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We study the non-equilibrium dynamics of two mechanical oscillators with general linear cou-
plings to two uncorrelated thermal baths at temperatures T1 and T2, respectively. We obtain the
complete solution of the Heisenberg-Langevin equations, which reveal a coherent mixing among
the normal modes of the oscillators as a consequence of their off-diagonal couplings to the baths.
Unique renormalization aspects resulting from this mixing are discussed. Diagonal and off-diagonal
(coherence) correlation functions are obtained analytically in the case of strictly Ohmic baths with
different couplings in the strong and weak coupling regimes. An asymptotic non-equilibrium station-
ary state emerges for which we obtain the complete expressions for the correlations and coherence.
Remarkably, the coherence survives in the high temperature, classical limit for T1 6= T2. This is a
consequence of the coherence being determined by the difference of the bath correlation functions.
In the case of vanishing detuning between the oscillator normal modes both coupling to one and the
same bath, the coherence retains memory of the initial conditions at long time. An out of equilib-
rium setup with small detuning and large |T1 − T2| produces non-vanishing steady-state coherence
in the high temperature limit of the baths.

I. INTRODUCTION, MOTIVATION AND GOALS

Progress in quantum information and quantum computing with continuous variables is receiving much attention
with platforms that implement quantum optics, cavity quantum electrodynamics[1, 2] and optomechanics[3–7]. The
quantum mechanical degrees of freedom unavoidably couple to other environmental degrees of freedom, or bath, that
induce dissipation and decoherence. Therefore, their dynamics are treated as a quantum open system[8–13]. The
motivation for a fundamental study of dissipation and decoherence by environmental degrees of freedom is bolstered
by the theoretical[14–17] and experimental[18, 19] potential to engineer the properties of the environmental bath.
Quantum brownian motion[8, 9, 20–25] provides a paradigmatic model to study the dynamics of open quantum
systems. In this model a quantum mechanical oscillator is linearly coupled to a bath described also by a (large)
number of quantum mechanical oscillators; the properties of this bath are determined by its spectral density. This
simple yet illuminating model has yielded a deep understanding of the role of an environmental bath on decoherence
and dissipation of quantum mechanical degrees of freedom.
This model also provides a theoretical foundation for the emerging field of quantum thermodynamics[26–31] and

quantum entanglement induced by coupling to environmental degrees of freedom[32–35].
A remarkable experiment[36] that uses an opto-mechanical resonator probed the spectral properties of an envi-

ronmental bath coupled to the micro-mechanical oscillators, thus paving the way towards a deeper understanding
of the effects of the coupling between quantum mechanical and environmental degrees of freedom in experimentally
controlled platforms.
The possibility of engineering the properties of the environmental degrees of freedom including coupling to several

different baths, tailoring decoherence and dissipative properties could allow novel cooling techniques of optomechanical
systems[17]. Recent experimental studies[37–39] have demonstrated the feasibility of coupling various quantum sys-
tems to non-equilibrium baths, and of tailoring the environmental degrees of freedom. Recent theoretical analysis[15]
of a V-type molecular system showed the possibility of long-lived coherences despite noise-induced decoherence, and
ref.[16] reports the emergence of steady-state entanglement in the case of finite dimensional coupled systems such as
superconducting qubits or quantum dots. Furthermore, coupling to different non-equilibrium environments has been
argued to lead to the persistence of entanglement in the high temperature limit[35, 40, 41] as well as to the coherent
mixing of mechanical excitations in nano-optomechanical structures[42]. Ref.[33] establishes bounds on the couplings
to the baths to maximize entanglement of the quantum degrees of freedom induced by these couplings. A widely
used approach to studying decoherence and dissipation relies on the quantum master equation for the reduced density
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matrix of the system, either in the form of influence functionals obtained in ref.[23] or of the Lindblad form[8–10]
after tracing over the bath degrees of freedom. Recent articles[44, 45] study the dynamics of quantum coherence for
a system of two oscillators coupled with different couplings to a thermal bath within the framework of the quantum
master equation. These studies question the applicability of the Lindblad quantum master equation approach to the
non-equilibrium dynamics and suggest important modifications in the case of a system of several oscillators coupled
to a bath.

Motivation and goals:

Experimental advances in cavity electrodynamics and optomechanics along with the possibility of engineering the
spectral properties of environmental baths open new avenues for quantum information and quantum computing and
provide new platforms for fundamental studies of coherence, dissipation and quantum thermodynamics. Motivated
by these developments we study the non-equilibrium dynamics of two coupled “mechanical” oscillators, each one in
turn coupled to two different and uncorrelated baths at different temperatures. This model is a generalization of
those considered in refs.[17, 32, 33, 35, 42, 45] which mostly focused on the influence functional[23, 29, 35] or Lindblad
approach to the quantum master equation[8, 10]. Instead, we solve exactly the Heisenberg-Langevin equations for
general couplings and spectral densities of the baths. Additionally, we focus specifically on the Ohmic case, which
allows an analytic treatment, addressing in detail correlations and coherences in the asymptotic stationary regime.
Our main goals are:

• To provide a general solution of the Heisenberg-Langevin equations valid for two mechanical oscillators with
linear couplings to different environments with general spectral densities. We study the non-equilibrium dy-
namics as an initial value problem to reveal the approach to a stationary regime in the asymptotic long time
limit, allowing one to deal with cases in which correlation functions retain memory of the initial conditions in
this limit.

• To provide a complete analytic treatment in the case of Ohmic baths. In this exactly solvable case we study
the emergence of an asymptotic stationary but non-equilibrium state. We focus on two relevant cases: a strong
coupling case that includes vanishing detuning between the normal modes of the mechanical oscillators, and a
weak coupling case corresponding to weak damping on the scale of the normal mode frequencies.

• To obtain the correlation functions and coherence (off diagonal correlations between the normal modes) at
different times. Specifically we focus on the interesting and potentially observable survival of coherence in the
classical high temperature limit.

• To discuss renormalization aspects that arise from the coupling of individual oscillators to two different baths,
which results in “mixing” of the normal modes of the mechanical oscillators, requiring new renormalization
counterterms.

Brief summary of results:

• We obtain the general solution of the Heisenberg-Langevin equation for the case of two mechanical oscillators
with linear couplings to two different and uncorrelated baths. The different couplings to the baths lead to a
“mixing” of the normal modes of the mechanical oscillators. This mixing implies novel renormalization aspects
and the necessity for off-diagonal counterterms in the effective Hamiltonian of the mechanical oscillators.

• The case of strictly Ohmic baths[8, 9] yields an analytic solution for the time evolution of the correlation
functions. This solution allows one to obtain correlation functions and coherence (off diagonal correlations of the
mechanical normal modes) at different times without the need to invoke the quantum regression theorem[8, 10].
A stationary non-equilibrium state emerges in the asymptotic long time-limit. We find both in the strong and
weak coupling regimes that coherence survives in the high temperature limit if the baths feature different spectral
densities and/or temperatures.

We show that this surprising and counterintuitive result is a consequence of the coherence being proportional
to the difference of the correlation functions of the baths degrees of freedom.

In the strong coupling case coherence survives in the high temperature limit if the baths feature different
temperature, whereas in the weak coupling case coherence survives in this limit if the temperature and/or the
couplings are different. Classical equilibrium equipartition follows in both cases when the baths are at the same
temperature; in this equilibrium case the coherence is suppressed in the weak coupling case.

• When the renormalized normal modes of the mechanical oscillators are degenerate and both couple only to one
bath, we find that the asymptotic long time limit retains memory of the initial conditions, possibly suggesting
a breakdown of a Markovian approximation.



3

• We conclude that this result opens the possibility of designing a setup of mechanical oscillators coupled to two
baths at different temperatures as a platform that maintains coherence in the high temperature limit of both
baths.

II. THE MODEL AND THE GENERAL SOLUTION OF THE EQUATIONS OF MOTION

We consider two interacting oscillators of equal unit mass coupled to two different baths in equilibrium at different
temperatures, specifically

H = HS +HB +HSB (II.1)

with

HS =
p2a
2

+
p2b
2

+
Ω2

a

2
q2a +

Ω2
b

2
q2b +

Ω2

2
(qa − qb)

2 , (II.2)

and

HB =
∑

p

[P 2
p,1

2
+
W 2

p,1

2
Q2

p,1

]
+
∑

k

[P 2
k,2

2
+
W 2

k,2

2
Q2

k,2

]
. (II.3)

The Hamiltonian HB describes two independent baths of harmonic oscillators to be taken in thermal equilibrium at
different temperatures T1, T2 respectively. The system-bath coupling is taken to be

HSB = −(qa cos(θ) + qb sin(θ))B1[{Q1}]− (qb cos(θ)− qa sin(θ))B2[{Q2}] (II.4)

where θ is an arbitrary mixing angle and

B1[{Q1}] =
∑

p

CpQp,1 ; B2[{Q2}] =
∑

k

DkQk,2 . (II.5)

This system-bath Hamiltonian generalizes the cases studied in refs.[33, 45], and as will be seen below, it de-
scribes mixing and coherence among the mechanical oscillators similar to the coherent mixing of excitations in nano-
optomechanical structures described in ref.[42] and the case of two-mode coupling in multimode cavity quantum
optomechanics[43]. In ref.[45] the case Ω = 0 was considered with only one bath; after phase redefinitions the system

bath coupling was taken as (qa φa + qb φb)B[{Q1}]. Writing φa =
√
φ2a + φ2b cos(θ) , φb =

√
φ2a + φ2b sin(θ) and ab-

sorbing
√
φ2a + φ2b into a redefinition of the couplings Cp in the system-bath Hamiltonian (II.4,II.5), the model studied

in ref.[45] is equivalent to the generalized model described above with Ω = 0 and Dk = 0 ∀ k.
It is convenient to introduce the vector

~q =
(
qa
qb

)
(II.6)

and the frequency matrix

Ω2 =

(
Ω2

a +Ω2 −Ω2

−Ω2 Ω2
b +Ω2

)
=

1

2

(
Ω2

a +Ω2
b + 2Ω2

)
1+

1

2

(
Ω2

a − Ω2
b −2Ω2

−2Ω2 Ω2
b − Ω2

a

)
(II.7)

to write the potential term in HS as ~q T Ω2 ~q; diagonalizing this quadratic form we obtain the normal modes of the
coupled oscillators. Introducing

cos(2λ) =
(Ω2

a − Ω2
b)√

(Ω2
a − Ω2

b)
2 + 4Ω4

; sin(2λ) =
2Ω2

√
(Ω2

a − Ω2
b)

2 + 4Ω4
(II.8)

the matrix Ω2 is written as

Ω2 =

(
Ω2

a +Ω2 −Ω2

−Ω2 Ω2
b +Ω2

)
=

1

2

(
Ω2

a +Ω2
b + 2Ω2

)
1+

1

2

√
(Ω2

a − Ω2
b)

2 + 4Ω4

(
cos(2λ) − sin(2λ)
− sin(2λ) − cos(2λ)

)
, (II.9)
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which yields a straightforward diagonalization by a unitary transformation, namely
(

cos(2λ) − sin(2λ)
− sin(2λ) − cos(2λ)

)
= V−1(λ)

(
1 0
0 −1

)
V(λ) (II.10)

with

V(λ) =

(
cos(λ) − sin(λ)
sin(λ) cos(λ)

)
. (II.11)

Therefore

Ω2 = V−1(λ)

(
Ω2

+ 0
0 Ω2

−

)
V(λ) , (II.12)

where

Ω2
± =

1

2

(
Ω2

a +Ω2
b + 2Ω2

)
±

1

2

√
(Ω2

a − Ω2
b)

2 + 4Ω4 (II.13)

are the normal mode frequencies.
The coordinates and momenta of the normal modes (q±; p±), are related to the original ones (qa,b; pa,b) by

(
q+
q−

)
= V(λ)

(
qa
qb

)
;

(
p+
p−

)
= V(λ)

(
pa
pb

)
. (II.14)

The system Hamiltonian HS (II.2) becomes diagonal in the normal mode basis, the coordinates and momenta q±, p±
describing independent, uncoupled harmonic oscillators of frequencies Ω± respectively.
The system-bath coupling Hamiltonian (II.4,II.5)) is written in the original basis as

HSB = −(qa qb)

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

) (
B1[{Q1}]
B2[{Q2}]

)
, (II.15)

while in the normal mode basis ((q+ q−) = (qa qb)V
−1(λ)) it becomes

HSB = −(q+ q−)

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

) (
B1[{Q1}]
B2[{Q2}]

)
; ψ = λ+ θ . (II.16)

In the normal mode basis the total Hamiltonian is

Htot =
p2+
2

+
Ω2

+

2
q2+ +

p2−
2

+
Ω2

−

2
q2− +HB +HSB . (II.17)

where HSB is given by (II.16) in the normal mode basis.
The main conclusion from this analysis is that the form of the total Hamiltonian (II.17) is general even when the

mechanical oscillators are coupled.
The equations of motion in the normal mode basis are

q̈+ +Ω2
+q+ = cos(ψ)

∑

p

CpQp,1 − sin(ψ)
∑

k

Dk Qk,2 (II.18)

q̈− +Ω2
−q+ = sin(ψ)

∑

p

CpQp,1 + cos(ψ)
∑

k

Dk Qk,2 (II.19)

Q̈p,1 +W 2
p,1Qp,1 = Cp

[
cos(ψ) q+(t) + sin(ψ) q−(t)

]
(II.20)

Q̈k,2 +W 2
k,2Qk,2 = Dk

[
cos(ψ) q−(t)− sin(ψ) q+(t)

]
. (II.21)

Treating the dynamics as an initial condition problem will allow us to examine the approach to a stationary state
and correlations in this state in what follows. We proceed to solve the equations of motion for the bath variables and
insert the solution into the equations of motion for the system coordinates, namely

Qp,1(t) = Q
(0)
p,1(t) + Cp

∫ t

0

sin
[
Wp,1(t− t′)

]

Wp,1

(
cos(ψ) q+(t

′) + sin(ψ) q−(t
′)
)
dt′ (II.22)

Qk,2(t) = Q
(0)
k,2(t) +Dk

∫ t

0

sin
[
Wk,2(t− t′)

]

Wk,2

(
cos(ψ) q−(t

′)− sin(ψ) q+(t
′)
)
dt′ , (II.23)
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where

Q
(0)
p,1(t) =

1√
2Wp,1

[
αp e

−iWp,1t + α†
p e

iWp,1t
]

(II.24)

Q
(0)
k,2(t) =

1√
2Wk,2

[
βk e

−iWk,2t + β†
k e

iWk,2t
]

(II.25)

are the “free-field” operator solutions of the homogeneous equation in terms of independent annihilation (αp, βk)

and creation (α†
p, β

†
k) bath operators. The independent baths are assumed in equilibrium at temperatures T1, T2

respectively, with statistical averages

〈α†
pαp〉1 =

1

eWp,1/T1 − 1
; 〈β†

kβk〉2 =
1

eWk,2/T2 − 1
. (II.26)

Inserting the solutions (II.22,II.23) into (II.18,II.19) we find a system of coupled Heisenberg-Langevin equations,
namely

q̈+(t) + Ω2
+q+(t) +

∫ t

0

[
Σ++(t− t′)q+(t

′) + Σ+−(t− t′)q−(t
′)
]
dt′ = ξ+(t) (II.27)

q̈−(t) + Ω2
−q−(t) +

∫ t

0

[
Σ−−(t− t′)q−(t

′) + Σ−+(t− t′)q+(t
′)
]
dt′ = ξ−(t) . (II.28)

The self-energy kernels are given by

Σ++(t− t′) = cos2(ψ)Σ1(t− t′) + sin2(ψ)Σ2(t− t′) (II.29)

Σ−−(t− t′) = sin2(ψ)Σ1(t− t′) + cos2(ψ)Σ2(t− t′) (II.30)

Σ+−(t− t′) = Σ−+(t− t′) = cos(ψ) sin(ψ)
[
Σ1(t− t′)− Σ2(t− t′)

]
. (II.31)

Here the self-energies Σ1,2 for each bath are given by

Σ1,2(t− t′) =
i

π

∫ ∞

−∞

σ1,2(ω
′) eiω

′(t−t′) dω′ (II.32)

in terms of the spectral densities of the baths given by

σ1(ω
′) =

∑
p

π C2
p

2Wp,1

[
δ(ω′ −Wp,1)− δ(ω′ +Wp,1)

]
(II.33)

σ2(ω
′) =

∑
k

π D2
k

2Wk,2

[
δ(ω′ −Wk,2)− δ(ω′ +Wk,2)

]
, (II.34)

and the noise terms
(
ξ+(t)
ξ−(t)

)
=

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

) (
ξ1(t)
ξ2(t)

)
= V(ψ)

(
ξ1(t)
ξ2(t)

)
(II.35)

where

ξ1(t) =
∑

p

CpQ
(0)
p,1(t) ; ξ2(t) =

∑

k

DkQ
(0)
k,2(t) . (II.36)

We note that the spectral densities σ1,2(ω
′) are odd functions of ω′.

The thermal baths at temperatures T1, T2, respectively, are independent and uncorrelated, and the noise correlation
functions for each bath are obtained simply from (II.24,II.25,II.26). We find

〈〈ξi(t)〉〉 = 0 ; 〈〈ξi(t)ξj(t
′)〉〉 = δij

1

π

∫ ∞

−∞

σi(ω
′)ni(ω

′) eiω
′(t−t′) dω′ ; ni(ω) =

1

eω/Ti − 1
; i, j = 1, 2 (II.37)

where 〈〈(· · · )〉〉 correspond to statistical averages over the bath variables and σ1,2(ω) are given by (II.33,II.34),
respectively. This relationship between the noise correlation functions and the self-energies in (II.32) is a manifestation
of the fluctuation-dissipation relation independently for each bath.
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We note that as a consequence of the couplings to the baths, the equations of motion (II.27,II.28) are off diagonal
in the normal mode basis; in other words the coupling to the baths induces a “mixing” between the normal modes.
This mixing is at the heart of the bath-induced coherence[45], namely off diagonal correlations between the normal
modes.
The Heisenberg-Langevin equations of motion (II.27,II.28) are solved via Laplace transform, with

q̃±(s) =

∫ ∞

0

e−st q±(t) dt ; Σ̃αβ(s) =

∫ ∞

0

e−st Σαβ(t) dt ; ξ̃±(s) =

∫ ∞

0

e−st ξ±(t) dt , (II.38)

with α, β = ±. From equation (II.32) it follows that

Σ̃1,2(s) = −

∫ ∞

−∞

σ1,2(ω
′)

ω′ + i s

dω′

π
. (II.39)

In terms of the Laplace transforms (II.27,II.28) become

G−1(s)

(
q̃+(s)
q̃−(s)

)
=

(
J̃+(s)

J̃−(s)

)
(II.40)

where

G−1(s) =

(
s2 +Ω2

+ + Σ̃++(s) Σ̃+−(s)

Σ̃−+(s) s2 +Ω2
− + Σ̃−−(s)

)
(II.41)

and

J̃±(s) = q̇±(0) + sq±(0) + ξ̃±(s) . (II.42)

We note that the couplings to the bath induce off diagonal entries in the matrix equations of motion; as discussed
below these off-diagonal, bath-induced terms will lead to coherence between the different normal modes.
Furthermore, the analysis presented above shows that the coupling to the baths induces renormalization of the

frequencies (Lamb-shifts) along with the couplings between the oscillators. The resulting effective Hamiltonian can
again be brought to the normal mode general form (II.17) by a rotation as discussed above.
Anticipating this renormalization of the normal mode frequencies and mode coupling induced by the interactions

with the bath, and following the arguments leading to the general form (II.17) we write the system Hamiltonian
in the renormalized normal mode basis corresponding to the renormalized frequencies by introducing a matrix of
counterterms δΩ and write the total Hamiltonian as

Htot =
p2+
2

+
p2−
2

+
Ω2

+R

2
q2+ +

Ω2
−R

2
q2− + (q+ q−) δΩ

(
q+
q−

)
+HB +HSB , (II.43)

where Ω±R are the renormalized normal mode frequencies and

δΩ =

(
δΩ++ δΩ+−

δΩ+− δΩ−−

)
(II.44)

is a counterterm frequency matrix that will be required to cancel the contributions from the real part of the self-energy
corrections (Lamb-shifts) that diverge in the limit of large bandwidths of the baths.
Where HSB in eqn. (II.43) is given by (II.16) in terms of the renormalized angle ψ. Since the self-energies associated

with the normal modes are given by (II.29-II.31) and the counterterms are chosen to cancel the divergent contributions
from these, we write following eqns. (II.29-II.31)

δΩ++ = cos2(ψ) δΩ1 + sin2(ψ) δΩ2 (II.45)

δΩ−− = sin2(ψ) δΩ1 + cos2(ψ) δΩ2 (II.46)

δΩ+− = δΩ−+ = cos(ψ) sin(ψ)
[
δΩ1 − δΩ2

]
, (II.47)

where δΩ1,2 will be chosen to cancel the divergent contribution from Σ1,2. This aspect will be discussed in detail
below for the case of Ohmic baths (see section III) but similar considerations should apply for any spectral density of
a bath with a bandwidth large compared to the (renormalized) frequencies in the system.
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Including this counterterm matrix in HS , the matrix G−1(s) (II.41) for the equations of motion in Laplace variable
now reads

G−1(s) =

(
s2 +Ω2

+R + δΩ++ + Σ̃++(s) δΩ+− + Σ̃+−(s)

δΩ−+ + Σ̃−+(s) s2 +Ω2
−R + δΩ−− + Σ̃−−(s)

)
. (II.48)

The solution for q̃±(s) is obtained by inverting this matrix. It is convenient to introduce the quantities

W 2
+(s) = Ω2

+R + δΩ++ + Σ̃++(s) ; W 2
−(s) = Ω2

−R + δΩ−− + Σ̃−−(s) (II.49)

M2(s) = s2 +
1

2

[
W 2

+(s) +W 2
−(s)

]
(II.50)

Θ2(s) = δΩ+− +Σ+−(s) (II.51)

ρ(s) =
[(
W 2

+(s)−W 2
−(s)

)2
+
(
2Θ2(s)

)2]1/2
(II.52)

α(s) =

(
W 2

−(s)−W 2
+(s)

)

ρ(s)
; β(s) =

2Θ2(s)

ρ(s)
; α2(s) + β2(s) = 1 , (II.53)

in terms of which one finds

G−1(s) =M2(s)1+
ρ(s)

2

(
−α(s) β(s)
β(s) α(s)

)
. (II.54)

It is now straightforward to obtain

G(s) =
1

2

[
1+R

]

[
M2(s)− ρ(s)

2

] + 1

2

[
1−R

]

[
M2(s) + ρ(s)

2

] , (II.55)

where 1 is the identity matrix and

R =

(
α(s) −β(s)
−β(s) −α(s)

)
. (II.56)

The matrix R is traceless with determinant (−1), hence its eigenvalues are λ = ±1. Therefore (1±R)/2 are projectors
onto the eigenvectors of R with eigenvalues λ = ±1 respectively.
The solution of the Heisenberg-Langevin equations q±(t) can now be obtained by inverse Laplace transform, with

G(t) =

∫

C

ds

2πi
est G(s) . (II.57)

The Bromwich contour C is parallel to the imaginary axis in the complex s− plane to the right of all the singularities
of G(s). Stability requires that the singularities have Re(s) ≤ 0; therefore the Bromwich contour corresponds to
s = iω + ǫ with ǫ→ 0+ and

G(t) =

∫
dω

2π
eiωt G(s = iω + ǫ) . (II.58)

In order to obtain the Green’s function matrix, we need the analytic continuation of the Laplace transform of the
self-energies (II.32) to s = iω + ǫ, with ǫ = 0+ understood. With (II.39) we find

χ1,2(ω) ≡ Σ̃1,2(s = iω + ǫ) =
1

π

∫ ∞

−∞

σ1,2(ω
′)

ω − ω′ − iǫ
dω′ , (II.59)
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with

Imχ1,2(ω) = σ1,2(ω) ; Reχ1,2(ω) =
1

π

∫ ∞

−∞

P

[
Imχ1,2(ω

′)

ω − ω′

]
dω′ , (II.60)

and χαβ are defined by the same linear combinations as Σαβ for α, β = ± given by eqns.(II.29-II.31).
Therefore the solution for the time evolution of the normal mode Heisenberg operators is given by

(
q+(t)
q−(t)

)
= G(t)

(
q̇+(0)
q̇−(0)

)
+ Ġ(t)

(
q+(0)
q−(0)

)
+

∫ t

0

G(t− t′)

(
ξ+(t

′)
ξ−(t

′)

)
dt′ . (II.61)

In order to highlight the separate contributions from initial conditions and noise terms, we write the solution (II.61)
as

(
q+(t)
q−(t)

)
=

(
q+(t)
q−(t)

)

0

+

(
q+(t)
q−(t)

)

ξ

(II.62)

with
(
q+(t)
q−(t)

)

0

= G(t)

(
q̇+(0)
q̇−(0)

)
+ Ġ(t)

(
q+(0)
q−(0)

)
;

(
q+(t)
q−(t)

)

ξ

=

∫ t

0

G(t− t′)

(
ξ+(t

′)
ξ−(t

′)

)
dt′ . (II.63)

Correlation functions of Heisenberg operators qα(t), α = ± require two different averages:

• Average over the initial conditions denoted by 〈qα(t)qβ(t
′)〉0 correspond to averaging in the initial state in terms

of the averages of the Heisenberg operators at the initial time t = 0. We will assume that the initial state is
uncorrelated for the normal modes with 〈q±(0)〉0 = 〈q̇±(0)〉0 = 0 leading to 〈q±(t)〉0 = 0. These assumptions
on the initial state of the system can be relaxed with the corresponding expectation values and initial state
correlations changing accordingly.

• Averages over the noise terms ξ± (see eqn. II.35) in terms of ξ1, ξ2, with the thermal noise averages given by
eqn. (II.37). We will denote averages over the noise as 〈〈(· · · )〉〉ξ. The bath averages (II.37) also imply that
〈〈q±(t)〉〉ξ = 0.

Because the theory is Gaussian, only the one and two point correlation functions must be obtained; higher order
correlation functions are obtained from Wick’s theorem.

The results above describe how to extract the real time dynamics of relaxation and coherence in the general case
of two mechanical oscillators coupled to each other as in (II.2) and to respective thermal baths as in (II.4). For
general spectral densities, the analysis of the time evolution, correlation functions and coherences will likely involve a
numerical study. However, we can make analytic progress in the case of Ohmic baths described in section (III) below.

III. OHMIC BATHS

We consider a Drude model for an Ohmic bath with

σj(ω) = Imχj(ω) = ω γj
Λ2
j

Λ2
j + ω2

; j = 1, 2 (III.1)

from which we find

Reχj(ω) = −Λj γj
Λ2
j

Λ2
j + ω2

; j = 1, 2 . (III.2)

Alternatively, we also consider the case of sharp cutoffs for the respective spectral densities

σj(ω) = Imχj(ω) = γj ω Θ(Λj − |ω|) , (III.3)

where Λj are the cutoffs or bandwidths of the respective baths; in this case we find for the complex self-energy

χj(ω) = −
2

π
γj Λj −

ω

π
γj ln

∣∣∣∣∣
Λj − ω

Λj + ω

∣∣∣∣∣+ iω γj ; Λj > |ω| . (III.4)
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In the limit Λj ≫ ω both Ohmic spectral densities yield a linearly (∝ Λj) divergent real part and the same imaginary
part. We are primarily interested in the low energy, long time dynamics which, after renormalization, should be
insensitive to the high frequency degrees of freedom of the bath. Therefore in the following we will consider the cut-off
spectral density (III.3) for which the self-energies simplify, namely

χj(ω) = −
2

π
γjΛj + iω γj , (III.5)

where it is implicit that ω ≪ Λj. Following ref.[9] we refer to this as the strict Ohmic case.
We choose the counterterms δΩj to cancel the real part of the self-energies, namely

δΩj +Reχj(ω) = 0 ⇒ δΩj =
2

π
γjΛj , (III.6)

yielding in the normal mode basis

δΩ++ +Reχ++(ω) = δΩ−− +Reχ−−(ω) = δΩ+− +Reχ+−(ω) = 0 . (III.7)

It is convenient to define

ΩR+ =W −
∆

2
; ΩR− =W +

∆

2
, (III.8)

where ∆ is the detuning between the normal modes. For ∆ = 0 the renormalized normal modes are degenerate, we
emphasize that this is different from the non-interacting case where the (un-renormalized) normal mode frequencies
are given by eqn. (II.13) which become degenerate for Ωa = Ωb = 0;Ω = 0.
Implementing the renormalization conditions (III.7), with the definitions (III.8) we find for ohmic baths described

by the spectral densities (III.3)

W 2
+(s) +W 2

−(s) = 2W 2 +
∆2

2
+ s (γ1 + γ2) (III.9)

W 2
−(s)−W 2

+(s) = 2W∆+ s(γ2 − γ1) cos(2ψ) (III.10)

2Θ2(s) = −s(γ2 − γ1) sin(2ψ) . (III.11)

It now remains to input these expressions into the Green’s function to obtain the real time evolution; see below.
Because there are several scales in the problem we focus on two limits of particular interest.

A. Strong Coupling

We refer to the case when the term 2W∆ in (III.10) can be neglected as the strong coupling regime because the
contributions from the couplings to the bath, which determine the off-diagonal terms in the “mixing matrix” R in
(II.56) have the same magnitude as the diagonal terms. We study separately the cases ∆ = 0 and ∆ 6= 0 in the strong
coupling regime because the case of vanishing detuning, ∆ = 0, is particularly relevant and describes a similar case
in ref.[33, 45].

1. ∆ = 0

Vanishing detuning corresponds to degenerate renormalized normal modes for the mechanical oscillators. We
note that because of renormalization effects from the interactions with the bath, the conditions of degeneracy of
the renormalized normal modes are different from that for degeneracy of the “bare” (unrenormalized) normal mode
frequencies. From the relations given by equations (II.45-II.47) and (III.6) one can find the relation between the bare
frequencies and the spectrum of the baths that leads to the degeneracy of the renormalized normal modes.
In this case, setting ∆ = 0 in eqns. (III.9-III.11) and with the definitions (II.52-II.56) we find

G−1(s) =
(
s2 +W 2 +

s

2
(γ1 + γ2)

)
1+

s

2
(γ2 − γ1)

(
− cos(2ψ) − sin(2ψ)
− sin(2ψ) cos(2ψ)

)
, (III.12)
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from which we identify

M2(s) =
(
s2 +W 2 +

s

2
(γ1 + γ2)

)
; ρ(s) = s(γ2 − γ1) ,

α(s) = cos(2ψ) ; β(s) = − sin(2ψ) , (III.13)

and

R =

(
cos(2ψ) sin(2ψ)
sin(2ψ) − cos(2ψ)

)
= V(ψ)

(
1 0
0 −1

)
V−1(ψ) , (III.14)

where the matrix V(λ) is given by eqn. (II.11). Combining these results with the general expression for the Green’s
function matrix, equation (II.55), we find

G(s) = V(ψ)

(
g1(s) 0
0 g2(s)

)
V−1(ψ) ; g1,2(s) =

1[
s2 +W 2 + s γ1,2

] , (III.15)

which, upon using eqn. (II.58), yields

G(t) = V(ψ)

(
G1(t) 0
0 G2(t)

)
V−1(ψ) ≡

1

2

[
G1(t) +G2(t)

]
1+

1

2

[
G1(t)−G2(t)

]
R (III.16)

with

Gi(t) = e−γit/2
sin
[
Wi t

]

Wi
; Wi =

[
W 2 −

γ2i
4

]1/2
i = 1, 2 . (III.17)

The solutions given by (II.61), with the noise terms given by (II.35) and G(t) given by (III.16), become

(
q+(t)
q−(t)

)
= G(t)

(
q̇+(0)
q̇−(0)

)
+ Ġ(t)

(
q+(0)
q−(0)

)
+V(ψ)

∫ t

0

(
G1(t− t′) ξ1(t

′)
G2(t− t′) ξ2(t

′)

)
dt′ . (III.18)

The form of G(t) eqn. (III.16) indicates that performing the unitary transformation

(
q1(t)
q2(t)

)
= V−1(ψ)

(
q+(t)
q−(t)

)
, (III.19)

the solution in this new basis is given by

qi(t) = Gi(t) q̇i(0) + Ġi(t) qi(0) +

∫ t

0

Gi(t− t′) ξi(t
′) dt′ ; i = 1, 2 . (III.20)

The interpretation of this result is clear: For vanishing detuning the normal modes are degenerate, therefore one
can make a unitary transformation (rotation) that diagonalizes the coupling to the independent baths B1, B2 in HSB,
eqn. (II.16). Equations (III.15) and (III.16) clearly show that the Green’s function is diagonal in the 1, 2 bath basis.
The normal mode coordinates q±(t) evolve as linear combinations of the 1, 2 modes, which evolve independently in
time with simple complex frequencies.
We are now in position to obtain the correlation functions and coherences for the Ohmic case with zero detuning.

Assuming that the system is in the ground state |0〉 ≡ |0+〉 |0−〉 for the independent normal modes at t = 0, and using
q̇±(0) = p±(0) it follows that

〈0|q±(0)|0〉 = 0 ; 〈0|p±(0)|0〉 = 0 (III.21)

〈0|q2±(0)|0〉 =
1

2Ω±
; 〈0|q±(0)q∓(0)|0〉 = 0 (III.22)

〈0|p2±(0)|0〉 =
Ω±

2
; 〈0|p±(0)p∓(0)|0〉 = 0 (III.23)

〈0|p±(0)q±(0)|0〉 =
−i

2
; 〈0|p±(0)q∓|0〉 = 0 . (III.24)
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Because the initial conditions are given in terms of the normal mode basis, the representation of the solution given
by (III.18) is the most suitable to evaluate correlation functions. We are primarily interested in the two-point
correlation functions of the normal mode variables as these yield information on coherence and thermalization. Since
the statistical averages 〈〈ξ1,2〉〉 = 0, the two point correlators become a sum of the contribution from the average on
the initial conditions and the statistical average of the noise. The solution (III.18) is given in terms of the contribution
from initial conditions and noise as in eqns. (II.62) with the initial condition term given in eqn. (II.63), and the noise
term given by

(
q+(t)
q−(t)

)

ξ

= V(ψ)

∫ t

0

(
G1(t− t′) ξ1(t

′)
G2(t− t′) ξ2(t

′)

)
dt′ = V(ψ)

(
q1(t)
q2(t)

)

ξ

. (III.25)

Of particular importance is the coherence[45] or off-diagonal correlation function and a direct calculation using
(II.63) along with (III.21-III.24) yields

〈q+(t)q−(t)〉0 =
sin(2ψ)

4W

[(
Ġ2

1(t) +W 2G2
1(t)
)
−
(
Ġ2

2(t) +W 2G2
2(t)

)]
, (III.26)

where the subscript 0 refers to expectation value in the initial (ground) state determined by (III.22-III.24). Since

Gj(0) = 0; Ġj(0) = 1, it is clear that 〈q+(0)q−(0)〉0 = 0 as determined by the initial conditions of independent normal
modes (see second term in eqn. III.22). The behavior of 〈q+(t)q−(t)〉0 is shown in fig.(1) for representative values of
the parameters revealing transient coherence. The small scale oscillations revealed in the figure are at frequency W .
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FIG. 1: W 〈q+(t)q−(t)〉0 eqn. (III.26) vs. W t for (γ1/W ) = 0.1, (γ2/W ) = 0.01, 0.03, ψ = π/4.

The noise contribution to the coherence is obtained from eqns. (III.25,II.37) and is given by

〈〈q+(t)q−(t)〉〉ξ =
1

2
sin(2ψ)

∫ t

0

dt1

∫ t

0

dt2

[
G1(t− t1)G1(t− t2)〈〈ξ1(t1) ξ1(t2)〉〉−G2(t− t1)G2(t− t2)〈〈ξ2(t1) ξ2(t2)〉〉

]
.

(III.27)
This expression manifestly highlights that the coherence vanishes if the baths have the same spectral densities (γ1 = γ2)
and temperature and also suggests its survival when the baths have different spectral densities and/or temperatures.
We now take the cutoffs Λj → ∞ and use the results (II.37,II.41 ) to find for the noise contribution

〈〈q+(t)q−(t
′)〉〉ξ = sin(2ψ)

∫ ∞

−∞

dω

2π

[
I1(ω; t, t

′) Imχ1(ω)n1(ω)− I2(ω; t, t
′) Imχ2(ω)n2(ω)

]
, (III.28)
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where

Ij(ω; t, t
′) =

∫ t

0

dt1

∫ t′

0

dt2Gj(t− t1)Gj(t
′ − t2) e

iω(t1−t2) ; j = 1, 2 . (III.29)

We consider a two-time correlation function to display the emergence of stationarity in the long time limit. With
Gj(t) given by (III.17) we find for vanishing detuning (∆ = 0) and in the asymptotically long time limit t, t′ ≫ 1/γ1,2,

Ij(ω; t, t
′) →

eiω(t−t′)

[(
ω2 −W 2

)2
+
(
ω γj

)2] , (III.30)

revealing the emergence of a stationary state at long times under zero detuning conditions. A similar calculation
yields

〈〈q+(t)q+(t
′)〉〉ξ =

∫ ∞

−∞

dω

π

[
cos2(ψ) I1(ω; t, t

′) Imχ1(ω)n1(ω) + sin2(ψ)I2(ω; t, t
′) Imχ2(ω)n2(ω)

]
(III.31)

〈〈q−(t)q−(t
′)〉〉ξ =

∫ ∞

−∞

dω

π

[
sin2(ψ) I1(ω; t, t

′) Imχ1(ω)n1(ω) + cos2(ψ)I2(ω; t, t
′) Imχ2(ω)n2(ω)

]
. (III.32)

Summarizing, in the stationary state, when t, t′ ≫ 1/γ1,2 the diagonal and off-diagonal correlation functions are
given by

〈〈q+(t+ τ)q−(t)〉〉ξ = sin(ψ) cos(ψ)
[
F1(τ)− F2(τ)] (III.33)

〈〈q+(t+ τ)q+(t)〉〉ξ = cos2(ψ)F1(τ) + sin2(ψ)F2(τ) (III.34)

〈〈q−(t+ τ)q−(t)〉〉ξ = sin2(ψ)F1(τ) + cos2(ψ)F2(τ) , (III.35)

where

Fj(τ) =

∫ ∞

−∞

dω

π

Imχj(ω)nj(ω) e
iωτ

[(
ω2 −W 2

)2
+
(
ω γj

)2] ; j = 1, 2 . (III.36)

For the Ohmic case (III.3) in the limit Λj → ∞, one has Imχj(ω) = γj ω and the integrals are finite. This justifies
taking the infinite bandwidth limit first, since for Λj ≫ W,γj corrections are of order (W/Λj)

2, (γj/Λj)
2 and can be

safely neglected. The detailed form of Fj(τ) is given in appendix (A).
In the asymptotic long time limit t, t′ ≫ 1/γ1,2 we see the emergence of a stationary state in the sense that the
correlation functions become functions solely of the time difference.
In the high temperature (classical) limit, Tj ≫W,γj , and to leading order in the small ratios W/Tj ; γj/Tj ≪ 1, we

find the simple result

Fj(τ) =
Tj
W 2

e−γjτ/2
[
cos[Wjτ ] +

γj
2Wj

sin[Wjτ ]
]
, (III.37)

leading, in the limit τ → 0, to the relations in the stationary state

〈〈q2+(t)〉〉ξ =
1

W 2

[
cos2(ψ)T1 + sin2(ψ)T2

]
(III.38)

〈〈q2−(t)〉〉ξ =
1

W 2

[
sin2(ψ)T1 + cos2(ψ)T2

]
(III.39)

〈〈q+(t)q−(t)〉〉ξ =
sin(2ψ)

2W 2

[
T1 − T2] . (III.40)

In the above expressions we have neglected subleading terms suppressed by powers of W/Tj and γj/Tj in the high
temperature limit.

Interpretation of results: Although the result (III.40) is perhaps surprising and counterintuitive, the physical
interpretation of equations (III.38-III.40) is fairly simple: in terms of the coordinates q1, q2, namely the bath basis in-
troduced by eqn. (III.19), the classical high temperature limit yields equipartition at temperatures T1, T2 respectively,
in other words

〈〈q21(t)〉〉ξ =
T1
W 2

; 〈〈q22(t)〉〉ξ =
T2
W 2

. (III.41)
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The results (III.38-III.40) follow from the relations q+ = cos(ψ) q1−sin(ψ) q2 ; q− = sin(ψ) q1+cos(ψ) q2, and because
ξ1, ξ2 are independent, so that 〈〈q1q2〉〉ξ = 0 in the correlation functions of the normal mode coordinates (see eqn.
(III.25)). In particular the coherence

〈〈q+(t)q−(t)〉〉ξ =
1

2
sin(2ψ)

[
〈〈q21(t)〉〉ξ − 〈〈q22(t)〉〉ξ

]
. (III.42)

In the present case ∆ = 0 when the normal modes are degenerate, the system Hamiltonian exhibits a rotational
symmetry in the q+, q− plane and a rotation from the normal mode basis to the bath basis makes the total Hamil-
tonian diagonal in the bath basis q1, q2. In this basis the asymptotic correlation functions describe a steady state
in equilibrium with each corresponding bath with classical equipartition at high temperature. However, the normal
modes are linear combinations of the coordinates q1, q2 in the bath basis, hence the correlation functions of the normal
modes display the “mixing” of the correlation functions of q1,2 in the bath basis.
Whereas the coordinates in the bath basis q1,2 reach a stationary state with high temperature equipartition at

the respective temperatures T1, T2 of the baths, the averages 〈〈q2±〉〉 may be associated with effective equipartition
temperatures

T eff
+ ≡ cos2(ψ)T1 + sin2(ψ)T2 ; T eff

− ≡ sin2(ψ)T1 + cos2(ψ)T2 . (III.43)

Furthermore, this analysis clearly indicates that the coherence 〈〈q+(t)q−(t)〉〉ξ is a result of the off diagonal couplings
of the mechanical normal modes to the baths. Since the mechanical normal modes reach a stationary state with high
temperature equipartition at different (effective) temperatures, we refer to this as a non-equilibrium stationary state.
We refer to the stationary state when both baths are at the same temperature, T1 = T2 ≡ T , as the equilibrium

case, wherein the averages (III.38,III.39) agree with classical equipartition at high temperature T ≫ W , and the
coherence (III.40) vanishes to leading order in W/Tj , γj/Tj.
We conclude that for vanishing detuning and in the high temperature (classical) limit of both baths in the non-

equilibrium case with T1 6= T2, the coherence between the mechanical normal modes induced by the coupling to the
baths does not vanish in the long time limit t ≫ 1/γ1,2, and is large for |T1 − T2| ≫ W . Therefore, the survival of
coherence between the mechanical normal modes in the high temperature limit of both baths is a consequence of the
non-equilibrium nature of the asymptotic stationary state for T1 6= T2.
A similar analysis for the correlation functions and coherence of the canonical momenta p± yields for the noise

averages in the stationary regime

〈〈p+(t+ τ)p−(t)〉〉ξ = sin(ψ) cos(ψ)
[
H1(τ) −H2(τ)] (III.44)

〈〈p+(t+ τ)p+(t)〉〉ξ = cos2(ψ)H1(τ) + sin2(ψ)H2(τ) (III.45)

〈〈p−(t+ τ)p−(t)〉〉ξ = sin2(ψ)H1(τ) + cos2(ψ)H2(τ) , (III.46)

where

Hj(τ) =

∫ ∞

−∞

dω

π

ω2 Imχj(ω) e
iωτnj(ω)[(

ω2 −W 2
)2

+
(
ω γj

)2] = −
d2

dτ2
Fj(τ) ; j = 1, 2 . (III.47)

For the strictly Ohmic case with Imχj(ω) = γj ω, as τ → 0 the extra factor ω2 in the frequency integral yields
a logarithmic divergence with the upper cutoffs Λj . This divergence can be best seen in the Tj → 0 limit where
nj(ω) → −Θ(−ω) (with Θ the step function) by cutting off the integrals at Λj ≫W,γj . In this limit we find

Hj(0) =
γj
π

ln
(Λj

W

)
−

W

2π

√
γ2
j

W 2 − 4

[
Z+ ln[−Z+]− Z− ln[−Z−]

]
; Z± =

1

2

[
2−

γ2j
W 2

±
γj
W

√
γ2j
W 2

− 4

]
. (III.48)

If instead we use the Drude form (III.1) we find the same result for Λj ≫ W,γj , namely a logarithmic dependence
on the bandwidth of the bath. The logarithmic dependence on Λj is also a feature if an exponential cutoff is used, of

the form Imχj(ω) = γj ω e
−|ω|/Λj , as can be easily verified in the limit Λj ≫ W,γj. Therefore, this divergence is not

an artifact of a sharp cutoff but a general result of the Ohmic case when the bandwidth of the bath is much larger
than the typical scales (relaxation and oscillations) of the system. This results in a logarithmic dependence on the
bandwidth for the expectation value of the energy of the normal modes. This divergence with the bath bandwidth
has been recognized in ref.[9, 26], and for free Brownian motion in [8], and more recently in [46]. In the sub-ohmic
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case when Imχj(ω) ∝ ωs, 0 < s < 1 the integral is no longer divergent, but correlation functions with higher order
τ derivatives eventually will develop a divergent bandwidth dependence. The super-Ohmic case s > 1 will feature
stronger dependence on the bandwidth.
At finite temperature and τ 6= 0 we find

Hj(τ) = H
(a)
j (τ) +H

(b)
j (τ) , (III.49)

where

H
(a)
j (τ) = −

d2

dτ2
F

(a)
j (τ) , (III.50)

and F
(a)
j (τ) is given by (A.3) and is obviously independent of the cutoff. Similarly, we find

H
(b)
j (τ) =

γj
π

∞∑

l=1

e−2πlTjτ

l

[(
1 +

(
W

2πlTj

)2)2
−
(

γj

2πlTj

)2
] . (III.51)

This last contribution is subdominant for Tj ≫ γj . Clearly each term in the sum over l in (III.51) is finite in the
τ → 0 limit; however, the nature of the divergence in this limit is gleaned from the asymptotic 1/l behavior behavior
of the series for large l recognizing that

∞∑

l=1

e−2πlTjτ

l
= − ln[1 − e−2πTjτ ]

−−−→
τ → 0 ln[

1

2πTjτ
] . (III.52)

Physically, however, time scales of order τ . 1/Λj probe the high frequency degrees of freedom of the bath; taking
as a minimum time scale τ ≃ 1/Λj the result (III.52) yields

H
(b)
j (τ ≃ Λ−1

j ) =
γj
π

ln
[ Λj

2πTj

]
+ · · · (III.53)

where the dots stand for terms that remain finite in the Λj → ∞ limit. Hence, for τ . 1/Λj the leading logarithmic
dependence on the bandwidth of the baths is precisely the one obtained in the zero temperature limit (III.48).
The time evolution of correlation functions in the stationary (but non-equilibrium) regime becomes insensitive to the

bandwidth and high frequency degrees of freedom of the bath for time scales τ ≫ 1/Λj. In the limit Λj ≫Wj , γj ,Ω±,
namely exceeding the corresponding frequency or energy scales of the system, there is a wide separation of time scales.
For Λjτ ≫ 1 and Wj τ ; γjτ ≃ 1 the correlations do not reflect the high frequency modes of the bath, and one can
construct a universal (in that sense) effective low frequency/energy theory for the system after “integrating out” the
bath degrees of freedom.
The logarithmic dependence of the momentum correlation function in the short time (coincidence) limit in the

Ohmic case has recently been been exploited to yield a bound on the “logarithmic negativity” as a measure of
entanglement[33].
From these results we conclude that τ 6= 0 effectively regulates the high frequency contribution from the spectral

density of the baths. Physically for t ≫ 1/γ1,2 as τ → 0 these correlations probe the dynamics of the high frequency
degrees of freedom of the bath in the stationary state. In order to obtain an effective low energy and long time
description of the system (after “integrating out the bath”), a coincidence limit of these correlations in the stationary
regime (t≫ 1/γ1,2 ; τ → 0) must be interpreted as τ Λj ≫ 1 and τ Ω± , τ γ1,2 ≪ 1.

2. One bath case, ∆ = 0

The case of the oscillators coupled to only one bath, say B1[{Q1}] considered in ref.[45] is obtained by simply
setting B2[{Q1}] = 0. In other words one sets Imχ2(ω) = 0 and ξ2 = 0 in the above results which, for the Ohmic case
translate into γ2 = 0, yielding, in the case ∆ = 0, one damped mode and one undamped mode with

G1(t) = e−γ1t/2
sin
[
W1 t

]

W1
; G2(t) =

sin
[
W t

]

W
. (III.54)
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in the Green’s function (III.16). The undamped mode is expected because of the degeneracy of the mechanical
oscillators in the case of vanishing detuning. A unitary transformation to the bath basis 1, 2 in which HS remains
diagonal for ∆ = 0, immediately leads to the conclusion that the mode 2 is undamped.
This conclusion also follows directly from the Green’s functions (III.15,III.16): setting γ2 = 0 the diagonal compo-

nent g2(s) features an undamped pole, this is also manifest in G2(t) which is the Green’s function for an undamped
oscillator. The normal mode coordinates q±(t) evolve in time as linear combinations of the bath basis modes 1, 2, one
damped and one undamped.
In the asymptotic long time limit γ1t≫ 1 inserting (III.54) into (III.26) we find

〈q+(t)q−(t)〉0 → −
sin(2ψ)

4W
. (III.55)
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FIG. 2: W 〈q+(t)q−(t)〉0 eqn. (III.26) vs. W t for (γ1/W ) = 0.1, (γ2/W ) = 0, ψ = π/4.

This equal time correlation function is displayed in fig. (2) for γ2 = 0 and should be compared to figure (1). For
the noise contributions we find,

〈〈q+(t)q−(t
′)〉〉ξ = sin(ψ) cos(ψ)F1(t−t

′) ; 〈〈q+(t)q+(t
′)〉〉ξ = cos2(ψ)F1(t−t

′) ; 〈〈q−(t)q−(t
′)〉〉ξ = sin2(ψ)F1(t−t

′)
(III.56)

where

F1(t− t′) =

∫ ∞

−∞

dω

π

Imχ1(ω)n1(ω)[(
ω2 −W 2

)2
+
(
ω γ1

)2] eiω(t−t′) , (III.57)

which yields the results given by eqns. (A.3, A.4) with j = 1.
Our results (III.56,III.28) differ from those in ref.[45] in that we do not find a singularity in the asymptotic correlation

functions and coherence. We trace the origin of this discrepancy to the expressions (III.28,III.31,III.32) wherein we see
that all the correlation functions require the product (III.29) which is diagonal in the product of Green’s functions; we
do not find an interference (cross term) of the form G1G2 which could yield such singularity. Also when B2[{Q2}] = 0
the full contribution from the self energy 2 vanishes identically.
An important corollary in this case with one undamped mode is that the system never loses information on the

initial conditions. Whereas the asymptotic equal time limit of the noise contribution is completely determined by
the spectral properties of the bath, had we chosen initial conditions different from those leading to (III.21-III.24) the
asymptotic limit of the initial state contribution (III.55) would reflect the different choice. This asymptotic dependence
on the initial conditions, an obvious consequence of the undamped mode, suggests that a Markovian approximation
to the time evolution of the reduced density matrix (neglecting the “history” of the dynamical evolution) may break
down in this particular case[45].
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3. Non-vanishing detuning, ∆ 6= 0

For non-vanishing detuning ∆ 6= 0 the degeneracy between the normal modes of the mechanical oscillators is lifted.
We have carried out a perturbative expansion for ∆ 6= 0 in the ratio ∆/|γ2 − γ1|. The result of this exercise is
cumbersome and not very illuminating, with the only noteworthy feature that in the one-bath case the mode that is
undamped for ∆ = 0 acquires a small damping rate ∝ ∆2/(|γ2 − γ1|), and the initial condition contribution to the
coherence is given by (III.26) now with G2(t) exponentially damped with a small damping rate ∝ ∆2/(|γ2 − γ1|).
Therefore, for ∆ 6= 0, it follows that 〈q+(t)q−(t)〉0 → 0 in the asymptotic long time limit consistent with the loss of
the undamped mode. However, figures (1) and (2)) indicate that in the limit of non-vanishing but small detuning
coherence will survive for a long time determined by the longest time scale ∝ |γ2 − γ1|/∆ . Furthermore, as ∆ → 0
we find a smooth limit to the results presented above in the stationary regime. Therefore, whereas we do not find any
singularity in the limit ∆ → 0, our results are in broad agreement with those found in ref.[45] in that the vanishing
detuning case with both mechanical oscillators coupling to only one bath features an undamped mode, and that
this peculiar feature may signal the breakdown of a Markovian approximation for the quantum master equation of
the reduced density matrix. In the formulation followed here, we find that the undamped mode leads to correlation
functions that retain memory of the initial conditions; this is particularly clear in the case of the coherence which is
given by eqn. (III.55) for the initial conditions given by (III.21-III.24). Other initial conditions will yield different
results for the asymptotic correlations and coherence. A small perturbation away from ∆ = 0 yields a small relaxation
rate for the mode that is undamped in the case of vanishing detuning, and asymptotically at long time (much longer
than the inverse of the small relaxation rate) the correlations and coherence loose memory of the initial conditions.
The noise contribution to the averages (III.38,III.39) and coherence (III.40) are similar to that of the ∆ = 0 case
with the addition of small perturbative corrections proportional to ∆2/(γ2 − γ1)

2. However, a noteworthy feature is
that these perturbative corrections yield a small but non-vanishing coherence in the equilibrium case T1 = T2 ≡ T
in the high temperature regime T ≫ W,∆. Therefore, for ∆ 6= 0 memory of the initial condition remains for a long
time and asymptotically the coherence does not vanish in the equilibrium case but is strongly suppressed by factors
∆2/(γ2 − γ1)

2 ≪ 1. Another example of such perturbative aspect is discussed below.

B. Weak coupling

We now consider the weak coupling regime with W, |∆| ≫ γ1,2 and expand to leading order in the ratios
γj/|∆|; γj/W ; j = 1, 2. This case provides the groundwork for a future study of the master equation in the weak
damping limit. In terms of the normal mode average frequency and detuning W,∆, introduced in eqn. (III.8) we find

ρ(s) ≃ 2W∆+ s(γ2 − γ1) cos(2ψ) (III.58)

α(s) ≃ 1−
1

2

( s

2W∆

)2
(γ2 − γ1)

2 sin2(2ψ) (III.59)

β(s) ≃ −
s

2W∆
(γ2 − γ1) sin(2ψ) , (III.60)

and

M2(s)−
ρ(s)

2
= s2 +Ω2

+ + sΓ+ (III.61)

M2(s) +
ρ(s)

2
= s2 +Ω2

− + sΓ− , (III.62)

where Ω± are the (renormalized) frequencies of the normal modes of the mechanical oscillators, and

Γ+ = γ1 cos
2(ψ) + γ2 sin

2(ψ) ; Γ− = γ2 cos
2(ψ) + γ1 sin

2(ψ) . (III.63)

To leading order in γj/|∆|, γj/W we find

R(s) ≃

(
1 −β(s)

−β(s) −1

)
; β(s) ≃ −

s

2W∆
(γ2 − γ1) sin(2ψ) , (III.64)

where we have neglected terms of order (s(γ2 − γ1)/2W∆)2 in α(s). A straightforward calculation yields to leading
order

G(t) =

(
g+(t) 0
0 g−(t)

)
+

(γ2 − γ1)

2W∆
sin(2ψ)h(t)

(
0 1
1 0

)
, (III.65)
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where

g±(t) = e−Γ±t/2 sin(Ω±t)

Ω±
, (III.66)

and to leading order in Γ±/Ω± we find

h(t) = e−Γ+t/2 cos(Ω+t)− e−Γ−t/2 cos(Ω−t) . (III.67)

To leading order, the contribution to the off - diagonal correlator (coherence) from initial conditions is found to be

〈q+(t)q−(t)〉0 = i
(γ2 − γ1)

2W∆
sin(2ψ)

{
e−Γ+t + e−Γ−t − e−(Γ++Γ−)t/2

[
e−iΩ+t

(
cos(Ω−t) + i

Ω−

Ω+
sin(Ω−t)

)

+ eiΩ−t
(
cos(Ω+t) + i

Ω+

Ω−
sin(Ω+t)

)]
}
. (III.68)

This correlation function displays interference beats between the normal modes reflecting a coherence that emerges
from the mixing of the normal modes mediated by their coupling to the baths. An example is displayed in fig. (3)
for a range of parameters consistent with the weak coupling limit.
Although the contributions from the initial conditions do not lead to coherence in the asymptotic long time limit, in

the weak coupling limit for Γ++Γ− = γ1+γ2 ≪ |∆|, it survives for a long time and displays interference between the
(renormalized) normal modes. The interference beats may be observable during several periods before being damped
out.
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FIG. 3: W 〈q+(t)q−(t)〉0 eqn. (III.68) vs. W t for (γ1/W ) = 0.05, (γ2/W ) = 0.005, ψ = π/4,∆/W = 0.25.

Since the spectral densities are proportional to γj , the leading order contribution to the correlation functions induced
by the noise 〈〈(· · · )〉〉ξ is obtained by keeping only the diagonal term in G(t) in (III.65), leading to the result

(
q+(t)
q−(t)

)

ξ

=

( ∫ t

0
g+(t− t′)ξ+(t

′)dt′∫ t

0 g−(t− t′)ξ−(t
′)dt′

)
, (III.69)

where ξ± are defined by eqn. (II.35).
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Now, using equations (II.35, II.37, III.3) and (III.65), and taking the cutoffs Λj → ∞, we now find for t ≫ 1/γ1,2
the emergence of a stationary regime for which

〈〈q+(t+ τ)q+(t)〉〉ξ = cos2(ψ)J
(1)
++(τ) + sin2(ψ)J

(2)
++(τ) (III.70)

〈〈q−(t+ τ)q−(t)〉〉ξ = sin2(ψ)J
(1)
−−(τ) + cos2(ψ)J

(2)
−−(τ) (III.71)

〈〈q+(t+ τ)q−(t)〉〉ξ = cos(ψ) sin(ψ)
[
J
(1)
+−(τ) − J

(2)
+−(τ)

]
(III.72)

where the functions J
(j)
αβ (τ) , α, β = ± are given in Appendix (B). Eqn. (III.72) shows that the coherence depends on

the difference of the spectral function and occupation of the baths and vanishes if the baths feature the same spectral
function and temperature.
Using the results in this appendix, we find that in the asymptotic stationary state, for t ≫ 1/γ1,2, the correlation

functions of the momenta are related to those of the coordinates by

〈〈pα(t+ τ)pβ(t)〉〉ξ = −
d2

dτ2

[
〈〈qα(t+ τ)qβ(t)〉〉ξ

]
; α, β = +,− . (III.73)

In particular for τ . 1/Λj these correlation functions have the same logarithmic dependence on the bandwidth of
the baths as in (III.53), which as discussed in the previous subsection, is a manifestation of the same logarithmic
dependence on cutoff found at zero temperature, (see eq. (III.48)). A finite τ regulates the high frequency behavior
of the integrals, and physically, as discussed above, a coincidence limit must be interpreted as the limit Λjτ →
∞ ; γj τ , Ω± τ → 0.
In the limit γ1,2 t → ∞ but with Λ1,2 τ → ∞ ; Ω±τ → 0, we find to leading order in γ1,2 ≪ Ω± and in the high

temperature limit T1,2 ≫ Ω±, γ1,2, the following results (see Appendix (B) for details)

〈〈q+(t+ τ)q+(t)〉〉ξ ≃
1

Ω2
+ Γ+

[
cos2(ψ)T1 γ1 + sin2(ψ)T2 γ2

]
(III.74)

〈〈q−(t+ τ)q−(t)〉〉ξ ≃
1

Ω2
− Γ−

[
sin2(ψ)T1 γ1 + cos2(ψ)T2 γ2

]
(III.75)

〈〈q+(t+ τ)q−(t)〉〉ξ ≃ cos(ψ) sin(ψ)
[ γ1 + γ2
2(W∆)2

] [
T1 γ1 − T2 γ2

]
. (III.76)

The corrections to the above results in the high temperature limit are obtained from the complex poles of coth[ω/2T ],
and it is straightforward to find that these contributions are suppressed by the ratios ∝ (Ω±/Tj)

2; (γj/Tj)
2 with

respect to the leading order terms (III.74-III.76) (for example compare the terms J
(j,a)
αβ ; J

(j,b)
αβ in Appendix (B)).

Using the relations (III.63) one finds that in the equilibrium high temperature case T1 = T2 ≡ T ≫W,∆ and in the
coincidence limit τ → 0, the averages (III.74,III.75) agree with classical equipartition, whereas the coherence becomes

〈〈q+(t)q−(t)〉〉ξ ≃ cos(ψ) sin(ψ)
T

W 2

[γ21 − γ22
2∆2

]
. (III.77)

Although the coherence does not vanish in the high temperature classical regime in equilibrium and is enhanced by
the factor T/W , it is strongly suppressed by the perturbative factor (γ21−γ

2
2)/∆

2 ≪ 1, but indicates a finite coherence
in the classical limit in general.

Interpretation of results: The result (III.76) also seems surprising and counterintuitive, yet its main feature,
that the coherence survives in the high temperature limit for different baths also has a simple interpretation that
stems from the perturbative relations (III.69). From these it follows that

〈〈q+(t)q−(t)〉〉ξ ∝ 〈〈ξ+ξ−〉〉 (III.78)

where ξ± are the linear combinations defined by eqn. (II.35). Therefore

〈〈ξ+ξ−〉〉 = cos(ψ) sin(ψ)
[
〈〈ξ1ξ1〉〉 − 〈〈ξ2ξ2〉〉

]
, (III.79)

hence, the coherence must vanish if both baths are identical, namely if they have the same spectral densities and
temperatures T1 = T2.
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IV. DISCUSSION

The are several aspects of the results obtained above that merit further discussion.

• We have focused on the one and two point correlations functions only simply because the theory is Gaussian,
and, therefore higher order correlation functions can be obtained from Wick’s theorem. With vanishing initial
conditions for the one point functions, correlation functions of odd number of oscillator coordinates will vanish.
However, whereas the two point correlation functions are a sum of the contribution from the initial conditions
and bath correlations (see discussion following eqn. (II.62)), higher order correlation functions will feature
factorized products with mixed contributions from initial conditions and noise correlators. In particular for the
case of vanishing detuning when both oscillators couple only to one bath, the correlation functions will retain
memory of the initial conditions as a consequence of the undamped mode.

• In the case of a strictly Ohmic baths the coincidence limit of the two point correlation function of the canonical
momenta exhibits a logarithmic dependence on the bandwidths of the baths, namely, 〈〈p2±(t)〉〉 ∝ ln[Λj ] which
as shown above, is the same as in the zero temperature limit. This dependence survives in the asymptotic long
time regime when the system becomes stationary and is a consequence of the fact that probing correlations on
short time scales implies probing high frequency components of the spectral density of the baths. Although
we focused on the strictly Ohmic case because it allows a complete analytic study, the short time divergences
are of a more general nature, in particular we expect that in a super-Ohmic case the short time singularities
will yield stronger dependence on the bandwidths of the baths. Furthermore, correlation functions of higher
time derivatives of the system coordinates will also feature stronger dependence on the bandwidths, suggesting
a breakdown of universality in the coincidence limit of these correlation functions. The physical reason behind
these “divergences” is clear: Probing correlation functions at nearby time intervals probes the high frequency
components and higher moments of the spectral densities of the baths which are very sensitive to the cutoff
functions. The analysis above suggests that the near coincidence limit of the correlation functions in the
stationary regime must be defined by separations in time much larger than the inverse cutoff frequency of the
baths but much smaller than the inverse (renormalized) frequencies of the mechanical oscillators and relaxation
times, in other words, τ ≫ 1/Λj but τ ≪ Ω±, γj .

• We find that when the normal modes of the mechanical oscillators are initially uncorrelated, their couplings to
the baths induces coherence that not only survives in the stationary regime but also in the high temperature
(classical) regime if the temperatures of the baths are different. It is physically reasonable to infer that if the
normal modes are initially uncorrelated, entanglement between the normal modes of the mechanical oscillators
mediated by their couplings to the baths would be the only explanation for a non-vanishing coherence in the
stationary regime. This suggests, more generally, that entanglement will also survive both in the stationary
and the high temperature regimes under the same circumstances. We relegate the question of bath-mediated
entanglement to a future study[49]. Our results for the case of both mechanical oscillators coupling to a single
bath, also studied in [45], are broadly consistent with the results of this reference in that for vanishing detuning
there is an undamped mode. However, we do not find any singularity in the correlation functions as the detuning
vanishes, and we find asymptotically at long times a finite, constant contribution to the coherence from initial
conditions that reflects these conditions. For small detuning we find that the undamped mode obtains a very
small damping (relaxation) rate, and at asymptotically long times the contribution from the initial conditions
vanishes. This is expected: For any non-vanishing damping rate for the two modes, however small, memory of
the initial conditions will vanish at asymptotically long time. It is only in this sense that there is a discontinuity
in the case of vanishing detuning, a natural consequence of the non-commutativity of the long time and vanishing
detuning limits, but otherwise we do not find any singularity in the correlation functions[50].

V. CONCLUSIONS AND FURTHER QUESTIONS

In this article we have studied the non-equilibrium dynamics of two coupled mechanical oscillators with general cou-
plings to two uncorrelated baths with different spectral densities and temperatures. Our study is motivated by recent
advances in cavity electrodynamics and optomechanics as continuous-variables platforms for quantum computing and
information, and the experimental possibility to engineer the environmental degrees of freedom to control decoherence
and dissipation in these systems. We obtained the general solution of the Heisenberg-Langevin equations as an initial
value problem to understand the time evolution of correlation functions towards an asymptotic stationary state. The
normal modes of the mechanical oscillators “mix” through their coupling to the different baths, and this phenomenon
leads to the emergence of coherence (off diagonal correlation functions) when the normal modes of the mechanical
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oscillators are uncorrelated in the initial state. The mixing of the mechanical degrees of freedom mediated by the
baths introduces novel renormalization aspects which are discussed in detail. The case of Ohmic baths with different
spectral densities and temperatures provides an arena for an exact analytic treatment, and we focus on two relevant
limits: a strong coupling regime that includes the case of vanishing detuning of the normal modes of the mechanical
oscillators, and a weak coupling regime characterized by weak damping and dissipation. In both cases we find that a
non-equilibrium stationary state emerges asymptotically at long times for T1 6= T2. We obtain the complete expression
for the unequal time correlation functions both for coordinates (normal modes) and their canonical momenta in the
strong and weak coupling regimes. We find that the coherence (off-diagonal correlation functions) survives in the
non-equilibrium case for the high temperature (classical) limit of both baths if the baths feature different spectral
densities and/or temperatures.
The main physical explanation behind the survival of coherence, an unexpected and perhaps counterintuitive result,

is the fact that the off-diagonal correlations in the normal mode basis are related to the difference of the correlation
functions of bath variables. As a result, the coherence survives in the high temperature limit if the baths feature
different temperatures but is strongly suppressed if the baths feature the same temperature, vanishing exactly if the
baths feature both the same spectral density and temperatures.
In the high temperature but equilibrium case, T1 = T2 ≡ T , with T much larger than the normal mode frequencies,

the asymptotic long time averages of normal mode coordinates obey classical equipartition, and the coherence is
suppressed both in the strong and weak coupling cases. Therefore, the survival of coherence in the high temperature
regime is inherently a consequence of the non-equilibrium nature of the asymptotic stationary state for T1 6= T2.
In the case of weak couplings, implying that the relaxation rates are much smaller than the typical frequencies of

the normal modes, the contribution to the coherence from initial conditions leads to interference beats that may be
observable in an intermediate time regime.
We discussed the dependence of the correlation functions on the bandwidths of the baths arguing that for the low

energy (frequency) effective description to be insensitive to the high frequency details of the baths, the coincidence
limit of the correlation functions in the stationary state must be interpreted carefully. The particular case of vanishing
detuning between the normal modes of the mechanical oscillators along with having both oscillators coupled to only
one bath is peculiar in the sense that the degeneracy leads to an undamped mode, and the asymptotic long time
limit of the correlation functions retain information on the initial conditions. This may signal the unsuitability of
a Markovian approximation to the dynamics within the framework of the quantum master equation for the reduced
density matrix.
We conclude with the suggestion that designing an experimental setup with mechanical oscillators coupled to two

baths at different temperatures may provide a platform to maintain coherence in the high temperature limit.
The result of this analysis suggests further questions. The exact solution reveals several subtle aspects such as the

non-equilibrium nature of the asymptotic stationary state in the case of different bath temperatures and/or couplings
and the persistence of memory of the initial conditions in the case of vanishing detuning with both oscillators coupled
to only one bath. These subtle aspects will require a careful derivation of a quantum master equation, that would
correctly account for the “mixing” between the normal modes and the off-diagonal energy shifts. The current study
provides the groundwork for a consistent derivation of such quantum master equation. Further investigation of these
aspects will be reported elsewhere.
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Appendix A: Functions Fj(τ )

In the strictly Ohmic limit with Imχj(ω) = γj ω, the integrals in eqn. (III.36) can be carried out by using the
identities

n(ω) = −
1

2
+

1

2
coth[

ω

2T
] ; coth[z/2] =

2

z
+

∞∑

l=1

4z

(2πl)2 + z2
(A.1)
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featuring simple poles in the upper and lower half complex ω plane. We consider τ > 0 selecting the poles in the
upper half plane. We find

Fj(τ) = F
(a)
j (τ) + F

(b)
j (τ) (A.2)

with

F
(a)
j (τ) =

1

2Wj

e−γjτ/2

2

[
eiWjτ coth

[Wj + i
γj

2

2Tj

]
+ e−iWjτ coth

[Wj − i
γj

2

2Tj

]
− i sin[Wjτ ]

]
, (A.3)

and

F
(b)
j (τ) = −

γj
4π3 T 2

j

∞∑

l=1

e−2πlTjτ

l3

[(
1 +

(
W

2πlTj

)2)2
−
(

γj

2πlTj

)2
] . (A.4)

Appendix B: Functions Jj

αβ(τ )

The functions Jj
αβ(τ), α, β = ± in eqns. (III.70-III.72) are given by

J
(j)
±±(τ) =

∫ ∞

−∞

dω

π

ω eiωτ γjnj(ω)[(
ω − iΓ±

2

)2
− Ω2

±

][(
ω + iΓ±

2

)2
− Ω2

±

] (B.1)

J
(j)
+−(τ) =

∫ ∞

−∞

dω

π

ω eiωτ γjnj(ω)[(
ω − iΓ+

2

)2
− Ω2

+

][(
ω + iΓ−

2

)2
− Ω2

−

] ; j = 1, 2 . (B.2)

In the limit of infinite bandwidth these integrals are finite and can be carried out by residues using the relations (A.1).

For τ > 0 we find that the functions J
(j)
αβ , α, β = +,− above can be written respectively as J

(j,a)
αβ + J

(j,b)
αβ where to

leading order in the ratios Γ±/Ω± we find for τ > 0

J
(j,a)
±± (τ) =

γj
2 Γ±Ω±

e−Γ±τ/2

[
− i sin(Ω±τ) + cos(Ω±τ) coth

[Ω±

2Tj

]]]
(B.3)

J
(j,b)
±± (τ) = −

γj
4π3T 2

j

∞∑

l=1

e−2πlTjτ

l3
[(
1− Γ±

4πlTj

)2
+
( Ω±

2πlTj

)2][(
1 + Γ±

4πlTj

)2
+
( Ω±

2πlTj

)2] (B.4)

J
(j,a)
+− (τ) =

γj
2 (W∆)2

e−Γ+τ/2

[
i(W∆) cos(Ω+τ) − i

γ1 + γ2
2

Ω+ sin(Ω−τ)

+ coth
[Ω+

2Tj

](γ1 + γ2
2

Ω+ cos(Ω+τ) +W∆ sin(Ω+τ)
)]

(B.5)

J
(j,b)
+− (τ) = −

γj
4π3T 2

j

∞∑

l=1

e−2πlTjτ

l3
[(
1− Γ+

4πlTj

)2
+
( Ω+

2πlTj

)2][(
1 + Γ−

4πlTj

)2
+
( Ω−

2πlTj

)2] . (B.6)
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