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An essential step in quantum key distribution is the estimation of parameters related to the leaked amount

of information, which is usually done by sampling of the communication data. When the data size is finite,

the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present

security analyses are based on the method with simple random sampling, where hypergeometric distribution or

its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling,

which is related to binomial distribution. Our method is suitable for the BB84 protocol with weak coherent

pulses, reducing the number of estimated parameters to achieve a higher key generation rate compared to the

method with simple random sampling. We also applied the method to prove the security of the differential-

quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that, the advantage of the

DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed

in the asymptotic regime, persists in the finite-key regime.

PACS numbers: 03.67.Dd, 03.67.Hk.

I. INTRODUCTION

Quantum key distribution (QKD) allows two distant par-

ties to share a secret key and realizes a communication with

information-theoretic security by combining it with one-time-

pad encryption. Since the BB84 protocol was proposed by

Bennett and Brassard [1], a large number of researches on

QKD have been conducted from both aspects of theory and

implementations. The security of QKD is based only on prin-

ciples of quantum physics where eavesdropped information

is bounded from the observed parameters in a protocol. In

practice, the estimation of this bound should take into account

statistical fluctuations due to the finite size of communication

data, which requires so-called finite-key analysis. Following

the security definition with composability [2, 3], the finite-

key analyses for various QKD protocols including the BB84

protocol were conducted assuming the adversary’s general at-

tacks [4–10].

For a finite-key analysis, a simple method with a smaller

number of estimation processes is preferred because it leads

not only to a more concise security proof but also to a higher

key-generation rate especially when the number of communi-

cation rounds is limited and statistical fluctuations are large. A

number of recent finite-key analyses are based on the method

with simple random sampling, which is used to model n1

draws, without replacement, from a finite population of size

n2 that contains k2 errors. The probability that the number of

errors in the sample is k1 obeys hypergeometric distribution

HG(k1; n1, k2, n2) :=

(

k2

k1

)(

n2−k2

n1−k1

)

(

n2

n1

) . (1)

In several finite-key analyses [8, 9] based on simple random

sampling, efforts were made to find bounds on hypergeometric

distribution which are related to binomial distribution in order

to simplify numerical calculation.

In order to mitigate the inefficiency arising from basis mis-

match between the sender and the receiver, the BB84 protocol

is often implemented with biased basis choice [11], in which

the minor basis is used solely for monitoring leaked informa-

tion in the major basis. In this case, the whole data from the

rounds in the monitoring basis is regarded as a sample, with

each round selected with a constant probability dictated in the

protocol as that of the basis choice. This suggests that the data

from the monitoring basis is related to Bernoulli sampling, in

which each element of the population of size n2 is sampled

with fixed probability p1. The number of samples n1 obeys

binomial distribution

BI(n1; n2, p1) :=

(

n2

n1

)

p
n1

1
(1 − p1)n2−n1 . (2)

If the BB84 protocol with biased basis choice essentially

includes the property of the binomial distribution, analysis

based on the conventional simple random sampling may in-

troduce unnecessary complexity and possibly leads to a lower

key rate.

In this paper, we work on the finite-key analysis by focusing

on the Bernoulli sampling instead of simple random sampling.

We propose the method based on binomial distribution which

is parametrized by the basis choice probabilities in the pro-

tocol. Differently from the previous works which deal with

binomial distribution to derive bounds on hypergeometric dis-

tribution, our work is based on binomial distributions inherent

in the protocol. Our method is especially suited for the BB84

protocol with weak coherent pulses (WCP), providing a sim-

pler analysis with less estimation processes as well as achiev-

ing a higher key rate compared to the analysis with simple

random sampling. We further apply this method to the dif-

ferential quadrature phase shift (DQPS) protocol [12], whose

security was proved recently in the asymptotic regime [13].

As a result, we show that the advantage of the DQPS pro-

tocol over the phase-encoded BB84 protocol with WCP still
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remains in the finite key regime.

This paper is organized as follows. In Sec. II, we describe

details of the BB84 protocol which is considered in this work,

along with a summary of notations used in this paper. In

Sec. III, we propose a method of finite-key analysis based on

Bernoulli sampling, and applies it to the ideal BB84 protocol

where Alice and Bob can manipulate perfect single photon

states. The proposed method is then applied to the BB84 pro-

tocol with WCP as well as the DQPS protocol in Sec. IV A.

Finally, we give discussion and conclusion in Sec. V.

II. BB84 PROTOCOL

In most part of this paper, we discuss the finite key analysis

of the BB84 protocol [14], which is given in the following.

The sender Alice and the receiver Bob independently chooses

two bases (Z basis and X basis) with a biased probability. The

final key is generated only from Z-basis data, while X-basis

data is used for leak monitoring to determine the amount for

privacy amplification. The number of total rounds nrep are pre-

determined and there is no threshold for data size after sifting

process, which means that the size of sifted key nZ and that of

monitoring bits nX are not determined until quantum commu-

nication is over.

The protocol proceeds as follows with predetermined

parameters p̃Z , p̃X = 1 − p̃Z and nrep. In its description, |κ|
represents the length of a bit sequence κ.

(1) Alice chooses Z basis or X basis with probability p̃Z

and p̃X , respectively. She chooses a uniformly random bit

{0, 1}.
(2) Alice prepares one of states {ρ̂Z,0, ρ̂Z,1, ρ̂X,0, ρ̂X,1} based on

the selected basis and bit. She sends the prepared state to Bob

over the quantum channel.

(3) Bob chooses Z basis or X basis with probability p̃Z and

p̃X , respectively. He measures a received state in chosen basis

and obtains the outcome {0, 1, no-detection}.
(4) They repeat the sequence (1) to (3), which we call a

round, by nrep times.

(5) Bob publicly announces whether each round has resulted

in a detection or not. Let ndet be the number of rounds with

detection.

(6) Alice and Bob disclose all of their basis choices. Among

the ndet detected rounds, the rounds where both Alice and

Bob chose the Z basis are called “Z-labeled” rounds, and the

rounds where they chose the X basis are called “X-labeled”

rounds. They define sifted keys κA,Z and κB,Z by concate-

nating the bits for the Z-labeled rounds, and similarly define

κA,X and κB,X for the X-labeled rounds. Let their sizes be

nZ := |κA,Z | = |κB,Z | and nX := |κA,X | = |κB,X |.
(7) They disclose and compare κA,X and κB,X to determine the

number of bit errors kX included in them.

(8) Through public discussion, Bob corrects his keys κB,Z

to make it coincide with Alice’s key κA,Z and obtains κcor
B,Z

(|κcor
B,Z
| = nZ).

(9) Alice and Bob conduct privacy amplification by shorten-

ing κA,Z and κcor
B,Z

to obtain final keys κfin
A,Z

and κfin
B,Z

of size nfin.

In the subsequent sections, we discuss how we can deter-

mine the final key length nfin as a function of the random vari-

ables nZ , nX , and kX obtained in the protocol to satisfy a given

security criteria. For convenience, we define several variables

and parameters as ntot := nX + nZ and

pZ :=p̃2
Z/( p̃2

Z + p̃2
X),

pX :=p̃2
X/( p̃2

Z + p̃2
X). (3)

Throughout this paper, we adopt an abuse of notation to use

the same symbol for a random variable ñ and its value n,

whenever the distinction is obvious. For example, we de-

note Pr(n > 3) instead of Pr(ñ > 3). We denote by Pr(n)

the probability mass function Pr(ñ = n). Similarly, we use

Pr(n | m) instead of Pr(ñ = n | m̃ = m). We define |0Z〉
and |1Z〉 as basis vectors of Z basis on a qubit system, and

|0X〉 := (|0Z〉 + |1Z〉)/
√

2 and |1X〉 := (|0Z〉 − |1Z〉)/
√

2 as those

of X basis. When the same notations are used for an optical

signal, it should be understood that they refer to the states in

the subspace of a single photon contained in two modes, such

as polarizations. The four Bell sates are represented as |Φ±〉
and |Ψ±〉 where

|Φ±〉 :=
1
√

2
(|00Z〉 ± |11Z〉), (4)

|Ψ±〉 :=
1
√

2
(|01Z〉 ± |10Z〉). (5)

We define a function h(x) for x ≥ 0 as

h(x) =

{

−xlog2x − (1 − x)log2(1 − x) (0 ≤ x ≤ 1/2)

1 (x > 1/2).
(6)

III. ANALYSIS FOR THE IDEAL BB84 PROTOCOL

Here we consider finite-key analysis for the ideal qubit-

based BB84 protocol, in which Alice sends a single photon

in the states {ρ̂W,a = |aW〉 〈aW |S } (W ∈ {Z, X}, a ∈ {0, 1}) in

Step (2) and Bob conducts ideal measurement with unit ef-

ficiency described by POVM (positive operator-valued mea-

sure) {|0W〉 〈0W |S , |1W〉 〈1W |S , 1̂S − |0W〉 〈0W |S − |1W〉 〈1W |S }
corresponding to the outcome {0,1,no-detection}.

A. Security criteria and formalism for key length

In this work, we follow the security definition based on uni-

versally composable security [2, 3]. The protocol is called ǫsec

secure if it is both ǫc-correct and ǫs-secret where ǫsec = ǫc + ǫs.

We call the protocol is ǫc-correct if Pr(κfin
A,Z
, κ

fin
B,Z

) ≤ ǫc holds.

We call the protocol is ǫs-secret if

1

2

∣

∣

∣

∣

∣

∣ ρ̂fin
AE − ρ̂ideal

AE

∣

∣

∣

∣

∣

∣ ≤ ǫs, (7)

where ρ̂fin
AE

:=
∑

κ
fin
A,Z

p(κfin
A,Z

) |κfin
A,Z
〉 〈κfin

A,Z
|⊗ρ̂E(κfin

A,Z
) is a classical-

quantum state between Alice’s key and Eve’s system after
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finishing the protocol and ρ̂ideal
AE

is an ideal separable state in

which Alice’s key is uniformly distributed over 2|κ
fin
A,Z
| values

and decoupled from Eve’s system.

In the ideal BB84 protocol, Alice’s procedure of selecting a

random bit and a basis, and preparing the corresponding sig-

nal can be replaced [15] by preparation of |Φ+〉AS followed by

the measurement on the system A on {|0Z〉A , |1Z〉A} (Z-basis)

or on {|0X〉A , |1X〉A} (X-basis). Bob’s measurement is also re-

placed by a filtering operation to make sure a single photon is

received and transfer its state to a qubit B, followed by the or-

thogonal measurement of B on the chosen basis to determine

the outcome 0 or 1. When the filtering fails, the outcome is

“no-detection”. According to Ref. [16, 17], a phase error oc-

curs when Alice and Bob conduct virtual Bell-basis measure-

ment on a Z-labeled round after Eve’s intervention to obtain

the outcome for |Φ−〉 〈Φ−|AB or |Ψ−〉 〈Ψ−|AB. Since we have

the relation

|Φ−〉 〈Φ−|AB + |Ψ−〉 〈Ψ− |AB = |01X〉 〈01X |AB + |10X〉 〈10X |AB ,

(8)

phase error is equivalently defined as a bit error which occurs

when Alice and Bob conduct virtual X-basis measurement af-

ter Eve’s intervention on a Z-labeled round. An important

property which will be used in the next subsection is that the

measurement for a phase error on a Z-labeled round and the

measurement for a bit error on an X-labeled round are identi-

cal, and hence they only differs in the labeling.

Let kph be a random variable which represents the number

of phase errors on nZ Z-labeled rounds. Once we have a good

upper bound on kph, a secure key length can be calculated as

follows. Suppose that we have a function f (kX , nX, ntot) which

satisfies

Pr(kph > f (kX , nX , ntot)) ≤ ǫPE (9)

regardless of Eve’s attack strategy. By setting [8]

ǫs =
√

2
√
ǫPE + ǫPA, (10)

the protocol is ǫc-correct and ǫs-secret if the final key length

nfin satisfies

nfin ≤ nZ −
⌈

nZh

(

f (kX , nX , ntot)

nZ

)

+ log2

1

ǫPA

⌉

− λEC(ǫc), (11)

where ⌈ ⌉ represents the ceiling function and λEC(ǫc) is the cost

of error correction to achieve ǫc-correctness. For simplicity,

we will replace the right-hand side by a slightly pessimistic

bound as

nfin ≤ nZ(1 − h

(

f (kX , nX, ntot)

nZ

)

) − log2

2

ǫPA

− λEC(ǫc). (12)

B. Bounds on phase errors

In this subsection, we discuss the specific methods to ob-

tain f (kX , nX , ntot) in Eq. (9) including a method based on the

Bernoulli sampling, and a more conventional method based on

the simple random sampling. We also introduce a third, rather

convoluted method, which will help to elucidate the difference

between the former two methods.

Before discussing each of the methods, we first derive gen-

eral statistical properties. Since the Z-labeled phase error

and the X-labeled bit error are obtained by identical measure-

ments, the procedure to obtain those errors is equivalent to the

following steps after discarding the rounds with no-detection

(i.e., with Bob failing to receive a qubit): (a) Alice and Bob

further discard each of the remaining rounds with probability

1 − p̃2
Z
− p̃2

X
. (b) They make X-basis measurements on the

remaining ntot rounds and obtain ktot errors. (c) Finally, they

label each of the ntot rounds as Z or X with probability pZ and

pX (see Eq. (3)), respectively, and obtain kph phase errors in

Z-labeled rounds and kX = ktot − kph bit errors in X-labeled

rounds. In this procedure, since kX errors are sampled from

ktot errors with a fixed probability pX , it follows a binomial

distribution if ktot and ntot are fixed:

Pr(kX | ktot, ntot) = BI(kX; ktot, pX). (13)

On the other hand, the step (c) of the above procedure is equiv-

alently denoted as follows: Alice and Bob draw a number nX

based on the binomial distribution BI(nX; ntot, pX), and then

select nX random rounds among the ntot rounds to label as

X, thereby determining kX . This implies that the number kX

obeys hypergeometric distribution if nX , ktot and ntot are fixed:

Pr(kX | nX , ktot, ntot) = HG(kX; nX , ktot, ntot). (14)

In order to use the properties derived above, it is convenient

to reformulate Eq. (9) as follows. From Eq. (9), we have
∑

ktot,ntot

Pr(kph > f (kX , nX , ntot) | ktot, ntot)Pr(ktot, ntot) ≤ ǫPE.

(15)

Since Pr(ktot, ntot) can be under control of Eve, we seek for

f (kX , nX, ntot) satisfying

Pr(kph > f (kX , nX , ntot) | ktot, ntot) ≤ ǫPE (16)

for any ktot and ntot, which is a sufficient condition for Eq. (9).

For later convenience, we equivalently describe Eq. (16) as
∑

kX ,nX ;kX<ktot− f (kX ,nX ,ntot)

Pr(kX , nX | ktot, ntot) ≤ ǫPE. (17)

The first method to determine f (kX , nX , ntot), whose util-

ity we will emphasize throughout this paper, is based on

Bernoulli sampling using the property of binomial distribu-

tion Eq. (13). This method adopts f (kX , nX , ntot) = fBI(kX)

where

fBI(kX) := min

{

ktot

∣

∣

∣

∣
CBI(kX; ktot, pX) ≤ ǫPE

}

− kX − 1 (18)

CBI(kX; ktot, pX) :=
∑

k′
X
≤kX

BI(k′X; ktot, pX). (19)

The proof that fBI(kX) satisfies Eq. (16) is as follows. Let

kX(ktot) := max{kX | ktot > fBI(kX) + kX}. Then we have
∑

kX ; ktot> fBI(kX )+kX

BI(kX; ktot, pX) ≤ CBI(kX(ktot); ktot, pX). (20)
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Since CBI(kX ; ktot, pX) is a decreasing function of ktot, from

Eq. (18) we have CBI(kX ; ktot, pX) ≤ ǫPE for any pair

(kX , ktot) satisfying ktot ≥ fBI(kX) + kX + 1. Since ktot ≥
fBI(kX(ktot)) + kX(ktot) + 1 holds by definition of kX(ktot),

we have CBI(kX(ktot); ktot, pX) ≤ ǫPE. By connecting this to

Eq. (20), we have
∑

kX ; kX<ktot− fBI(kX )

BI(kX; ktot, pX) ≤ ǫPE, (21)

for any ktot. From Eqs. (13) and (21), we have
∑

kX ,nX ; kX<ktot− fBI(kX )

Pr(kX , nX | ktot, ntot)

=
∑

kX ; kX<ktot− fBI(kX )

Pr(kX | ktot, ntot)

≤ ǫPE, (22)

which is identical to Eq. (17) with f (kX , nX , ntot) = fBI(kX).

Therefore, we have

Pr(kph > fBI(kX) | ktot, ntot) ≤ ǫPE. (23)

As a result of the Bernoulli-sampling method, the protocol is

ǫc-correct and ǫs-secret if the final key length nfin satisfies

nfin ≤ l(BI) := nZ(1 − h

(

fBI(kX)

nZ

)

) − log2

2

ǫPA

− λEC(ǫc), (24)

where ǫs is given by Eq. (10).

The second method is based on simple random sam-

pling, applying the property of the hypergeometric distribu-

tion Eq. (14), which is already seen in Ref. [4, 6–8], for ex-

ample. This method adopts f (kX , nX , ntot) = fHG(kX , nX , ntot)

where

fHG(kX , nX , ntot) := min

{

ktot

∣

∣

∣

∣

CHG(kX; nX , ktot, ntot) ≤ ǫPE

}

− kX − 1

CHG(kX; nX , ktot, ntot) :=
∑

k′
X
≤kX

HG(k′X; nX , ktot, ntot). (25)

The proof that fHG(kX , nX, ntot) satisfies Eq. (16) is similar to

the proof for fBI(kX). Recall that the proof for fBI(kX) did

not use the explicit form of BI(k′
X
, ktot, pX) but only used the

decreasing property of CBI(kX; ktot, pX) as a function of ktot.

Since CHG(kX; nX , ktot, ntot) is also a decreasing function of ktot,

we have
∑

kX ; kX<ktot− fHG(kX ,nX ,ntot)

HG(kX; nX , ktot, ntot) ≤ ǫPE (26)

for any nX , ktot and ntot, which is analogous to Eq. (21). From

Eqs. (14) and (26), we have
∑

kX ,nX ; kX<ktot− fHG(kX ,nX ,ntot)

Pr(kX , nX | ktot, ntot)

=
∑

kX ,nX ; kX<ktot− fHG(kX ,nX ,ntot)

Pr(kX | nX , ktot, ntot)Pr(nX | ktot, ntot)

≤ ǫPE, (27)

which is identical to Eq. (17) with f (kX , nX , ntot) =

fHG(kX , nX, ntot). Therefore, we have

Pr(kph > fHG(kX , nX , ntot) | ktot, ntot) ≤ ǫPE. (28)

As a result of the method with simple random sampling, the

protocol is ǫc-correct and ǫs-secret if the secret key length nfin

satisfies

nfin ≤ l(HG) := nZ(1−h

(

fHG(kX , nX , ntot)

nZ

)

)− log2

2

ǫPA

−λEC(ǫc),

(29)

where ǫs is given by Eq. (10).

To understand the relation between the two methods with

Bernoulli sampling and simple random sampling, we intro-

duce another method which uses full knowledge of the dis-

tribution Pr(kX , nX | ktot, ntot) appearing in Eq. (17). The ar-

gument before Eq. (13) also implies that the number mX :=

nX − kX of X-labeled rounds without bit error obeys binomial

distribution BI(mX; ntot − ktot, pX), and that mX and kX are in-

dependent conditioned on ktot and ntot. We thus obtain

Pr(kX , nX | ktot, ntot) = BI(kX; ktot, pX)BI(nX − kX; ntot − ktot, pX).

(30)

The argument leading to Eq. (14) gives another expression for

the distribution as

Pr(kX , nX | ktot, ntot) = HG(kX; nX , ktot, ntot)BI(nX; ntot, pX).

(31)

As a result, Eq. (17) is expressed in the following two equiva-

lent ways:

∑

kX ,mX ;kX<ktot− f (kX ,kX+mX ,ntot)

BI(kX; ktot, pX)BI(mX ; ntot − ktot, pX)

≤ ǫPE.

(32)

or
∑

kX ,nX ;kX<ktot− f (kX ,nX ,ntot)

HG(kX; nX , ktot, ntot)BI(nX; ntot, pX) ≤ ǫPE.

(33)

Since fBI(kX) satisfies Eq. (21), Eq. (32) holds if f (kX , kX +

mX , ntot) = fBI(kX). Similarly, since fHG(kX , nX , ntot) satisfies

Eq. (26), Eq. (33) holds if f (kX , nX , ntot) = fHG(kX , nX , ntot).

On the other hand, the condition of Eqs. (32) and (33) do not

imply Eq. (21) or Eq. (26). Therefore, there could be a bet-

ter bound compared to fBI(kX) and fHG(kX , nX , ntot) based on

Eq. (32) or Eq. (33). In general, it is very complicated to de-

termine the optimal function f (kX , nX , ntot) for the final key

length nfin, since it will depend on the explicit functional de-

pendence of nfin on f (kX , nX , ntot).

The difference between the two equivalent conditions

Eqs. (32) and (33) is the choice of two variables from three

no-independent random variables kX , nX and mX . When

(kX , nX) are chosen in Eq. (33), the distribution of kX ,

HG(kX; nX , ktot, ntot) is dependent on the value of nX . On the
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other hand, Eq. (32) implies that two variables (kX ,mX) are

independent of each other. This suggests that the underlying

statistics in the BB84 protocol with biased basis choice are

understood in terms of independent binomial distributions.

Let us mention the difference from the other works [8, 9]

which deal with relations between bounds on binomial dis-

tribution and ones on hypergeometric distribution since the

former are easily treated with existing mathematical pack-

ages. Ref. [8] uses the property, which dates back to Ho-

effding [18], that expectation of a convex function over hy-

pergeometric dirstribution is no larger than that over binomial

distribution. In [9], Ahrens map [19] was used to show that

hypergeometric dirstribution is bounded by a permutated bi-

nomial distribution within a factor of
√

2. In contrast to these

works, in our case the probability distribution Eq. (13) reflects

the binomial distribution inherent in the BB84 protocol with

biased basis choice.

C. Numerical examples

Here we numerically compare the final key lengths derived

from the three methods in the last subsection in the simplest

cases. We calculate the key lengths for the case where no error

is observed (kX = 0) and every signal is detected (ntot = nrep).

The cost of error correction is set to λEC(ǫc) = log2(1/ǫc). We

also assume nZ = nrep p̃2
Z

and nX = nrep p̃2
X

.

If we do not care about the key length for kX > 0, the op-

timal choice of f (kX , nX , ntot) satisfying Eq. (33) (or Eq. (32))

is given by f (kX , nX , ntot) = ntot − nX for kX ≥ 1 and

f (0, nX , ntot) = f
(kX=0)
opt (nX, ntot) with

f
(kX=0)
opt (nX , ntot) := min

{

ktot

∣

∣

∣

∣

G(nX; ktot, ntot) ≤ ǫPE

}

− 1

G(nX; ktot, ntot)

:=
∑

nX≤n′
X
≤ntot−ktot

HG(0; n′X, ktot, ntot)BI(n′X; ntot, pX). (34)

The proof is analogous to the one for fBI(kX) or

fHG(kX , nX , ntot). Since G(nX; ktot, ntot) is a decreasing func-

tion of ktot, by using an argument similar to the one leading to

Eq. (21), we have

∑

nX ; ktot> f
(kX=0)

opt (nX ,ntot)

HG(0; nX , ktot, ntot)BI(nX; ntot, pX) ≤ ǫPE.

(35)

This is identical to Eq. (33) since kX < ktot − f (kX , nX , ntot) is

never satisfied for kX ≥ 1. The key length when kX = 0 was

observed is then given by

l(opt) := nZ(1−h

















f
(kX=0)
opt (nX , ntot)

nZ

















)− log2

2

ǫPA

−λEC(ǫc). (36)

In Fig. 1, we show the secure key ratios to the asymp-

totic case l(BI)/nrep (red, bottom), l(HG)/nrep (blue, middle) and

l(opt)/nrep (dashed, top) as functions of total rounds of the pro-

tocol nrep. For each nrep, the value of p̃X was optimized to

FIG. 1. Secure key ratio of the qubit-based BB84 protocol to the

asymptotic limit as a function of total rounds of the protocol nrep. We

assume no errors (kX = 0) and no loss (ntot = nrep). The security

parameters are set to ǫc = 10−15 and ǫs = 10−10. The top, middle and

bottom curves represent the ratios l(opt)/nrep, l(HG)/nrep (method with

simple random sampling) and l(BI)/nrep (Bernoulli-sampling method),

respectively. In the limit of nrep → ∞, each curve converges to

l/nrep = 1.

maximize the key length. In the limit of nrep → ∞, each

curve converges to l/nrep = 1. The security parameters are

set to ǫc = 10−15 and ǫs = 10−10, ǫPE = 1/4 × 10−20 and

ǫPA = 1/4 × 10−20. We see that although the key rate l(opt)

is the best, the three methods achieve almost the same key

length.

IV. ANALYSIS FOR WCP-BASED PROTOCOL

Here, we apply the analyses introduced in the previous sec-

tion to the protocols using weak coherent pulses (WCP). We

consider the WCP-based BB84 protocol in the subsections A

and B, and move to the DQPS protocol in subsection C.

A. The WCP-BB84 protocol

Similarly to the ideal qubit-based protocol, the WCP-BB84

protocol also follows the procedures described in Sec. II, but

the latter assumes more general light sources and measure-

ment apparatuses. We prove the security of the WCP-BB84

protocol based on that of qubit-based BB84 protocol com-

bined with GLLP’s tagging idea [20]. We impose the follow-

ing assumptions on Alice and Bob’s devices. For Alice’s light

source, we assume that the four states ρ̂W,a with W ∈ {Z, X}
and a ∈ {0, 1} are written as

ρ̂W,a = (1 − rtag)ρ̂W,a,unt ⊕ rtagρ̂W,a,tag. (37)

For {ρ̂W,a,unt}, we assume that there is a basis-independent state

χ̂unt on the system AS satisfying

trA

(

(|aW〉 〈aW |A ⊗ 1̂S )χ̂unt

)

=
1

2
ρ̂W,a,unt. (38)
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We place no restriction on the states {ρ̂W,a,tag}. We may still

find a state χ̂W,tag on the system AS such that

trA

(

(|aW〉 〈aW |A ⊗ 1̂S )χ̂W,tag

)

=
1

2
ρ̂W,a,tag, (39)

but χ̂W,tag depends on a selected basis W ∈ {Z, X}. The form of

Eq. (37) allows an interpretation that each round is classified

as either tagged or untagged [20]. The density operator ρ̂W,a,unt

is the state of Alice’s untagged signal which may generate a

secure key and ρ̂W,a,tag is that of her tagged signal which is

considered to be totally insecure. Equation (38) indicates that

Alice’s basis choice can be postponed until Bob receives the

system S for untagged rounds. Eqs. (37) and (38) are realized,

for example, if Alice uses a laser emitting an ideally polarized

coherent pulse with mean photon number µ and randomizes

its optical phase. In this case, ρ̂W,a,unt and ρ̂W,a,tag are written as

(1 − rtag)ρ̂W,a,unt = e−µ |0W,a〉 〈0W,a| + µe−µ |1W,a〉 〈1W,a| (40)

rtagρ̂W,a,tag = e−µ
∞
∑

m=2

µm

m!
|mW,a〉 〈mW,a| , (41)

where |mW,a〉 is an m-photon state with a basis W and a bit a,

and

rtag = 1 − e−µ − µe−µ (42)

represents the probability that Alice emits two or more pho-

tons. Our proof does not depend on the specific model such as

coherent light source, but depends only on Eqs. (37) and (38).

For Bob’s measurement apparatus, we impose either of the

following two assumptions.

(i) The probability of detecting a signal at Bob’s receiver is

independent of his basis choice.

(ii) The measurement of an input signal on the system S is re-

placed by an ideal single-photon measurement on the system

B preceding by a squashing operation [21, 22].

The condition (i), which is weaker than condition (ii), allows

us to use the security proof with complementarity [23] and

uncertainty principle [4]. The condition (ii) validates the use

of the security proof with entanglement distillation [17]. For

the WCP-BB84 protocol, both conditions are satisfied if we

assume the following model for Bob’s apparatus: Bob ac-

tively chooses the basis, and uses two threshold detectors cor-

responding to the measurement result “0” and “1” after a po-

larization beam splitter. He assigns random bit if both detec-

tors report their detections. In addition, the inefficiency and

dark countings of the detectors are allowed as long as they are

equivalently represented by an absorber and a stray photon

source placed in front of Bob’s apparatus.

For the proof with entanglement distillation, we use

Eqs. (38), (39) and the assumption (ii) of Bob’s apparatus to

convert the actual protocol equivalently to a protocol in which

Alice and Bob make ideal measurements on the qubit systems

A and B. Then a phase error is defined in the same way to the

ideal BB84 protocol, namely, an error between Alice’s and

Bob’s outcomes of ideal X-basis measurements ({|0X〉 , |1X〉})
on a Z-labeled round. As for the proof with complementarity,

phase error in a Z-labeled round is defined as an error oc-

curring when Alice makes an ideal X-basis measurement on

the system A and Bob makes the actual X-basis measurement

on the system S (the measurement conducted on X-labeled

rounds in the actual protocol).

The secure key length formulated in Eqs. (9)-(12) for the

ideal protocol can be adapted to the WCP protocol through

the tagging idea. Let kph,unt be the total number of phase errors

on the untagged Z-labeled rounds. Let nZ,unt be the number of

untagged Z-labeled rounds. Since each round can be classified

as tagged or untagged, nZ,unt is a well-defined random variable

in the actual protocol. Suppose that an upper bound of kph,unt

is given as a function of kX , nX , ntot and nZ,unt:

Pr(kph,unt > f (kX , nX , ntot, nZ,unt)) ≤ ǫPE. (43)

According to the tagging idea, the final key is ǫs-secret if

nfin ≤ nZ,unt(1 − h

(

f (kX , nX , ntot, nZ,unt)

nZ,unt

)

) − log2

2

ǫPA

− λEC(ǫc)

(44)

is satisfied. In the practical situation, the exact value of nZ,unt

is not available, and hence it is impossible to satisfy Eq. (44)

with certainty. Instead, we allow a small error probability

ǫZ,unt. Suppose that there is a probabilistic lower bound n
Z,unt

which satisfies

Pr(nZ,unt < n
Z,unt) ≤ ǫZ,unt. (45)

A key length as a function of observed values kX , nX , ntot is

given by minimizing the right-hand side of Eq. (44) in the

range of nZ,unt ≥ n
Z,unt.

Under the assumptions for the source and measurement ap-

paratus, the basic distributions used in the previous section,

Eqs. (13) and (14), are still valid if we confine ourselves to

the untagged rounds. Although the fact may be intuitively

obvious for the WCP-BB84 protocol, here we give its math-

ematical justification since it helps when we treat a less intu-

itive protocol in Subsection IV C. We define a set of integers

labeling the rounds in the protocol as Nrep := {1, 2, ....nrep}.
As subsets of Nrep, let us define the set of the integers la-

beling the rounds where Alice (Bob) chooses X basis as XA

(XB) regardless of detection. Define those labeling the un-

tagged and detected rounds as Nunt. Let Kunt be a subset

of Nunt labeling the rounds which have errors when Alice

and Bob conduct virtual X-basis measurements regardless of

their basis choice. For any subset M, let M := Nrep \ M.

With these notations, kph,unt = |XA ∩ XB ∩ Kunt| and nZ,unt =

|XA ∩ XB ∩ Nunt|. We define other random variables as fol-

lows: kX,unt := |XA ∩ XB ∩ Kunt|, nX,unt := |XA ∩ XB ∩ Nunt|,
ktot,unt := kX,unt + kph,unt and ntot,unt := nX,unt + nZ,unt. From the

assumption of Alice’s source Eq. (38) and the assumptions of

Bob’s receiver (i) or (ii), the choice ofXA∩Nunt andXB∩Nunt

can be postponed after Nunt and Kunt are determined as far as

untagged incidents are concerned. Then we have

Pr(XA ∩ Nunt =MA,XB ∩Nunt =MB | Kunt,Nunt)

= Θ(MA,Nunt)Θ(MB,Nunt) (46)

for allMA ⊂ Nunt andMB ⊂ Nunt, where we defined

Θ(M1,M2) = p̃
|M1|
X

p̃
|M2\M1 |
Z

. (47)
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By simple calculation of the probability theory, we have

Pr(kX,unt | ktot,unt, ntot,unt) = BI(kX,unt; ktot,unt, pX) (48)

and

Pr(kX,unt | nX,unt, ktot,unt, ntot,unt) = HG(kX,unt; nX,unt, ktot,unt, ntot,unt),

(49)

which means that Eqs. (13) and (14) essentially hold true for

the untagged rounds.

Now we derive a key rate formula for the WCP BB84 pro-

tocol based on Eq. (48), as was done with the Bernoulli-

sampling method for the qubit-based protocol in Sec. III B.

First, we seek for f (kX , nX , ntot, nZ,unt) which satisfies Eq. (43).

Analogous to the derivation of Eq. (23) from Eq. (13), Eq. (48)

leads to

Pr(kph,unt > fBI(kX,unt) | ktot,unt, ntot,unt) ≤ ǫPE (50)

for any ktot,unt and ntot,unt, and hence we have

Pr(kph,unt > fBI(kX,unt)) ≤ ǫPE. (51)

Since kX,unt is not an observed value, we use the obvious bound

kX,unt ≤ kX . (52)

Using the inequality

CBI(kX + 1; ktot + 1, pX)

= CBI(kX; ktot, pX) + (1 − pX)BI(kX + 1; ktot, pX)

≥ CBI(kX; ktot, pX) (53)

in Eq. (18), we have fBI(kX) ≤ fBI(kX + 1), implying that

fBI(kX) is an increasing function. Hence, Eqs. (51) and (52)

lead to

Pr(kph,unt > fBI(kX)) ≤ ǫPE, (54)

which means that fBI(kX) fulfills Eq. (43).

Next, we determine n
Z,unt which satisfies Eq. (45). To de-

termine a lower bound of nZ,unt, we consider an upper bound

of nZ,tag := nZ − nZ,unt. Let NZ,tag be the number of rounds

where Alice chooses Z basis, Bob chooses Z basis and the

light source emits a tagged signal (two photons or more). As

those conditions are independent of each other as seen from

Eq. (37), we have

Pr(NZ,tag) = BI(NZ,tag, nrep, rtag p̃2
Z). (55)

Since nZ,tag is the number of detected rounds among the NZ,tag

rounds,

nZ,tag ≤ NZ,tag (56)

holds. Eqs. (55) and (56) lead to

Pr(nZ,tag > n) ≤ 1 − CBI(n; nrep, rtag p̃2
Z) (57)

for any n. Thus, we have

Pr(nZ,tag > g(rtag p̃2
Z , ǫZ,unt)) ≤ ǫZ,unt, (58)

where

g(x, y) := min

{

n
∣

∣

∣

∣

1 −CBI(n; nrep, x) ≤ y

}

. (59)

Let n
Z,unt be

n
Z,unt := nZ − g(rtag p̃2

Z , ǫZ,unt). (60)

By using nZ,tag = nZ − nZ,unt, Eq. (58) leads to

Pr(nZ,unt < n
Z,unt) ≤ ǫZ,unt. (61)

Since nZ,unt is known in principle in the actual protocol, the

final state ρfin
AE

is written as a direct sum of the part for nZ,unt <

n
Z,unt and the one for nZ,unt ≥ n

Z,unt. Hence, combined with

Eqs. (44), (54) and (61), by setting

ǫs =
√

2
√
ǫPE + ǫPA + ǫZ,unt, (62)

the protocol is ǫc-correct and ǫs-secret if

nfin ≤ l
(BI)

WCP
:= n

Z,unt(1 − h













fBI(kX)

n
Z,unt













) − log2

2

ǫPA

− λEC(ǫc).

(63)

Together with Eqs. (18), (19), (59) and (60), Eq. (63) consti-

tutes the main result of Sec IV A.

For the purpose of comparison, here we also discuss what

the key rate formula looks like if we start from Eq. (49), based

on simple random sampling. As we have derived Eq. (28)

from Eq. (14), Eq. (49) leads to

Pr(kph,unt > fHG(kX,unt, nX,unt, ntot,unt) | ktot,unt, ntot,unt) ≤ ǫPE,

(64)

which, in turn, leads to

Pr(kph,unt > fHG(kX,unt, nX,unt, ntot,unt)) ≤ ǫPE. (65)

Similarly to fBI(kX), we can prove that fHG(kX , nX , ntot) is an

increasing function of kX . Since kX,unt is upper-bounded by

Eq. (52), Eq. (65) leads to

Pr(kph,unt > fHG(kX , nX,unt, ntot,unt)) ≤ ǫPE. (66)

In contrast to Eq. (54), it requires an additional estimation pro-

cess for nX,unt to obtain fHG(kX , nX,unt, ntot,unt). A lower bound

defined by n
X,unt := nX − g(rtag p̃2

X
, ǫX,unt) satisfies

Pr(nX,unt < n
X,unt) ≤ ǫX,unt. (67)

Combined with Eqs. (44), (61), (66), and (67), by setting

ǫs =
√

2
√
ǫPE + ǫPA + ǫZ,unt + ǫX,unt, (68)

the protocol is ǫc-correct and ǫs-secret if

nfin ≤ l
(HG)

WCP
:= min

nZ,unt≥nZ,unt

ξ(kX , nX,unt, nZ,unt)

ξ(kX , nX,unt, nZ,unt) := ξ̃(kX , nX,unt, nZ,unt) − log2

2

ǫPA

− λEC(ǫc)

ξ̃(kX , nX,unt, nZ,unt)

:= nZ,unt(1 − h

(

fHG(kX , nX,unt, nX,unt + nZ,unt)

nZ,unt

)

).

(69)
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FIG. 2. Comparison of estimation methods for the WCP-BB84 pro-

tocol. Upper curve (Bernoulli-sampling method): Secure key ratio to

the asymptotic limit l
(BI)

WCP
/(nrep/e) as a function of total rounds of the

protocol nrep. Lower curve (method with simple random sampling):

An upper bound on the derived secure key ratio l
(HG)

WCP
/(nrep/e). We

assume no error (kX = 0) and no loss (ntot = nrep(1 − e−µ)). The se-

curity parameters are set to ǫc = 10−15 and ǫs = 10−10. In the limit of

nrep → ∞, each curve converges to lWCP/(nrep/e) = 1.

The reason that the minimization of nZ,unt appears is be-

cause ξ̃(kX , nX,unt, nZ,unt) is not monotone-increasing function

of nZ,unt. For example, with ǫPE = 1/16 × 10−20, we nu-

merically confirmed that ξ̃(0, 25000, 25318) ∼ 24631 and

ξ̃(0, 25000, 25319) ∼ 24623. This means that the protocol

with final key length l = ξ(kX , nX,unt, nZ,unt) is not necessarily

secure.

As can be seen from the comparison between Eqs. (63) and

(69), the method with simple random sampling is much more

complicated than the Bernoulli-sampling method, involving

an additional estimated parameter and a minimization. More-

over, as shown in Sec. IV B, it tends to give a key rate lower

than the Bernoulli-sampling method, probably because of the

use of pessimistic bound on nX,unt.

B. Numerical examples

Here, we show two examples of numerical calculation for

the WCP-BB84 protocol. We assume that the light source

emits a pulse whose photon-number distribution is Poissonian

with mean µ, namely, Eq. (42). Like Fig. 1 for the ideal pro-

tocol, we first calculated the simplest case where no error is

observed (kX = 0) and no loss occurs (ntot = nrep(1 − e−µ)),
which is shown in Fig. 2. The cost of error correction was

set to λEC(ǫc) = log2(1/ǫc). We assumed nZ = ntot p̃
2
Z

and

nX = ntot p̃
2
X

. The values of p̃X and µ were optimized for each

value of nrep. For calculation of l
(BI)

WCP
, the security parame-

ters were set to ǫc = 10−15, ǫs = 10−10, ǫPE = 1/16 × 10−20,

ǫPA = 1/16 × 10−20 and ǫZ,unt = 1/2 × 10−10. The result is

shown as the red curve in Fig. 2, where the key length Eq. (63)

is normalized by the optimized asymptotic key rate of 1/e per

signal at µ = 1 and p̃X → 0. We see that a final key can

be extracted when the total rounds nrep is more than ∼ 103.7

FIG. 3. Secure key rate per signal of the WCP-BB84 protocol

l
(BI)

WCP
/nrep as a function of channel transmission ηc. The parame-

ters are set to be the same as Ref. [24]. Quantum efficiency of de-

tectors: ηd = 0.1. Dark count probability per pulse per detector:

pdark = 10−5. Loss-independent bit error: 0.5%. Error correction

cost: λEC(ǫc) = 1.05h(E/Q) + log2(1/ǫc). The security parameters:

ǫc = 10−10 and ǫs = 10−5. From the top to the bottom curve, the num-

ber of detected signals are ndet = 107, 106, 105 and 104, respectively.

The required number of detected signals to generate a final key is less

than 104, while it was ∼ 107 in the previous result [24].

while the threshold is nrep ∼ 103.2 for the ideal protocol using

the same parameters (see also Fig. 1). For comparison, we

also calculated the value of ξ(kX , nX,unt, nZ,unt)/(nrep/e) under

the same condition, which is shown as the blue (lower) curve

in Fig. 2. The security parameters were the same as the red

(upper) curve, except for ǫZ,unt = ǫX,unt = 1/4 × 10−10. The

quantity ξ(kX , nX,unt
, n

Z,unt
) is an upper bound of l

(HG)

WCP
derived

in Eq. (69). The figure shows that the key length l
(BI)

WCP
from

Bernoulli sampling is higher than l
(HG)

WCP
from simple random

sampling. A possible reason is that the estimation of n
X,unt,

which is a pessimistic bound of nX,unt, is not required in deter-

mining fBI(kX).

In Fig. 3, we show a result in more practical situations based

on Eq. (63) to make comparison to the previous finite-key

analysis for the WCP-BB84 protocol [24]. The figure shows

the dependence of secure key rate l
(BI)

WCP
/nrep on the channel

transmission ηc. In each curve, the number of Bob’s detected

signals ndet is fixed as ndet = 104, 105, 106 and 107 (from the

bottom to the top, respectively). The parameters were chosen

to be the same as [24]: Quantum efficiency of both detectors is

ηd = 0.1 and a dark count probability per pulse is pdark = 10−5

per detector. In addition to errors from dark counts, there

is a 0.5% loss-independent bit error. The security parame-

ters were set to ǫc = 10−10, ǫs = 10−5, ǫPE = 1/16 × 10−10,

ǫPA = 1/16 × 10−10, and ǫZ,unt = 1/2 × 10−5. Total transmis-

sion rate is Q = 1 − (1 − 2pdark)e−µηcηd , and error rate is given

by E/Q where E = 0.005(1− e−µηcηd )+ pdarke−µηcηd . Based on

the parameters above, we assume λEC(ǫc) = 1.05h(E/Q) +

log2(1/ǫc), nrep = ndet/Q, nZ = ndet p̃
2
Z
, nX = ndet p̃

2
X

and

kX = nXE/Q. To save the computation time, we used Chernoff
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bound [25]

CBI(kX; ktot, pX) ≤ D

(

kX

ktot

, ktot, pX

)

(70)

for (kX , ktot, pX) satisfying kX ≤ ktot pX , where

D(x, y, z) :=















(

z

x

)x(
1 − z

1 − x

)1−x














y

. (71)

In Fig. 3, we see that a key can be extracted even when ndet =

104. This is a significant improvement from the result of [24],

in which the required number of detected signals to generate

a final key is ndet ∼ 107.

C. The DQPS protocol

In this section, we conduct finite-key analysis of the

DQPS protocol based on the property of binomial distribu-

tion Eq. (48). The security of the DQPS protocol was recently

proved in the asymptotic limit [13]. The DQPS protocol uses

encoding on four relative phases {0, π
2
, π, 3π

2
} between neigh-

boring pulses in a pulse train of fixed length L. The DQPS

protocol has essentially the same setup as the BB84 protocol

with phase encoding (PE-BB84 protocol), which can be re-

garded as the DQPS protocol with L = 2. In Ref. [13], we

showed that the secure key rate of the DQPS protocol is 8/3 as

high as that of the PE-BB84 protocol in the asymptotic limit.

However, since the security proof is not so straightforward as

that of the BB84 protocol, it is not trivial whether the advan-

tage of the DQPS protocol over the PE-BB84 protocol still

holds considering the statistical fluctuations in the finite-key

case. This motivates us to conduct finite-key analysis for the

DQPS protocol by using the Bernoulli-sampling method pro-

posed in this work.

The overview of the DQPS protocol is shown in Fig. 4. The

precise description of the protocol and physical assumptions

for the security proof is given in Appendix. In the protocol,

Z basis is chosen with probability p̃Z to generate keys and X

basis is chosen with probability p̃X for leak monitoring. Rel-

ative phases between adjacent pulses are modulated by {0, π}
for Z basis and { π

2
, 3π

2
} for X basis. The protocol regards L-

successive pulses as a block, and at most one key bit is ex-

tracted from each block. The randomization of the optical

phase is conducted to the whole block, and a basis is also cho-

sen for each block. Bob’s receiver is composed of delayed

interferometer with its delay being equal to the interval ∆τ of

adjacent pulses. The longer arm of the interferometer incurs

phase shift 0 (Z-basis) or π/2 (X-basis), which are chosen with

probability p̃Z and p̃X , respectively. After the interferometer,

the pulses are measured by two photon detectors correspond-

ing to bit values “0” and “1”. If there is a detection from the

superposition of the l-th and the (l − 1)-th original pulses, we

call it valid detection at l-th timing (1 ≤ l ≤ L − 1). An inter-

ference between different blocks at Bob’s receiver is invalid

and does not contribute to a key, which means that 1/L of the

whole detection events must be discarded. This is the origin

FIG. 4. Setup for the L-pulse DQPS protocol. The protocol regards a

train of L pulses as a block, and the working basis is chosen for each

block. At Alice’s site, pulses are modulated with phase {0, π, π
2
, 3π

2
}

according to her random bit and basis choice. The randomization of

the overall optical phase is also done for each block of L pulses. At

Bob’s site, each pulse train is fed to a delayed Mach-Zehnder inter-

ferometer with phase shift 0 or π
2

according to his basis choice. Valid

timings of detection are labeled by integers 1, 2, .., L − 1, according

to the index of the pulse from the short arm of the interferometer.

Detection from interference between pulses from different blocks is

regarded as invalid and ignored.

of the advantage of the DQPS protocol over the PE-BB84 pro-

tocol, which is regarded as the DQPS protocol with L = 2.

In the DQPS protocol, application of the tagging idea is not

straightforward since the chain of coherence among succes-

sive pulses prohibits us from defining the total photon number

in neighboring two pulses. As a result, the conventional defi-

nition of tagging based on the emitted photon number cannot

be applied here. In [13], we proposed an alternative approach

to define the photon number indirectly through Bob’s detec-

tion timing j and Alice’s measurement result on her qubits,

which enables us to assume that each round in the protocol is

classified as either tagged or untagged. As a result, the vari-

ables kph,unt and nZ,unt can be defined in the same way as in the

WCP-BB84 protocol, and the argument up to Eq. (45) holds

for the DQPS protocol as well. The remaining tasks are to

find a function f satisfying Eq. (43) and to find a bound n
Z,unt

satisfying Eq. (45), both of which require slightly different

approaches from the WCP-BB84 protocol.

Since our tagging definition for the DQPS protocol involves

Bob’s detection timing j, we cannot decompose the emitted

states as in Eq. (37). Hence we need to justify Eq. (46) without

using Eq. (38). This was essentially done in Ref. [13], which

proved, in the notation of the present paper [26], that the joint

probability of XA, Kunt and Nunt is written in the following

form:

Pr(XA,Kunt,Nunt)

= Θ(XA,Nrep)β′(XA ∩ Nunt,Kunt,Nunt). (72)

Since Θ(M,Nrep) defined in Eq. (47) satisfies

Θ(M,Nrep) = Θ(M∩Nunt,Nunt)Θ(M∩Nunt,Nunt) (73)
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for anyM ⊂ Nrep, from Eq. (72) we have

Pr(XA ∩Nunt =MA | Kunt,Nunt)

= Θ(MA,Nunt)γ(Kunt,Nunt) (74)

for anyMA ⊂ Nunt, where

γ(Kunt,Nunt)

:=

∑

M′
A
⊂Nunt
Θ(M′

A
,Nunt)β

′(M′
A
,Kunt,Nunt)

Pr(Kunt,Nunt)
. (75)

Since the sum ofΘ(MA,Nunt) overMA is unity, Eq. (74) leads

to γ(Kunt,Nunt) = 1. Thus, we have

Pr(XA ∩Nunt =MA | Kunt,Nunt)

= Θ(MA,Nunt). (76)

In the DQPS protocol, Bob’s basis choice can be postponed

after he confirms photon detection, which means that the

choice of XB can be conducted after Kunt and Nunt are de-

termined. Hence, we have

Pr(XA ∩ Nunt =MA,XB ∩ Nunt =MB | Kunt,Nunt)

= Θ(MA,Nunt)Θ(MB,Nunt), (77)

which is identical to Eq. (46). Similarly to the WCP-BB84

protocol, Eq. (48) holds, which leads to Eq. (51):

Pr(kph,unt > fBI(kX)) ≤ ǫPE. (78)

The task of finding a bound n
Z,unt satisfying Eq. (45) is

done as follows. In Ref. [13], a modified protocol having

exactly the same Pr(nZ,tag) as the original protocol was in-

troduced, in which a random variable N (denoted as n(c =

d = 0, (z′
0
...z′

L−1
) < Γ(m)) in Eq. (40) of Ref. [13]) satisfying

N ≥ nZ,tag is defined. The variable obeys binomial distribution

BI(N, nrep, rtag p̃2
Z
), where rtag is a property of the light source

defined as

rtag := 1 −
∑

m

tr(Π̂
(m)

S
σ̂S ), (79)

where σ̂S is the state of L pulses emitted from Alice’s light

source, and Π̂
(m)

S
is a projector which is defined in Appendix.

This implies that Pr(nZ,tag) in the original protocol has the fol-

lowing property: There exists a function P(nZ,tag,N) satisfying

Pr(nZ,tag) =
∑

N

P(nZ,tag,N)

P(nZ,tag,N) = 0 for nZ,tag > N
∑

nZ,tag

P(nZ,tag,N) = BI(N, nrep, rtag p̃2
Z). (80)

This leads to

Pr(nZ,tag > n) ≤ 1 − CBI(n; nrep, rtag p̃2
Z) (81)

for any n, which is identical to Eq. (57). Then, following the

same argument as the WCP-BB84 protocol, we see that

Pr(nZ,unt < n
Z,unt) ≤ ǫZ,unt (82)

nrepL= 107

nrepL → ∞

FIG. 5. Secure key rate per pulse of the DQPS protocol lDQPS/(nrepL)

as a function of overall transmission η. Solid curves are the results of

the finite key analysis with total pulse number nrepL = 107 and dashed

curves are the results of the asymptotic case (nrepL→ ∞), which are

obtained in Ref. [13]. For both solid and dotted curves, the top, mid-

dle and bottom curves represent the key rate for L = 20, L = 4 and

L = 2, respectively. The parameters are set as follows. Dark count

rate per pulse per detector: pdark = 0.5 × 10−5. Loss-independent bit

error: 3%. Cost for error correction: λEC(ǫc) = 1.1h(E) + log2(1/ǫc).

The security parameter: ǫc = 10−15 and ǫs = 10−10. We see that the

key rate of the DQPS protocol (L > 2) is higher than that of the PE-

BB84 protocol (L = 2) for both the asymptotic and finite-key cases.

holds with

n
Z,unt

:= nZ − g(rtag p̃2
Z , ǫZ,unt). (83)

From Eqs. (44), (78) and (82), we arrive at a key rate for-

mula which is identical to Eq. (63): The L-pulse DQPS proto-

col is ǫc-correct and ǫs-secret if the final key length nfin satis-

fies

nfin ≤ lDQPS := n
Z,unt(1 − h













fBI(kX)

n
Z,unt













) − log2

2

ǫPA

− λEC(ǫc),

(84)

where ǫs is given in Eq. (62). Together with Eqs. (18), (19),

(59), (79) and (83), Eq. (84) constitutes the main result of

Sec. IV C.

In Fig. 5, we show numerical results of secure key rate

per pulse lDQPS/(nrepL) as a function of overall transmittance

η := ηcηd to compare the DQPS protocol (L > 2) and the PE-

BB84 protocol (L = 2). The solid curves represent the key rate

with fixed pulse number nrepL = 107, and the dashed curves

represent the one for the asymptotic case, which is obtained

in our previous work [13]. We assumed that Alice generates a

weak coherent pulse of mean photon number µ. In this case,

rtag is given by

rtag = 1 −
⌈L/2⌉
∑

m=0

e−µLµm
L+1−mCm. (85)

Note that for L = 2, rtag = 1 − e−2µ − 2µe−2µ is identical

to the probability that two or more photons are emitted in
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a double-pulse signal in the PE-BB84 protocol. We assume

dark count rate per pulse per detector pdark = 0.5× 10−5 and a

loss-independent bit error rate 3%. We also assumed that Q =

1− (1−2(L−1)pdark)e
−(L−1)µη, reflecting the fact that there are

L−1 valid timings in a block. Error rate is given by E/Q where

E = 0.03(1− e−(L−1)µη)+ pdarke−(L−1)µη(L− 1). Based on these

parameters, we assume λEC(ǫc) = 1.1h(E/Q) + log2(1/ǫc),

nZ = nrepQp̃2
Z
, nX = nrepQp̃2

X
and kX = nXE/Q. The values

of p̃X and µ are optimized to maximize the key length. In the

asymptotic limit, the parameter optimization leads to p̃X → 0,

n
Z,unt → nrep(Q− rtag) and fBI(kX)/n

Z,unt → E/(Q− rtag) while

Q and E are fixed. In finite-key cases, the Chernoff bound is

used to calculate the key rate. The security parameters are set

to be the same as those in Fig. 2. We see that the advantage of

the DQPS protocol over the PE-BB84 protocol is maintained

even if we include the effect of the finiteness of the key.

V. CONCLUDING REMARKS

In this paper, we proposed a method of finite-key analy-

sis based on Bernoulli sampling instead of simple random

sampling. For the BB84 protocol using biased basis choice,

the data gathered on one of the basis is solely used for esti-

mation of the disturbance in the other basis, which enables

us to regard the former as a sample drawn from the popula-

tion via Bernoulli sampling. As a result, we obtained finite-

sized key-length formulas based on the binomial distribution

parametrized by the probability of the basis choice in the pro-

tocol. The appearance of the binomial distribution in our case

is a direct consequence of the inherent statistics of the proto-

col, and it should be differentiated from the previous works

which uses a binomial distribution to derive an upper bound

on the hypergeometric distribution arising from simple ran-

dom sampling.

The new method is particularly suited for the BB84 proto-

col with WCP. It enables simpler analysis compared to the

method with simple random sampling since only the latter

requires the estimation of the sample size (nX,unt). We may

expect that this additional pessimistic bound makes the con-

ventional method less efficient, which is corroborated by a

numerical example showing that the key rate for the WCP-

BB84 protocol obtained with our method is higher than that

with simple random sampling. To make comparison with the

previous finite-key analysis for the WCP-BB84 protocol [24],

we calculated the key rate as a function of channel transmis-

sion and the number of detected signals, in the same practical

parameter settings. The result shows that, while ndet ∼ 107

signals are necessary for producing a key in Ref. [24], our

method only needs ndet ∼ 104 with the same parameters. In

addition, the improved number 104 clarifies that the use of

WCP instead of an ideal single photon causes only a small

change in the finite-size effect. This was also confirmed in the

numerical simulation assuming the perfect channel, in which

the required number of rounds to generate a key is nrep ∼ 103.7

for the WCP-BB84 protocol and is nrep ∼ 103.2 for the single-

photon BB84 protocol.

Finally, we applied the Bernoulli-sampling method to the

DQPS protocol, which was recently proved to be secure in the

asymptotic regime. Although the asymptotic proof is based

on the tagging of the insecure rounds as in the WCP-BB84

protocol, the definition of the tagged round is much more con-

voluted and makes sense only after the signal was detected by

Bob. Nonetheless, our finite-key analysis has led to a key rate

formula closely analogous to the one for the WCP-BB84 pro-

tocol. Numerical calculation shows that the DQPS protocol

retains higher key rates than the BB84 protocol with phase en-

coding (PE-BB84) even in the finite-key regime of nrep = 107.

It is expected that our method can also be applied to pro-

tocols with decoy states [27–29]. Since the existing analy-

ses [6–9] with decoy states involve the estimation of the sam-

ple size nX,unt, the present method may provide a simpler anal-

ysis compared to the conventional methods with simple ran-

dom sampling. It should be mentioned that some of the finite

key analyses [6, 7] assumed the announcement of basis choice

after each round to make the sample size fixed, which were

later pointed out [30] to open a security hole against a sift-

ing attack. This illustrates an importance of simpler and more

straightforward methods, and we believe that the method pro-

posed here will contribute in this regard.

ACKNOWLEDGEMENT

We thank A. Mizutani, T. Tsurumaru and K. Yoshino for

helpful discussions. This work was supported by the ImPACT

Program of the Council for Science, Technology and Innova-

tion (Cabinet Office, Government of Japan), CREST, and the

Photon Frontier Network Program (MEXT).

Appendix: Description of the DQPS protocol

Here we summarize the detail of the DQPS protocol in

Ref. [13]. The protocol proceeds as follows, which includes

predetermined parameters p̃X > 0, p̃Z = 1 − p̃X , L ≥ 2, and

nrep.

1. Alice selects a bit c ∈ {0, 1} with probability p̃Z and p̃X ,

which correspond to the choice of Z basis and X basis, re-

spectively. Bob also selects d ∈ {0, 1} with probability p̃Z and

p̃X .

2. Alice generates L random bits al ∈ {0, 1} (l = 0, 1, .., L−1),

and prepares L optical pulses (system S ) in the state

ρ̂S = Ŝ ({al}, c)σ̂S Ŝ ({al}, c)

Ŝ ({al}, c) :=

L−1
⊗

l=0

exp(i(alπ +
π

2
lc)n̂l), (A.1)

where σ̂S is the state of the L pulses from the source before

phase modulation and n̂l represents the photon number

operator for the l-th pulse. Alice randomizes the overall

optical phase of the L-pulse train, and sends it to Bob.

3. If d = 0, Bob sets the phase shift θB = 0. If d = 1, he sets

θB =
π
2
.

4. If there is no detection of photons at the valid timings, Bob
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sets j = 0. If the detections have only occurred at a single

valid timing, the variable j is set to the index of the timing. If

there are detections at multiple timings, the smallest (earliest)

index of them is assigned to j. If j , 0, Bob determines

his raw key bit b ∈ {0, 1} depending on which detector has

reported detection at the j-th timing. If both detectors have

reported at the j-th timing, a random bit is assigned to b. Bob

announces j publicly.

5. If j , 0, Alice determines her raw key bit as a = a j−1 ⊕ a j.

6. Alice and Bob repeat the above procedures nrep times.

They publicly disclose c and d for each of the nrep rounds.

7. Alice and Bob define bit strings κA,X and κB,X, respectively,

by concatenating their determined bits with j , 0 and

c = d = 1. They define sifted keys κA,Z and κB,Z, respectively,

by concatenating their determined bits with j , 0 and

c = d = 0. Let their sizes be nZ := |κA,Z | = |κB,Z | and

nX := |κA,X | = |κB,X |.
8. They disclose and compare κA,X and κB,X to determine the

number of bit errors kX included in them.

9. Through public discussion, Bob corrects his keys κB,Z

to make it coincide with Alice’s key κA,Z and obtains κcor
B,Z

(|κcor
B,Z
| = nZ).

10. Alice and Bob conduct privacy amplification by shorten-

ing κA,Z and κcor
B,Z

to obtain final keys κfin
A,Z

and κfin
B,Z

of size nfin.

The security of the above protocol in the asymptotic limit

was proved in [13] under the following assumptions on the

devices used by Alice and Bob. The discussion in subsection

IV C of the main text uses the same assumptions. We assume

that the phase randomization in Step 2 is ideal, and hence the

state emitted from Alice in Step 2 is expressed as

∑

m

N̂mρ̂S N̂m, (A.2)

where N̂m represents the projector onto the subspace with m

total photons in the L pulses. We also assume that a parameter

rtag associated with the L-pulse state σ̂S from the source is

known or at least is bounded from above. With |ml〉S ,l being

an m-photon state of the l-th pulse, the parameter is defined

by Eq. (85) with

Π̂
(m)

S
:=

∑

{ml}∈Γ(m)

L−1
⊗

l=0

|ml〉 〈ml|S ,l , (A.3)

where Γ(m) is a set of values of L nonnegative integers

Γ(m) :=















(i0, · · · , iL−1)

∣

∣

∣

∣

∣

∣

il−1 + il ≤ 1(1 ≤ l ≤ L − 1),

L−1
∑

l=0

il = m















.

(A.4)

In [13], we showed a practical method of off-line calibration

to determine an upper bound of rtag for a general light source.

To describe the assumptions for Bob’s apparatus, we intro-

duce POVM elements for Bob’s procedure in Steps 3 and 4.

Let {B̂(d)

j
} j=0,...,L−1 be the POVM for Bob’s procedure of deter-

mining j, when the basis d was selected in Step 1. We further

decompose the elements for j , 0 as B̂
(d)

j
= B̂

(d)

j,0
+ B̂

(d)

j,1
, where

B̂
(d)

j,b
corresponds to the outcome ( j, b). These operators satisfy

B̂
(d)

0
+

L−1
∑

j=1

(B̂
(d)

j,0
+ B̂

(d)

j,1
) = 1̂. (A.5)

We then assume that Bob uses threshold detectors, and further

assume that the inefficiency and dark countings of the detec-

tors are equivalently represented by an absorber and a stray

photon source placed in front of Bob’s apparatus, and hence

they are included in the quantum channel. This leads [13] to

the condition

B̂
(0)

j
= B̂

(1)

j
(0 ≤ j ≤ L − 1). (A.6)
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Shields, IEEE Journal of Selected Topics in Quantum Electron-

ics 21, 197 (2015).

[10] A. Mizutani, M. Curty, C. C. W. Lim, N. Imoto, and K. Tamaki,

New Journal of Physics 17, 093011 (2015).

[11] H.-K. Lo, H. Chau, and M. Ardehali, Journal of Cryptology

18(2), 133 (2004).

[12] K. Inoue and Y. Iwai, Phys. Rev. A 79, 022319 (2009).

[13] S. Kawakami, T. Sasaki, and M. Koashi, Phys. Rev. A 94,

022332 (2016).

[14] C. H. Bennett and G. Brassard, in Proceedings of IEEE Interna-

tional Conference on Computers, Systems and Signal Process-

ing, Vol. 175, Bangalore, India (IEEE Press, New York, 1984).

[15] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.

68, 557 (1992).



13

[16] H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).

[17] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

[18] W. Hoeffding, Journal of the American Statistical Association

58, 13 (1963).

[19] J. H. Ahrens, “A comparison of hypergeometric distributions

with corresponding binomial distributions,” in Ökonomie und
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