
regime, an uncorrectable error has occurred when a single
pair of defects becomes separated by more than half the
linear lattice dimension. In the presence of the DSWAP
cycling protocol, the rate associated with such an event
occuring is modified by some constant factor:

1

ΓToric Code Cycling
= g

1

ΓToric Code
(22)

where ΓToric Code Cycling is the error rate of the toric
code in the presence of a cycling protocol, and ΓToric Code

is the error rate in the absence of the protocol.
For g > 1, i.e., when our protocol actually enhances

the lifetime of the code, this effectively reduces the criti-
cal detection rate γc by the same factor. This is because
the protocol effectively reduces the rate at which unde-
tectable pairs are created.

Thus, if a physical realization of a stabilizer error de-
tection/correction cycle is rate limited due to hardware

or fundamental noise constraints, the DSWAP cycling
protocol provides one avenue towards reducing the criti-
cal measurement/detection rate purely by application of
local unitaries.

VI. DISCUSSION

In summary, we have provided a dissipative error cor-
rection protocol that enhances the lifetime for models
with string-like defects (see Sec. IV C). In particular, we
have combined a local dissipative thermal protocol with
carefully designed unitaries, in order to further encour-
age defect dissipation. Furthermore, we have derived an
enhanced lifetime for the one-dimensional Ising model in
the presence of our protocol, i.e. equation (14), deter-
mined the scaling behavior of the optimal protocols, i.e.
equation (17), and provided numerical evidence for the
enhanced lifetime of the Ising model in the presence of
our protocol given certain rate assumptions (see Figs.
6 through 10). Practically, this algorithm increases the
lifetime of the system linearly with system size up to a
system-size independent cutoff, illustrated in Fig. 8, as
anticipated from No-Go theorems. Furthermore, we have
sketched how this protocol can be generalized to higher
dimensional models like the toric code, and used in con-
junction with traditional stabilizer error detection/cor-
rection schemes (see Sec. V A and V C).

The efficacy of these sorts of protocols is intimately
related to the scaling of the protocol with system size
and protocol parameters, as we have demonstrated. No-
tably, the best performing versions of our protocol have
small λ, and, in a sense, only correct the shortest distance
errors. This may seem counterintuitive from the perspec-
tive of designing protocols which correct as many errors
as possible. For example, suppose we wish to compare a
λ = 3 protocol with total cycle time τ to a λ = 4 proto-
col with the same cycle time τ . Note that by fixing total
cycle time, we are implicitly requiring that the λ = 4
protocol be performed more quickly at the level of indi-
vidual application of DSWAPs (because there are more
DSWAPs in a complete λ = 4 cycle than a λ = 3 cycle),
but we require that the complete error correcting cycle of
each protocol is completed in the same amount of time.
Naively, we would expect the λ = 4 protocol to do bet-
ter, because it is dissipating errors over a longer length
scale, but in the same amount of time. Fig. 7 indicates
a narrow region where this is the case, but, generically,
this is not the case.

This can be traced to the poor scaling of the maximal
lifetime with λ, as represented by equation (17). Essen-
tially, the protocols which correct larger distance errors—
i.e., large λ-fixing protocols—employ so many gates that
all of the gains of correcting longer distance errors are
erased by the time it takes to actually perform the pro-
tocol, even when implementing the protocol in parallel.

Additionally, the form of equation (14) suggests that
larger systems manifestly have lower error rates, because
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Γ̃ ∝ 1

χ L for low temperature and L >> λ. For suffi-

ciently large systems this once again breaks down due to
equation (17) (see also, Fig. 10). Namely, for a fixed
cycling rate χ0, making the system larger only increases
the lifetime so long as χ0 < χc. Thus, the more fa-
vorable scaling of the lifetime with χ at larger system
sizes is precisely offset by the poor scaling of χc. This
can be seen immediately by inserting χc from (17) into
(14). This replacement yields the expected scaling of our
“best” measurement-free protocol, which scales asymp-
totically as ∼ L−constant

L —i.e., upper bounded by a con-
stant.

These shortfalls could be circumvented by allowing for
longer range unitaries. For example, the DSWAP opera-
tor could be replaced by a generalized operator DSWAPλ
which transports domain walls over longer distances. Our
insistence on building the protocol entirely out of local
DSWAP gates was to perform as honest an analysis as
possible with respect to the power of this type of pro-
tocol. But if a particular architecture could exchange
defects over long distances just as easily as short ones,
this would immediately allow for algorithms with better
scaling. We hope to examine the optimality of these sorts
of protocols in future work.

In the long term, this program is meant to identify the
simplest possible set of ingredients necessary to provide
protection for a stabilizer code based quantum memory.
Many partial ingredients are known, like the No-Go the-
orems mentioned in Sec. I. Practically, the goal is a
protocol designed around the dynamics of the excitations
of the stabilizer codes of interest with miminimal usage
of resources, but which still results in an error threshold
so that a state can be preserved indefinitely. With this
work, we have demonstrated a constant factor improve-
ment with only local unitaries dressing the system.
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Appendix A: Syndrome Decoding for 1D Ising
Model

The corrective operator CU in Fig. 2 can be writ-
ten as a collection of conditional applications of DSWAP
and DWALL, where the applications of the operators are
conditioned on the measurements of the stabilizers. We
adopt the notation U123 to indicate the application of the
unitary U on qubits 1, 2 and 3. The operator U is given
explititly in Table 1.

s1 s2 s3 U
1 1 1 I
1 1 −1 I
1 −1 1 I
1 −1 −1 DWALL234

−1 1 1 I
−1 1 −1 DSWAP123DWALL234

−1 −1 1 DWALL123

−1 −1 −1 I

TABLE I. Corrective operations given certain measurements
of the stabilizers s1 through s3 in Fig. 2. If an odd number
of domain walls are detected, the identity is applied.

|M(3)| 1
|M(4)| 3
|M(5)| 6
|M(6)| 10
|M(7)| 18

TABLE II. Minimum number of DSWAPs required to neces-
sarily fuse any two defects on a linear chain with open bound-
ary conditions. Computed via breadth first search.

Appendix B: MATCHSEQ and Error Correction

1. Polynomial Scaling

Define the game MATCHSEQ as follows: two non-
adjacent vertices on a simply connected graph G are col-
ored black, called defects, the rest white. The player
is allowed to perform a conditional swap, or DSWAP, on
any two adjacent vertices, which exchanges black vertices
and white vertices, and does nothing to pairs of white
vertices. If black vertices become adjacent, they immedi-
ate fuse and become white vertices. Crucially, the player
does not know which vertices are colored black.

“Winning” MATCHSEQ amounts to performing a
sequence of moves which guarantees that a pair of arbi-
trarily placed vertices fuses.

Define the pairing sequence M(Gv) to be the sequence
of conditional swaps necessary to bring any configura-
tions of two defects adjacent to one another at least once
on a graph G with v vertices. Define the pairing number
|M(Gv)| to be the pairing sequence with minimal length.
Table 1 tabulates the first few nontrivial pairing numbers
for the special case of G equal to a linear chain of length
L.

Theorem B.1. The number of DSWAPs necessary to
win MATCHSEQ for an arbitrary finite, connected
graph G is polynomial in the number of vertices in the
graph G.

Proof: Let M∗(G) be a winning strategy on an
arbitrary graph G. Suppose an arbitrary vertex is added
to G, called v∗, with up to |G| edges. Call this modified
graph G′. Then, performing M∗(G) on G′ either fuses
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two arbitrarily placed defects, or there’s a single defect
on the new vertex, and the remaining vertex has just
been permuted around in G. A candidate M(G′) is
then:
1. Perform M∗ on G.
2. Pick a vertex, v′, on G. Supposing a defect is on v′,
perform a sequence of DSWAPs that brings that defect
adjacent to the new vertex, v∗.
3. Perform the reverse of the sequence of DSWAPs in
(2), and repeat (2) with a new v′.
4. Repeat (2) and (3) until all vertices in G are ex-
hausted.

The number of DSWAPs needed for step (2) is at most
|v|, i.e., the number of vertices in G. Thus, the total
complexity of steps 2 through 4 is O(|v|2). This admits
a recurrence relation:

|M(Gv+1)| ≤ |M(Gv)|+ b ∗ |v|2, (B1)

Where b is a constant ≤ 1. b = 1 corresponds to the
case that the new vertex is only connected to one vertex
in the original graph G. Solving this recurrence rela-
tion in the limit that the inequality is always saturated
yields |M(Gv)| ≤ O(|v|3). It is worth emphasizing that
this is not the minimal such solution to MATCHSEQ,
just one that is easily provably polynomial in |G|. The
likely graph structures of interest to an experimentalist,
i.e., linear chains, square lattices, admit more favorable
algorithms with softer polynomial scaling.

2. Strategies

For a given winning strategy, M∗(G), it will be con-
venient to classify the strategy based on the maximum
distance that any given defect is moved. In the sequel, we
will construct M∗(G) out of a concatenation of M∗(Gi),
where Gi are subgraphs of G. Thus, if only a single de-
fect happens to be in the subgraph Gi, we would like to
bound the maximum displacement of that defect by the
strategy.

Let d(M) be the maximum distance any given defect is
moved by a given strategy. For winning strategies, d(M)
is at least half of the maximum distance between defects
and at most permutes defects around the entire graph,
so |v| ≥ d(M) ≥ |v|/2. Define a strategy M∗(G) to be
k-mixing if d(M) = k.

We introduce this terminology because most physical
realizations of MATCHSEQ will have a background rate
of uncontrollable DSWAPs, driven by coupling to a bath.
k-mixing strategies are necessary in such cases to be par-
tially resilient to these random “error” DSWAPs.

∗

FIG. 13. An example of the result of applying a winning
sequence M(G) to a graph with defect pairs present. No
matter where the defects are, the sequence of DSWAPs brings
pairs adjacent, whereupon they immediately fuse.

3. Mapping onto 1D Ising Model

Vertices in the problem setup for MATCHSEQ corre-
spond to the dual lattice of the Ising chain, and the pro-
cess of fusion is simply dissipation of adjacent domain
wall pairs by the bath.

However, we caution that the mapping onto MATCH-
SEQ is only partial: defects on the Ising chain hop in the
absence of any experimental intervention, so the Ising
chain is more akin to a game of MATCHSEQ with a
random, background DSWAP rate. Further, there can
be more than two pair of excitations on the Ising chain,
but for low temperature, the regime where the proto-
col works best, this is exceedingly rare. Lastly, defect
pairs don’t necessarily fuse immediately–fusion happens
at the timescale set by the system-bath coupling, the type
of bath model, and the temperature, so rate at which
DSWAPs are applied must be chosen carefully for opti-
mal lifetime enhancement.

Appendix C: Algorithm for 1-D Ising Model

Here we provide python code for a λ-mixing algorithm
for the Ising chain. The output of the algorithm is
a sequence of locations. Our convention is such that
location i indicates a DSWAP should be applied that
exchanges defects between sites i and i + 1. Heuristi-
cally, the algorithm attempts to shuffle defects towards
the shared boundary of the disjoint sites 0,1,2,...,λ-1 and
λ,λ+1,...,2λ-1. That is, it attempts to translate defects
so that they are adjacent to each other at sites λ−1 and λ.
After completing this cycle, the algorithm repeats for the
next two adjacent domains, λ, ..., 2λ−1 and 2λ, ..., 3λ−1.
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This continues until the lattice has been exhausted.

The following python code generates a complete se-
quence of DSWAPs given a lattice size and λ length.

def SwapProtocol(L, lamb):

prot = []

numofdomains = L / lamb

for d in xrange(numofdomains):

for k in xrange(lamb):

for m in xrange(k):

prot.append((lamb-1-k+m+d*lamb)%L)

for i in xrange(lamb):

for j in xrange(i):

prot.append((lamb+i-j-1+d*lamb)%L)

return prot

The protocol is parallelized by operating simultane-
ously on specific pairs of domains. To be more ex-
plicit: denote the first λ sites as λ1, the next λ sites λ2

and so on. The algorithm can be naturally partitioned
into a sequence of DSWAPs that translates defects to
the shared boundary of λ1 and λ2 (call this sequence
(λ1, λ2)), followed by a sequence that translates defects
to the shared boundary between λ2 and λ3, (call this se-
quence (λ2, λ3)), etc. To parallelize, apply the sequence
(λ1, λ2) simultaneously with (λ3, λ4), (λ5, λ6), etc. When
complete, apply the sequence (λ2, λ3) with (λ4, λ5) etc.
This exhausts the protocol.
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