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We prove new quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed

states. The results are based on information-theoretic (entropic) considerations and generalize the well known

no-cloning and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning ma-

chine on the symmetric subspace of n qudits and symmetrized partial trace channels are dual to each other. This

duality manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational

sense that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial

trace channel and vice versa. The duality extends to give control on the performance of generalized UQCMs on

subspaces more general than the symmetric subspace. This gives a way to quantify the usefulness of a-priori in-

formation in the context of cloning. For example, we can control the performance of an antisymmetric analogue

of the UQCM in recovering from the loss of n− k fermionic particles.

I. INTRODUCTION

A direct consequence of the fundamental principles of

quantum theory is that there does not exist a “machine” (uni-

tary map) that can clone an arbitrary input state [1, 2]. This

no-cloning theorem and its generalization to mixed states,

the “no-broadcasting theorem” [3], exclude the possibility of

making perfect “quantum backups” of a quantum state and are

essential for our understanding of quantum information pro-

cessing. For instance, since decoherence is such a formidable

obstacle to building a quantum computer and, at the same

time, we cannot use quantum backups to protect quantum in-

formation against this decoherence, considerable effort has

been devoted to protecting the stored information by way of

quantum error correction [4–6].

Given these no-go results, it is natural to ask how well one

can do when settling for approximate cloning or broadcasting.

Numerous theoretical and experimental works have investi-

gated such “approximate cloning machines” (see [7–16] and

references therein). These cloning machines can be of great

help for state estimation. They can also be of great help to an

adversary who is eavesdropping on an encrypted communica-

tion, and so knowing the limitations of approximate cloning

machines is relevant for quantum key distribution.

In this paper, we derive new quantitative limitations posed

on any approximate cloning/broadcast (defined below) by

quantum information theory. Our results generalize the stan-

dard no-cloning and no-broadcasting results for mixed states,

which are recalled below (Theorems 1 and 2). We draw on an

approach of Kalev and Hen [17], who introduced the idea of

studying no-broadcasting via the fundamental principle of the

monotonicity of the quantum relative entropy [18, 19]. When

at least one state is approximately cloned, while the other is

approximately broadcast, we derive an inequality which im-

plies rather strong limitations (Theorem 4). The result can

be understood as a quantitative version of the standard no-

cloning theorem. The proof uses only fundamental properties

of the relative entropy. By invoking recent developments link-

ing the monotonicity of relative entropy to recoverability [20–

25], we can derive a stronger inequality (Theorem 5). Under

certain circumstances, this stronger inequality provides an ex-

plicit channel which can be used to improve the quality of the

original cloning/broadcast (roughly speaking, how close the

output is to the input) a posteriori. This cloning/broadcasting-

improving channel is nothing but the parallel application of

the rotation-averaged Petz recovery map [24], highlighting its

naturality in this context.

Related results of ours (Theorems 7 and 8) compare a

given state of n qudits to the maximally mixed state on the

(permutation-)symmetric subspace of n qudits. We estab-

lish a duality between universal quantum cloning machines

(UQCMs) [7–9] and symmetrized partial trace channels, in

the operational sense that a UQCM can be used as an approxi-

mate recovery channel for a symmetrized partial trace channel

and vice versa. It is also immediate to observe that these chan-

nels are adjoints of each other, up to a constant. A context

different from ours, in which a duality between partial trace

and universal cloning has been observed, is in quantum data

compression [26].

As a special case of Theorem 7, we recover one of the main

results of Werner [9], regarding the optimal fidelity for k → n
cloning of tensor-product pure states φ⊗k. We also draw an

analogy of these results to former results from [27] regarding

photon loss and amplification, the analogy being that cloning

is like particle amplification and partial trace like particle loss.

The methods generalize to subspaces beyond the symmetric

subspace: Theorem 9 controls the performance of an analogue

of the UQCM in recovering from a loss of n−k particles when

we are given a priori information about the states (in the sense

that we know on which subspaces they are supported, e.g.,

because we are working in an irreducible representation of

some symmetry group). As an application of this, we obtain

an estimate of the performance of an antisymmetric analogue

of the UQCM for k → n “cloning” of fermionic particles.

The methods also yield information-theoretic restrictions

for general approximate broadcasts of two mixed states.
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II. BACKGROUND

The well known no-cloning theorem for pure states estab-

lishes that two pure states can be simultaneously cloned iff

they are identical or orthogonal. It is generalized by the fol-

lowing two theorems, a no-cloning theorem for mixed states

and a no-broadcasting theorem [3, 17].

Let σ be a mixed state on a system A. By definition, a

(two-fold) broadcast of the input state σ is a quantum channel

ΛA→AB , such that the output state

ρoutAB := ΛA→AB(σA)

has the identical marginals ρoutA = ρoutB = σ.

A particular broadcast corresponds to the case ρoutAB = σA⊗
σB , which is called a cloning of the state σ. We call two mixed

states σ1 and σ2 orthogonal if σ1σ2 = 0.

Theorem 1 (No cloning for mixed states, [3, 17]). Two mixed

states σ1, σ2 can be simultaneously cloned iff they are orthog-

onal or identical.

Theorem 2 (No broadcasting, [3]). Two mixed states σ1, σ2
can be simultaneously broadcast iff they commute.

By a “simultaneous cloning/broadcast,” we mean that the

same choice of ΛA→AB is made for broadcasts of σ1 and σ2.

These results were essentially first proved in [3], albeit un-

der an additional minor invertibility assumption. Alternative

proofs were given in [17, 28–30]. Sometimes Theorem 2 is

called the “universal no-broadcasting theorem” to distinguish

it from local no-broadcasting results for multipartite systems

[31]. Quantitative versions of the local no-broadcasting re-

sults for multipartite systems were reviewed very recently by

Piani [32] (see also [16]).

No-cloning and no-broadcasting are also closely related

to the monogamy property of entanglement via the Choi-

Jamiolkowski isomorphism [29].

In this paper, we study limitations on approximate

cloning/broadcasting, which we define as follows:

Definition 3 (Approximate cloning/broadcast). Let σ, σ̃ be

mixed states. An n-fold approximate broadcast of σ is a quan-

tum channel ΛA→A1···An
such that the output state has the

identical marginals σ̃. That is, we consider the situation

ρoutA1
= · · · = ρoutAn

= σ̃, (1)

where ρoutA1···An
:= Λ(σA). An approximate cloning is an ap-

proximate broadcast for which ρoutA1···An
= σ̃A1

⊗ · · · ⊗ σ̃An
.

The main case of interest is n = 2.

Our main results give bounds on (appropriate notions of)

distance between σ̃i and σi for i = 1, 2, given any pair of

input states σ1 and σ2.

Conventions—The notions of approximate cloning / broad-

cast stated above are direct generalizations of the notions of

cloning/broadcasting in the literature related to Theorems 1

and 2. Regarding the input states, these notions are more gen-

eral than the one used in the cloning machine literature [13];

we allow for the input states to be arbitrary, whereas they are

usually pure tensor-power states ψ⊗n for cloning machines.

Our notion of approximate cloning requires the output states

to be tensor-product states. Hence, some quantum cloning

machines (in particular the universal cloning machine when

acting on general input states) are approximate broadcasts by

the definition given above.

Let us fix some notation. Given two mixed states ρ
and σ, we denote the relative entropy of ρ with respect to

σ by D(ρ‖σ) := tr [ρ(log ρ− log σ)], where log is the nat-

ural logarithm [33]. We define the fidelity by F (ρ, σ) :=
‖√ρ√σ‖21 ∈ [0, 1] [34], where ‖ · ‖1 is the trace norm.

Since all of our bounds involve the relative entropy

D(σ1‖σ2) of the input states σ1 and σ2, they are only in-

formative when D(σ1‖σ2) < ∞. This is equivalent to

kerσ2 ⊆ kerσ1, and we assume this in the following for

simplicity. We note that if this assumption fails, our results

can still be applied by approximating σ2 (in trace distance)

with σε
2 := εσ1 + (1 − ε)σ2 for ε ∈ (0, 1), which satisfies

kerσε
2 ⊆ kerσ1.

III. MAIN RESULTS

We will now present our main results. All proofs are rather

short and deferred to the next section.

A. Restrictions on approximate cloning/broadcasting

Our first main result concerns limitations if σ1 is approxi-

mately broadcast n-fold while σ2 is approximately cloned n-

fold.

Theorem 4 (Limitations on approximate cloning / broadcast-

ing). Fix two mixed states σ1 and σ2. Let ΛA→A1···An
be a

quantum channel such that n ≥ 2 and the two output states

ρouti,A1···An
:= Λ(σi,A) for i = 1, 2 satisfy

ρout1,A1
= · · · = ρout1,An

= σ̃1,

ρout2,A1···An
= σ̃2,A1

⊗ · · · ⊗ σ̃2,An
,
. (2)

Thus, ΛA→A1···An
approximately broadcasts σ1,A and ap-

proximately clones σ2,A. Then

D(σ1‖σ2)−D(σ̃1‖σ̃2) ≥ (n− 1)D(σ̃1‖σ̃2)

≥ n− 1

2
‖σ̃1 − σ̃2‖21.

(3)

The second inequality in (3) follows from the quantum

Pinsker inequality [35, Thm. 1.15].

To see that (3) is indeed restrictive for approximate cloning

/ broadcasting, let n = 2 and suppose without loss of general-

ity that σ1 6= σ2, so that δ := 1
6‖σ1 − σ2‖21 > 0. We can use
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the triangle inequality for ‖ · ‖1 and the elementary inequality

2ab ≤ a2 + b2 on the right-hand side in (3) to get

D(σ1‖σ2)−D(σ̃1‖σ̃2) +
‖σ1 − σ̃1‖21

2
+

‖σ2 − σ̃2‖21
2

≥ δ.

Since σ1 and σ2 are fixed, the same is true for δ > 0. Hence,

for any approximate cloning/broadcasting operation (2), at

least one of the following three statements must hold:

1. σ1 is far from σ̃1 (i.e., the channel acts poorly on the

first state),

2. σ2 is far from σ̃2 (i.e., the channel acts poorly on the

first state), or

3. there is a large decrease in the distinguishability of the

states under the action of the channel, in the sense that

D(σ1‖σ2) − D(σ̃1‖σ̃2) is bounded from below by a

constant.

Thus, we have a quantitative version of Theorem 1 (note

that for σi = σ̃i (i = 1, 2), Theorem 5 implies σ1 = σ2).

As anticipated in the introduction, we can prove a stronger

version of Theorem 4 by invoking recent developments link-

ing monotonicity of the relative entopy to recoverability [20–

25]. The stronger version involves an additional non-negative

term on the right-hand side in (3) and it contains an additional

integer parameter m ∈ {1, . . . , n} (the case m = n corre-

sponds to Theorem 4; the case m = 1 is also useful as we

explain after the theorem).

Theorem 5 (Stronger version of Theorem 4). Under the same

assumptions as in Theorem 4, for all m ∈ {1, . . . , n}, there

exists a recovery channel R(m)
A1···Am→A such that

D(σ1‖σ2)−mD(σ̃1‖σ̃2)
≥ − logF (σ1, (R(m)

A1···Am→A ◦ trAm+1···An
◦Λ)(σ1)).

(4)

The recovery channelR(m) ≡ R(m)
A1···Am→A satisfies the iden-

tity σ2 = R(m)(σ̃⊗m
2 ). There exists an explicit choice for such

an R(m) with a formula depending only on σ2 and Λ, as can

be seen from [24] or (20).

One can generalize Theorem 5 to the case of “k → n
cloning” [13] where one starts from k-fold tensor copies σ⊗k

1

and σ⊗k
2 and broadcasts the former and clones the latter to

states on an n-fold tensor product. That is, we have

Theorem 6. Consider the more general situation in which we

begin with k ≤ n tensor-product copies of the state σi for

i ∈ {1, 2}, and suppose that the channel ΛA1···Ak→A1···An

approximately broadcasts σ1, in the sense that

trA1···An\Aj
[ΛA1···Ak→A1···An

(σ⊗k
1 )] = σ̃1,

and approximately clones σ2, in the sense that

ΛA1···Ak→A1···An
(σ⊗k

2 ) = σ̃⊗n
2 .

Then, for every m ∈ {1, . . . , n}, there exists a recovery chan-

nel R(m,k)
A1···Am→A1···Ak

such that

kD(σ1‖σ2)−mD(σ̃1‖σ̃2)
≥− logF (σ1, (R(m,k)

A1···Am→A1···Ak
◦ trAm+1···An

◦Λ)(σ⊗k
1 )),

and the recovery channel R(m,k)
A1···Am→A1···Ak

satisfies

σ⊗k
2 = R(m,k)

A1···Am→A1···Ak
(σ̃⊗m

2 ).

To see how the additional remainder term in (4) can be use-

ful, we apply Theorem 5 with m = 1. It implies that there

exists a recovery channel R(1) such that

D(σ1‖σ2)−D(σ̃1‖σ̃2) ≥ − logF (σ1,R(1)(σ̃1)),

σ2 = R(1)(σ̃2).
(5)

Now suppose that we are in a situation where the left hand

side in (5) is less than some ε > 0. Then, (5) implies that

σ1 ≈ R(1)(σ̃1) and σ2 = R(1)(σ̃2), where ≈ stands for

− logF (σ1,R(1)(σ̃1)) < ε. In other words, we can (approx-

imately) recover the input states σi from the output marginals

σ̃i. Therefore, in a next step, we can improve the quality of the

cloning / broadcasting channel Λ by post-composing it with n
parallel uses of the local recovery channel R(1). Indeed, the

improved cloning channel Λimpr := (R(1))⊗n ◦ Λ, has the

new output states ρimpr
i,A1...An

:= Λimpr(σi), (i = 1, 2) which

satisfy

ρimpr
1,A1

= · · · = ρimpr
1,An

= R(1)(σ̃1) ≈ σ1,

ρimpr
2,A1···An

= σ2,A1
⊗ · · · ⊗ σ2,An

.

Here, ≈ again stands for − logF (σ1,R(1)(σ̃1)) < ε.
That is, we have found a strategy to improve the output of

the cloning channel Λ, namely to the output of Λimpr.

B. Universal cloning machines and symmetrized partial trace

channels

In our next results, we consider a particular example of an

approximate broadcasting channel well known in quantum in-

formation theory [9, 11, 13], a universal quantum cloning ma-

chine (UQCM). We connect the UQCM to relative entropy

and recoverability.

We recall that the UQCM is the optimal cloner for tensor

power pure states, in the sense that the marginal states of its

output have the optimal fidelity with the input state [9, 11].

Let k and n be integers such that 1 ≤ k ≤ n. In general, one

considers a k → n UQCM as acting on k copies ψ⊗k of an

input pure state ψ of dimension d (a qudit), which produces

an output density operator ρ(n), a state of n qudits. From

Werner’s work [9], the UQCM is known to be

Ck→n(ω
(k)) ≡ d[k]

d[n]
Πd,n

sym

[

Πd,k
symω

(k)Πd,k
sym ⊗ In−k

]

Πd,n
sym.

(6)
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Here Πd,n
sym is the projection onto the (permutation-)symmetric

subspace of (Cd)⊗n, which has dimension d[n] :=
(

d+n−1
n

)

.

We note that Ck→n is trace-preserving when acting on the

symmetric subspace.

The main results here are Theorems 7 and 8, which high-

light the duality between the UQCM (6) and the following

symmetrized partial trace channel

Pn→k(·) ≡ Πd,k
sym trn→k

[

Πd,n
sym(·)Πd,n

sym

]

Πd,k
sym, (7)

In addition to the operational sense of duality between the

partial trace channel Pn→k and the UQCM Ck→n which is

established by Theorems 7 and 8, the two are dual in the

sense of quantum channels (up to constant). That is, P†
n→k =

(d[n]/d[k]) Ck→n.

Our results will quantify the quality of the UQCM for cer-

tain tasks in terms of the relative entropy D(ω(n)‖πd,n
sym),

which is between a general n-qudit state ω(n) and the max-

imally mixed state πd,n
sym of the symmetric subspace. We con-

sider the maximally mixed state πd,n
sym as a natural “origin”

from which to measure the “distance” D(ω(n)‖πd,n
sym) since it

is a (Haar-)random mixture of tensor-power pure states.

We recall what one obtains from the standard monotonicity

of the relative entropy, namely

D(ω(n)‖πd,n
sym) ≥ D(Pn→k(ω

(n))‖Pn→k(π
d,n
sym)). (8)

Our next main result is the following strengthening of the

entropy inequality in (8):

Theorem 7. Let ω(n) be a state with support in the symmet-

ric subspace of (Cd)⊗n, let πd,n
sym denote the maximally mixed

state on this symmetric subspace, let Ck→n denote the UQCM

from (6), and Pn→k the symmetrized partial trace channel

from (7). Then

D(ω(n)‖πd,n
sym) ≥ D(Pn→k(ω

(n))‖Pn→k(π
d,n
sym))

+D(ω(n)‖(Ck→n ◦ Pn→k)(ω
(n))). (9)

The entropy inequality in (9) can be interpreted as follows:

The ability of a k → n UQCM to recover an n-qubit state

ω(n) from the loss of n−k particles is limited by the decrease

of distinguishability between ω(n) and πd,n
sym under the action

of the partial trace Pn→k. Thus, a small decrease in relative

entropy (i.e., D(ω(n)‖πd,n
sym) − D(P(ω(n))‖P(πd,n

sym)) ≈ ε)
implies that a k → nUQCM Ck→n will perform well at recov-

ering ω(n) from Pn→k(ω
(n)). We can also observe that Ck→n

is the Petz recovery map corresponding to the state σ = πd,n
sym

and channel N = trn→k , as defined in (20).

As an application of Theorem 7, we consider the special

case that is most common in the context of quantum cloning

[9, 11, 13]. We set ω(n) = φ⊗n for a pure state φ. In this case,

D(φ⊗n‖πd,n
sym)−D(Pn→k(φ

⊗n)‖Pn→k(π
d,n
sym))

= − log(d[k]/d[n]) ≥ D(φ⊗n‖Ck→n(φ
⊗k)).

(10)

By estimating D ≥ − logF , we recover one of the main re-

sults of [9], which is that the k → n UQCM has the following

performance when attempting to recover n copies of φ from k
copies:

F (φ⊗n, Ck→n(φ
⊗k)) ≥ d[k]/d[n]. (11)

Given the above duality between the symmetrized partial

trace channel and the UQCM, we can also consider the reverse

scenario.

Theorem 8. With the same notation as in Theorem 7, the fol-

lowing inequality holds

D(ω(k)‖πd,k
sym) ≥ D(Ck→n(ω

(k))‖Ck→n(π
d,k
sym))

+D(ω(k)‖(Pn→k ◦ Ck→n)(ω
(k))). (12)

This entropy inequality can be seen as dual to that in (9),

having the following interpretation: if the decrease in distin-

guishability of ω(k) and πd,k
sym is small under the action of a

UQCM Ck→n, then the partial trace channel Pn→k can per-

form well at recovering the original state ω(k) back from the

cloned version Ck→n(ω
(k)).

C. On photon amplification and loss

There is a striking similarity between the inequalities in (9)

and (12) and those from [27, Sect. III-A], which apply to pho-

tonic channels (cf. [37]). This observation is based on the

analogy that cloning is like particle amplification and partial

trace is like particle loss.

The partial trace channel is like particle loss, which for pho-

tons is represented by a pure-loss channel Lη with transmis-

sivity η ∈ [0, 1]. Furthermore, a UQCM is like particle am-

plification, which for bosons is represented by an amplifier

channel AG of gain G ≥ 1. Let θE denote a thermal state

of mean photon number E ≥ 0, and let ρ denote a state of

the same energyE. A slight rewriting of the inequalities from

Section III-A of [27], given below, results in the following:

D(ρ‖θE) & D(Lη(ρ)‖Lη(θE))

+D(ρ‖(A1/η ◦ Lη)(ρ)), (13)

D(ρ‖θE) ≥ D(AG(ρ)‖AG(θE))

+D(ρ‖(L1/G ◦ AG)(ρ)), (14)

where the symbol& indicates that the entropy inequality holds

up to a term with magnitude no larger than log(1/η) and

which approaches zero as E → ∞. So we see that (13) is

analogous to (9): under a particle loss Lη , we can apply a par-

ticle amplification procedure A1/η to try and recover the lost

particles, with a performance controlled by (13). Similarly,

(14) is analogous to (12): under a particle amplification AG,

we can apply a particle loss channel L1/G to try and recover

the original state, with a performance controlled by (14). Ob-

serve that the parameters specifying the recovery channels are

directly related to the parameters of the original channels, just

as is the case in (9) and (12). Note that an explicit connec-

tion between cloning and amplifier channels was established

in [37], and our result serves to complement that connection.
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D. Restrictions on cloning in general subspaces

We can generalize the discussion in the previous section

to arbitrary subspaces. For 1 ≤ k ≤ n, let Xn be a

dXn
-dimensional subspace of (Cd)⊗n and let Yk be a dYk

-

dimensional subspace of (Cd)⊗k. We write ΠXn
, ΠYk

for the

projections onto these subspaces and πXn
and πYk

for the cor-

responding maximally mixed states. We generalize the defini-

tions in (6) and (7) to

Ck→n(·) ≡
dYk

dXn

ΠXn

[

ΠYk
(·)ΠYk

⊗ In−k
]

ΠXn
, (15)

Pn→k(·) ≡ ΠYk
trn→k[ΠXn

(·)ΠXn
] ΠYk

. (16)

For definiteness, the partial trace trn→k is taken over the last

n − k qudits. The cloning map Ck→n is a direct analogue

of the UQCM for the specialized task of recovering a state

in the subspace Xn from one in the subspace Yk (previously,

Xn and Yk were both taken to be the symmetric subspace).

By inspection, it is completely positive, and if trn→k[πXn
] =

πYk
, then it is trace preserving when acting on any operator

with support in Xn.

The same argument that proves Theorem 7 then gives

Theorem 9. Let ω(n) be a state with support in Xn, and sup-

pose that trn→k[ω
(n)] is supported in Yk. Then

D(ω(n)‖πXn
) ≥ D(Pn→k(ω

(n))‖πYk
)

+D(ω(n)‖(Ck→n ◦ Pn→k)(ω
(n))). (17)

The assumption that trn→k[ω
(n)] is supported in Yk is made

for convenience. Without it, the quantity tr[Pn→k(ω
(n))] < 1

would enter in the statement, as can be seen from the proof

in the next section. We can obtain a stronger statement un-

der the additional assumption trn→k[πXn
] = πYk

: It implies

Pn→k(πXn
) = πYk

and that (Ck→n ◦ Pn→k)(ω
(n)) has trace

one.

Theorem 9 controls the performance of the cloning machine

Ck→n (15) in recovering from a loss of n − k particles when

a priori information about the states is given (in the sense that

we know on which subspaces they are supported). To see this,

consider, e.g., the case of perfect a priori information when

dimXn = 1. Then D(ω(n)‖πXn
) = 0 and so (17) implies

that the cloning is perfect, ω(n) = (Ck→n ◦ Pn→k)(ω
(n)).

For non-trivial applications of Theorem 9, a natural class

of subspaces to consider are those associated to irreducible

group representations, e.g. of the permutation group acting

on (Cd)⊗n. To avoid introducing the representation-theoretic

background, we focus here on the case when both Xn and Yk
are taken to be the familiar antisymmetric subspace. Phys-

ically, the antisymmetric subspace describes fermions and

therefore our results have bearing on electronic analogues of

the photonic scenarios mentioned above.

For this part, we let d ≥ n. An example system for which d
can be larger than n is a tight-binding model on d lattice sites,

where each site can host a single electron. The antisymmet-

ric subspace Xn has dimension dXn
=
(

d
n

)

. The analogue of

a tensor-power pure state in the antisymmetric subspace is a

Slater determinant |Φn〉 ≡ |φ1〉 ∧ · · · ∧ |φn〉, where the states

{|φi〉}i are orthonormal. Appendices A and B review back-

ground and how the marginal trn→k[Φn] is again antisymmet-

ric and has quantum entropy log
(

n
k

)

. Thus, (17) of Theorem 9

applies to establish the first inequality of the following:

log

(

d− k

d− n

)

= − log

(

(

d

k

)

·
[(

n

k

)(

d

n

)]−1
)

≥ D(Φn‖(Ck→n ◦ Pn→k)(Φn)).

(18)

Using D ≥ − logF again, we conclude that the performance

of the antisymmetric cloning machine Ck→n in recovering

from a loss of n− k fermionic particles is controlled by

F (Φn, (Ck→n ◦ Pn→k)(Φn)) ≥
[(

d− k

d− n

)]−1

. (19)

We mention that (Ck→n ◦ Pn→k)(Φn) has trace one; this fol-

lows from the identity trn→k[πXn
] = πYk

for the antisymmet-

ric subspace (cf. Lemma 13 in Appendix B). We also mention

that the standard symmetric UQCM would produce the zero

state in this case and thus yields a (minimal) fidelity of zero.

E. General restrictions on approximate broadcasts

As the introduction mentioned, our methods imply new

information-theoretic restrictions on any approximate two-

fold broadcast. These are relegated to Appendix C.

IV. PROOFS OF THE MAIN RESULTS

An important tool for us will be the lower bound from [24]

on the decrease of the relative entropy for a quantum channel

N and states ρ and σ:

Theorem 10 ([24]). Let β(t) := π
2 (1 + cosh(πt))−1. For

any two quantum states ρ, σ and a channel N , the following

bound holds

D(ρ‖σ) ≥D(N (ρ)‖N (σ))

−
∫

R

logF
(

ρ,Rt
N ,σ(N (ρ))

)

dβ(t),

where the rotated Petz recovery map Rt
N ,σ is defined as

Rt
N ,σ(·) := σ

1+it
2 N †

[

(N (σ))−
1+it

2 (·)(N (σ))−
1−it

2

]

σ
1−it

2 ,

(20)

where N † is the completely positive, unital adjoint of the

channel N . Every rotated Petz recovery map perfectly recov-

ers σ from N (σ):

Rt
N ,σ(N (σ)) = σ.

In the special case when the applied quantum channel is the

partial trace, the inequality becomes as follows:
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Theorem 11 ([24]). Let β(t) := π
2 (1+cosh(πt))−1. For any

two quantum states ρAB, σAB , we have

D(ρAB‖σAB) ≥D(ρB‖σB)

−
∫

R

logF
(

ρAB,Rt
A,σ(ρB)

)

dβ(t),

where the rotated Petz recovery map Rt
A,X is defined in (C4).

We are now ready to give the

Proof of Theorems 4 and 5. Theorem 4 follows from them =
n case of Theorem 5. Hence, it suffices to prove Theorem 5.

We start by noting the following general inequality holding

for states ω and τ , a channel N , and a recovery channel R:

D(ω‖τ)−D(N (ω)‖N (τ)) ≥ − logF (ω, (R ◦N )(ω)),
(21)

τ = (R ◦N )(τ), (22)

which is a consequence of convexity of − log and the fidelity

applied to Theorem 10, taking

R :=

∫

R

Rt
N ,τdβ(t) (23)

with Rt
N ,τ as in Theorem 10. To get the inequality, we take

ω = σ1, τ = σ2, and N = trAm+1···An
◦Λ. This then gives

the inequality

D(σ1‖σ2)
−D((trAm+1···An

◦Λ)(σ1)‖(trAm+1···An
◦Λ)(σ2))

≥− logF (σ1, (R(m)
A1···An→A ◦ trAm+1···An

◦Λ)(σ1)),

where the recovery channel R(m)
A1···An→A satisfies

σ2 = (R(m)
A1···An→A ◦ trAm+1···An

◦Λ)(σ2)
= R(m)

A1···An→A(σ̃
⊗m
2 ).

Next we prove that

−D((trAm+1···An
◦Λ)(σ1)‖(trAm+1···An

◦Λ)(σ2))
≤ −mD(σ̃1‖σ̃2).

We apply log(X ⊗ Y ) = logX ⊗ I + I ⊗ log Y and set

H(X) := −tr [X logX ] to get

−D((trAm+1···An
◦Λ)(σ1)‖(trAm+1···An

◦Λ)(σ2))
=−D(ρout1,A1···Am

‖σ̃2,A1
⊗ · · · ⊗ σ̃2,Am

)

=H(ρout1,A1···Am
) + tr[ρout1,A1···Am

log(σ̃2,A1
⊗ · · · ⊗ σ̃2,Am

)]

=H(ρout1,A1···Am
)

+

m
∑

k=1

tr[ρout1,A1···Am
(IA1···Am\Ak

⊗ log(σ̃2,Ak
))]

Recall our assumption from (2) that the channel broadcasts σ1
to σ̃1. It gives for every 1 ≤ k ≤ m that

tr[ρout1,A1···Am
(IA1···Am\Ak

⊗ log(σ̃2,Ak
))] = tr[σ̃1 log σ̃2].

By the subadditivity of the entropy H and (2), we obtain

H(ρout1,A1···Am
) +m tr[σ̃1 log σ̃2]

≤
m
∑

k=1

H(ρout1,Ak
) +m tr[σ̃1 log σ̃2] = −mD(σ̃1‖σ̃2). (24)

This proves Theorem 5.

The more general version, Theorem 6, can be proved along

the same lines. We leave the details to the reader.

Next we give the

Proof of Theorem 7. We observe that πd,k
sym = trn→k[π

d,n
sym]

which follows easily from the representation πd,n
sym =

∫

dψ ψ⊗n [36], the integral being with respect to the Haar

probability measure over pure states ψ.

A proof of (9) then follows from a few key steps:

D(ω(n)‖πd,n
sym)−D(Pn→k(ω

(n))‖Pn→k(π
d,n
sym))

=−H(ω(n))− tr[ω(n) log πd,n
sym] +H(Pn→k(ω

(n))) (25)

+ tr[Pn→k(ω
(n)) log πd,k

sym]

=H(Pn→k(ω
(n)))−H(ω(n))− log(d[k]/d[n])

≥D(ω(n)‖(P†
n→k ◦ Pn→k)(ω

(n)))− log(d[k]/d[n])

=D(ω(n)‖(Ck→n ◦ Pn→k)(ω
(n))). (26)

The first equality holds by definition of quantum relative

entropy and in the second equality we used the fact that

tr[Pn→k(ω
(n))] = tr[trn→k(ω

(n))] = tr[ω(n)] = 1, wherein

the first step holds because trn→k[ω
(n)] is supported in the

symmetric subspace. The inequality above is a consequence

of [27, Thm. 1] which states that

H(N (ρ)) −H(ρ) ≥ D(ρ‖(N † ◦ N )(ρ)) (27)

for any state ρ and positive, trace-preserving map N . (We

remark that Pn→k is indeed trace-preserving when consid-

ered as a map on states supported on the symmetric subspace.)

The last equality in (26) follows from the property of relative

entropy that D(ξ‖τ) − log c = D(ξ‖cτ) for states ξ, τ and

c > 0.

Essentially the same argument, with minor modifications,

also proves Theorems 8 and 9. For the former, we use the facts

that Ck→n(π
d,k
sym) = πd,n

sym and that Ck→n is trace-preserving

when acting on states supported in the symmmetric subspace.

For Theorem 9, we use the assumption that trn→k[ω
(n)] is

supported in Yk to get tr[Pn→k(ω
(n))] = 1. The details are

left to the reader.

Finally, we come to the

Proof of (13) and (14). A proof of (13) is as follows. The

Hamiltonian here is a†a, which is the photon number opera-

tor. Let ρ be a state of energy E, and let θE be a thermal state

of energy E (i.e.,
〈

a†a
〉

ρ
=
〈

a†a
〉

θE
= E). Under the action

of a pure-loss channel Lη , the energies of Lη(ρ) and Lη(θE)
are equal to ηE, and we also find that Lη(θE) = θηE . Fur-

thermore, a standard calculation gives that − tr[ρ log θE ] =
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H(θE) = g(E) := (E + 1) log (E + 1) − E logE. Putting

this together, we find that

D(ρ‖θE)−D(Lη(ρ)‖Lη(θE))

=H(Lη(ρ))−H(ρ) + g(E)− g(ηE)

≥D(ρ‖(A1/η ◦ Lη)(ρ))− log(1/η) + g(E)− g(ηE).

The first equality is a rewriting using what we mentioned

above and the inequality follows from Section III-A of [27].

When E = 0, g(E) − g(ηE) = 0 also. As E gets larger,

g(E) − g(ηE) is monotone increasing and reaches its maxi-

mum of log(1/η) as E → ∞.

The other inequality in (14) for an amplifier channel follows

similarly. Under the action of an amplifier channel AG, the

energies of AG(ρ) and AG(θE) are GE. We also find that

AG(θE) = θGE . Proceeding as above, we find that

D(ρ‖θE)−D(AG(ρ)‖AG(θE))

=H(AG(ρ))−H(ρ) + g(E)− g(GE)

≥D(ρ‖(L1/G ◦ AG)(ρ)) + logG− [g(GE)− g(E)]

≥D(ρ‖(L1/G ◦ AG)(ρ)).

The first equality is a rewriting and the inequality follows from

Section III-A of [27]. The last inequality follows because

g(GE) − g(E) = 0 at E = 0, and it is monotone increas-

ing as a function of E, reaching its maximum value of logG
as E → ∞.

We close this proof section with a remark on a so-far im-

plicit assumption.

Remark (Non-identical marginals case). Some of our results,

Theorems 4, 5 and 14 (see below), apply to approximate

clonings/broadcasts in the sense of Definition 3. That is, we

always assume that the marginals of the output state are iden-

tical, i.e.

ρouti,A1
= . . . = ρouti,An

= σ̃i, (i = 1, 2). (28)

We make this assumption for two reasons: (a) It simplifies the

bounds in our main results and (b) we believe that it is a nat-

ural assumption for approximate cloning/broadcasting. How-

ever, the methods apply more generally and they also yield

limitations on approximate clonings/broadcasts when (28) is

not satisfied.

V. CONCLUSION

In this paper, we have proven several entropic inequalities

that pose limitations on the kinds of approximate clonings /

broadcasts that are allowed in quantum information process-

ing. Some of the results generalize the well known no-cloning

and no-broadcasting results, restated in Theorems 1 and 2.

Other results demonstrate how universal cloning machines

and partial trace channels are dual to each other, in the sense

that one can be used as an approximate recovery channel for

the other, with a performance controlled by entropy inequal-

ities. We can also control the performance of an analogue of

the UQCM for cloning between any two subspaces. In partic-

ular, we obtain bounds on its performance in recovering from

a loss of n− k fermionic particles.
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Appendix A: Reductions of Slater determinants and their

quantum entropy

Here we prove the fact that the quantum entropy of the

marginal trn→k[Φn] is log
(

n
k

)

when Φn is a Slater determi-

nant. We can conclude this directly from the expression (A4)

for the marginal derived below.

Before beginning, let us suppose that {|φj〉}dj=1 is an or-

thonormal basis for a d-dimensional Hilbert space H. Letting

d ≥ n, a Slater determinant state Φn corresponding to this

basis and a subset {1, . . . , n} is as follows:

|Φn〉 := |φ1〉 ∧ · · · ∧ |φn〉 (A1)

:=
1√
n!

∑

π∈Sn

sgn(π)|φπ(1)〉 ⊗ · · · ⊗ |φπ(n)〉, (A2)

where Sn is the set of all permutations of {1, . . . , n} and

sgn(π) denotes its signum. Note that we chose the subset

{1, . . . , n} of {1, . . . , d}, but without loss of generality we

could have chosen an arbitrary one.

The formula (A4) below is surely well known. We include

an elementary, but slightly tedious, proof for completeness.

Lemma 12 (Marginal of a Slater determinant). Let d ≥ n and

|Φn〉 = |φ1〉 ∧ · · · ∧ |φn〉, with {|φj〉}dj=1 an orthonormal ba-

sis. A k-set Ak is a subset of {1, . . . , n} consisting of exactly

k elements. For any k-set Ak = {i1, . . . , ik}, we define

|ΦAk
〉〈ΦAk

| := (|φi1 〉∧· · ·∧|φik 〉)(〈φi1 |∧· · ·∧|φik |). (A3)

Then

trn→k[|Φn〉〈Φn|] =
1
(

n
k

)

∑

Ak k−set

|ΦAk
〉〈ΦAk

|. (A4)

The orthonormality of the states {|ΦAk
〉} for fixed k then

implies that H(trn→k|Φn〉〈Φn|) = log
(

n
k

)

, where H(ρ) =
−tr[ρ log ρ] is the quantum entropy.

Proof. By definition of the wedge product, we can write

|Φn〉〈Φn| as

|Φn〉〈Φn|

=
1

n!

∑

π,σ∈Sn

sgn(π ◦ σ)|φπ(1)〉〈φσ(1)| ⊗ · · · ⊗ |φπ(n)〉〈φσ(n)|.
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Here we used the fact that sgn is a group homomorphism, i.e.,

that sgn(π ◦ σ) = sgn(π)sgn(σ) for any two permutations π
and σ. Taking the partial trace over the last n − k systems

yields the following:

trn→k[|Φn〉〈Φn|]

=
1

n!

∑

π,σ∈Sn

sgn(π ◦ σ)|φπ(1)〉〈φσ(1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ(k)|

× δπ(k+1),σ(k+1) · · · δπ(n),σ(n).
In the second equality, we used orthonormality. The product

of delta functions implies that we only need to consider per-

mutations π and σ which agree on {k + 1, . . . , n}.

To exploit this, we partition the permutations according to

which k-set Ak features as the image of {1, . . . , k}. More

precisely, given a k-set Ak, we define

Sn(Ak) := {π ∈ Sn : π({1, . . . , k}) = Ak} .
There is a more useful, kind of affine representation of the

elements of Sn(Ak) as tuples in Sk × Sn−k composed with

a fixed bijection fAk
∈ Sn(Ak). For definiteness, we define

fAk
to be the unique bijection in Sn(Ak) which preserves or-

dering. Then

π ∈ Sn(Ak) ⇐⇒ π = fAk
◦ (πk, πn−k), (A5)

for some πk ∈ Sk, π
n−k ∈ Sn−k. Here we wrote (πk, πn−k)

for the permutation that is obtained by applying πk to the first

k variables and πn−k to the last n− k variables.

This way of bookkeeping permutations is convenient in

(A5) above. Using this representation and the identity (A6)

below, we find that

trn→k[|Φn〉〈Φn|]

=
1

n!

∑

Ak k−set

∑

π,σ∈Sn(Ak);

πn−k=σn−k

sgn(π ◦ σ)

× |φπ(1)〉〈φσ(1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ(k)|

=
1

n!

∑

Ak k−set

∑

π,σ∈Sn(Ak);

πn−k=σn−k

sgn(πk ◦ σk)

× |φπ(1)〉〈φσ(1)| ⊗ · · · ⊗ |φπ(k)〉〈φσ(k)|

=
(n− k)!

n!

∑

Ak k−set

∑

πk,σk∈Sk

sgn(πk ◦ σk)

× |φ(fAk
◦πk)(1)〉〈φ(fAk

◦σk)(1)|
⊗ · · · ⊗ |φ(fAk

◦πk)(k)〉〈φ(fAk
◦σk)(k)|.

We used the following identity:

sgn(π ◦ σ) = sgn(πk ◦ σk). (A6)

This is a consequence of the fact that sgn is a group homo-

morphism. Indeed, we have

sgn(π ◦ σ)
=(sgn(fAk

))2sgn((πk, πn−k))sgn((σk, σn−k))

=sgn((πk, πn−k))sgn((σk, πn−k))

=sgn(πk ◦ σk).

This proves (A6). We now return to (A6) to conclude the proof

of (A4). We observe that

Perm(Ak) =
{

fAk
◦ πk ◦ f−1

Ak
: πk ∈ Sk

}

.

To exploit this, we order each k-set Ak = {i1, . . . , ik} with

i1 < · · · < ik. Then, by definition, fAk
(j) = ij for all

1 ≤ j ≤ k. From this, we find that

fAk
◦ πk(j) = fAk

◦ πk ◦ f−1
Ak

(ij) =: π̃k(ij)

produces a permutation π̃k ∈ Perm(Ak). We use this obser-

vation to relabel the sum in (A6); and we also use the identity

sgn(πkσ̃k) = sgn(π̃k ◦ σ̃k), which follows by a similar argu-

ment as (A6) above. We get

(n− k)!

n!

∑

Ak k−set

∑

πk,σk∈Sk

sgn(πk ◦ σk)

× |φ(fAk
◦πk)(1)〉〈φ(fAk

◦σk)(1)|
⊗ · · · ⊗ |φ(fAk

◦πk)(k)〉〈φ(fAk
◦σk)(k)|

=
1
(

n
k

)

∑

Ak k−set

1

k!

∑

π̃k,σ̃k∈Perm(Ak)

sgn(π̃k ◦ σ̃k)

× |φπ̃k(i1)〉〈φσ̃k(i1)| ⊗ · · · ⊗ |φπ̃k(ik)〉〈φσ̃k(ik)|

=
1
(

n
k

)

∑

Ak k−set

|ΦAk
〉〈ΦAk

|.

(A7)

This concludes the proof of Lemma 12.

Appendix B: The maximally mixed state on the antisymmetric

subspace

The following lemma allows us to conclude that the

stronger form of Theorem 9 applies when considering cloning

maps for the antisymmetric subspace.

Lemma 13. Let Hn denote the antisymmetric subspace of n
qudits and let πn denote the maximally mixed state on Hn.

Then

πk = trn→k[πn].

Proof of Lemma 13. The operator trn→k[πn] is supported on

Hk. It also commutes with all unitaries Uk on Hk. Indeed, by

properties of the partial trace and the fact that πn commutes

with all unitaries on Hn,

Uktrn→k[πn] = trn→k[(Uk ⊗ IHn−k
)πn]

=trn→k[πn(Uk ⊗ IHn−k
)] = trn→k[πn]Uk.

Since it commutes with all unitaries, trn→k[πn] is propor-

tional to IHk
. Since

trHk
[trn→k[πn]] = trHn

[πn] = 1,

the proportionality constant must be 1/dimHk = 1/
(

d
k

)

. This

proves the lemma.
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Appendix C: Limitations on approximate two-fold broadcasts

As mentioned in the main text, our method also gives limi-

tations on approximate two-fold broadcasting.

Throughout, we restrict to broadcasts which receive as their

input state only a single copy of σ. In particular, we are not in

a situation where “superbroadcasting” [39, 40] is possible.

Theorem 14. Fix two mixed states σ1 and σ2. Suppose that

the quantum channel ΛA→AB is a simultaneous approximate

broadcast of σ1 and σ2, i.e., that

ρouti,A = ρouti,B = σ̃i, ρouti,AB := Λ(σi,A) (C1)

for i = 1, 2. Then

D(σ1‖σ2)−D(σ̃1‖σ̃2) ≥ ∆R(σ̃1, σ̃2). (C2)

where we have introduced the (channel dependent) “recovery

difference”

∆R(σ̃1, σ̃2)

:=
1

8

∫

R

‖Rt
B,ρout

2,AB
(σ̃1,A)−Rt

A,ρout
2,AB

(σ̃1,B)‖21 dβ(t).
(C3)

which features the probability distribution β(t) := π
2 (1 +

cosh(πt))−1 and the rotated Petz recovery map defined by

Rt
A,X(·)

:=X
(1+it)/2
AB

(

IA ⊗X
−(1+it)/2
B (·)X−(1−it)/2

B

)

X
(1−it)/2
AB .

(C4)

The proof is given at the end of this appendix. We em-

phasize that the definition (C3) of the recovery difference

∆R(σ̃1, σ̃2) is independent of ρout1,AB. The rotated Petz recov-

ery map (C4) appears in the strengthening of the monotonicity

of relative entropy [24], recalled here as Theorem 11 in the ap-

pendix. The rotated Petz recovery map is chosen such that the

second state is perfectly recovered, i.e.

Rt
B,ρout

2,AB
(σ̃2,A) = Rt

A,ρout
2,AB

(σ̃2,B) = ρout2,AB.

One may wonder if the vanishing of the recovery difference

implies that σ̃1 and σ̃2 commute, i.e., if Theorem 2 is recov-

ered from Theorem 14. Assume that ∆R(σ̃1, σ̃2) = 0. One

would like to show that this implies that σ̃1 and σ̃2 commute.

A natural idea is to follow the proof of Theorem 2 in [17].

There, the authors appeal to a condition for equality in the

monotonicity of the relative entropy by Ruskai [41] (see also

[42–44]). It yields (see (11) in [17])

(ΣA ⊗ IB)PAB =(IA ⊗ ΣB)PAB,

Σ := log σ1 − log σ2.
(C5)

where PAB projects onto the support of ρout2,AB. We have

Lemma 15. If (C5) holds, then σ̃1 and σ̃2 commute.

This was observed without proof in [17]; for completeness

we include the

Proof of Lemma 15. First, recall our standing assumption that

ker σ̃2 ⊂ ker σ̃1. It yields that σ̃1σ̃2 = 0 = σ̃2σ̃1 on ker σ̃2
and so it suffices to consider the subspace X := (ker σ̃2)

⊥ in

the following.

Fix a vector |k〉 ∈ X . Then, by the definition of the partial

trace, there exists another vector |l〉 such that

|k〉A ⊗ |l〉B ∈ (ker ρout2 )⊥ = suppρout2 .

Hence we have (C6) when acting on |k〉 ⊗ |l〉, which implies

Σ|k〉 = |k〉. Since |k〉 ∈ X was arbitrary, we see that Σ acts

as the identity on X . Moreover, X = ranσ̃2 is an invariant

subspace for σ2 and so we can find a unitary U : X → X
such that U∗σ̃2U =: Λ is diagonal. By definition (C6) of Σ,

it follows that, on X ,

IX = Λ−1/2−it/2U∗σ̃1UΛ−1/2+it/2.

Hence, U∗σ̃1U is diagonal as well, implying that σ̃1 and σ̃2
commute.

Contrary to [17], the assumption ∆R(σ̃1, σ̃2) = 0, by (C3),

yields only the slightly weaker identity

PAB(ΣA ⊗ IB)PAB =PAB(IA ⊗ ΣB)PAB,

Σ :=σ̃
−1/2−it/
2 σ̃1σ̃

−1/2+it/2
2 .

(C6)

Note the additional projection PAB in (C6) as compared to

(C5). It is due to the symmetrical appearance of ρout2 in the

Petz recovery map (C4). In the special case that PAB projects

onto a subset of the “diagonal” |k〉A ⊗ |k〉B , (C6) holds

trivially. In particular, (C6) does not imply that σ̃1 and σ̃2
commute.

Now, if one is intent on recovering the no-broadcasting

Theorem 2, one can in fact replace ∆R on the right-hand side

in (C2) by an alternative expression whose vanishing does im-

ply that σ̃1 and σ̃2 commute. This alternative expression is de-

rived from a strengthened monotonicity inequality of Carlen

and Lieb [45] and reads

∆CL(σ̃1, σ̃2)

:=
1

2

∥

∥

∥

√

ρout2,AB − e
1
2
(log ρout

2,AB−log σ̃2,A+log σ̃1,A)PAB

∥

∥

∥

2

2

+
1

2

∥

∥

∥

√

ρout2,AB − e
1
2
(log ρout

2,AB−log σ̃2,B+log σ̃1,B)PAB

∥

∥

∥

2

2

Using the result of [45] in the proof of Theorem 14 gives

D(σ1‖σ2)−D(σ̃1‖σ̃2) ≥ ∆CL(σ̃1, σ̃2),

The vanishing ∆CL(σ̃1, σ̃2) = 0 implies Ruskai’s condition

(C5) and consequently that σ̃1 and σ̃2 commute, i.e.

∆CL(σ̃1, σ̃2) = 0 ⇒ [σ̃1, σ̃2] = 0. (C7)

However, ∆CL does not appear to have information-theoretic

content, while ∆R features the Petz recovery map.

We close this appendix with the
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Proof of Theorem 14. The proof is based on the following key

estimate. It is a variant of Theorem 11, which was proved in

[24].

Lemma 16 (Key estimate). Fix two quantum states σ1 and

σ2. For any choice of quantum channel ΛA→AB, we define

ρouti := Λ(σi,A), (i = 1, 2). (C8)

Let β(t) = π
2 (1 + cosh(πt))−1.

(i) We have

D(σ1‖σ2)−D(ρout1,B‖ρout2,B)

≥−
∫

R

logF
(

ρout1,AB,Rt
A,ρout

2,AB
(ρout1,B)

)

dβ(t).
(C9)

D(σ1‖σ2)−D(ρout1,A‖ρout2,A)

≥−
∫

R

logF
(

ρout1,AB,Rt
B,ρout

2,AB
(ρout1,A)

)

dβ(t),
(C10)

where the rotated Petz recovery map Rt
A,X was defined

in (C4).

(ii) Suppose that the output state ρouti,AB has identical

marginals, i.e.

ρouti,A = ρouti,B =: σ̃i, (i = 1, 2).

Then we have

D(σ1‖σ2)−D(σ̃1‖σ̃2)

≥







−
∫

R
logF

(

ρout1,AB,Rt
A,ρout

2,AB

(σ̃1,B)
)

dβ(t)

−
∫

R
logF

(

ρout1,AB,Rt
B,ρout

2,AB

(σ̃1,A)
)

dβ(t).

(C11)

Proof of Lemma 16. The standard monotonicity of quantum

relative entropy under quantum channels (without a remain-

der term) gives

D(σ1‖σ2) ≥ D(Λ(σ1)‖Λ(σ2)) = D(ρout1 ‖ρout2 ).

Consider the last expression. When we apply the partial trace

over the A subsystem to both states and use Theorem 11, we

obtain

D(ρout1 ‖ρout2 ) ≥D(ρout1,B‖ρout2,B)

−
∫

R

logF
(

ρout1,AB,Rt
ρout
2,AB

(ρout1,B)
)

dβ(t).

This proves (C9) and (C10) follows by the same argument,

only that the B subsystem is traced out now. Statement (ii) is

immediate.

With Lemma 16 at our disposal, we can now prove Theo-

rem 14. We begin by applying Lemma 16 (ii), averaging the

two lines in (C11). We get

D(σ1‖σ2)−D(σ̃1‖σ̃2)

≥− 1

2

∫

R

logF
(

ρout1,AB,Rt
B,ρout

2,AB
(σ̃1,A)

)

dβ(t)

− 1

2

∫

R

logF
(

ρout1,AB,Rt
A,ρout

2,AB
(σ̃1,B)

)

dβ(t).

By an elementary estimate and the Fuchs-van de Graaf in-

equality [46], we have for density operators ω and τ that

− logF (ω, τ) ≥ 1− F (ω, τ) ≥ 1

4
‖ω − τ‖21.

We apply this to the integrand above, followed by the estimate

‖X − Y ‖21 + ‖X − Z‖21 ≥
1

2
‖Y − Z‖21,

which is a consequence of the triangle inequality and the ele-

mentary bound 2ab ≤ a2 + b2. We conclude

D(σ1‖σ2)−D(σ̃1‖σ̃2)

≥1

8

∫

R

‖Rt
B,ρout

2,AB
(σ̃1,A)−Rt

A,ρout
2,AB

(σ̃1,B)‖21 dβ(t).

This proves Theorem 14.
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