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The photon blockade (PB) effect in emitter-cavity systems depends on the anharmonicity of the
ladder of dressed energy eigenstates. The recent developments in color center photonics are leading
toward experimental demonstrations of multi-emitter-cavity solid-state systems with an expanded
set of energy levels compared to the traditionally studied single-emitter systems. We focus on the
case of N = 2 nonidentical quasi-atoms strongly coupled to a nanocavity in the bad cavity regime
(with parameters within reach of the color center systems), and discover three PB mechanisms: po-
laritonic, subradiant and unconventional. The polaritonic PB, which is the conventional mechanism
studied in single-emitter-cavity systems, also occurs at the polariton frequencies in multi-emitter
systems. The subradiant PB is a new interference effect owing to the inhomogeneous broadening of
the emitters which results in a purer and a more robust single photon emission than the polaritonic
PB. The unconventional PB in the modeled system corresponds to the suppression of the single-
and two-photon correlation statistics and the enhancement of the three-photon correlation statistic.
Using the effective Hamiltonian approach, we unravel the origin and the time-domain evolution of
these phenomena.

Introduction—While an arbitrary number of photons
can populate a bare nanocavity, the paradigm changes
with the introduction of a strongly coupled dipole emit-
ter. The photon blockade (PB) effect prevents the ab-
sorption of the second photon at specific frequencies due
to the nonlinearity of the emitter that dresses the energy
states and leads to an anharmonic ladder. This effect has
been extensively studied in single-emitter (N = 1) atomic
[1, 2] and quantum dot [3, 4] cavity quantum electrody-
namics (CQED), as well as in circuit QED systems [5].
Here, the effect occurs at the frequencies of the dressed
states so-called polaritons (polaritonic PB) and results in
a faster emission rate of single photons compared to the
bare emitter. Experimentally, a signature of single pho-
ton emission has been the reduced value of the second
order coherence g(2)(0) < 1. A recent paper has con-
tested this criterion [6], demonstrating conditions for the
so-called unconventional photon blockade where the two-
photon statistic is suppressed, but the enhanced higher
order coherences strengthen the generation of multiple
photons. A cavity coupled to multiple (N & 1) emit-
ters would offer a richer set of dressed states and extend
new opportunities for nonclassical light generation with
applications in quantum key distribution [7], quantum
metrology [8] and quantum computation [9]. Moreover,

the collective coupling rate GN =
√∑N

n=1 g
2
n which sets

the CQED device operating speed would effectively in-
crease by a factor of

√
N from the single-emitter case

[10, 11].
To achieve the collective strong coupling of multiple

emitters to a nanocavity, the collective coupling strength
has to dominate over the cavity (κ) and emitter (γ)
linewidth-induced loss mechanisms: GN > κ/4, γ/4, as
well as be greater than or comparable to the inhomo-
geneous broadening (∆) in the system: ∆ . GN [12].
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This regime has been demonstrated in atomic systems
[13] but its implementation in solid-state would result
in a three orders of magnitude speedup and a potential
for on-chip integration. Among the solid-state emitters,
color centers in diamond and silicon carbide [14, 15] are
the ones that feature high dipole moment and small in-
homogeneous broadening (∆ < 30 GHz) needed for fast
and scalable nanophotonics platform. Moreover, their in-
tegration with nanocavities is a topic of active research
[16–19] paving the way for experimental demonstrations
of color center based CQED.

We consider theoretically the coherence effects in an
N = 2 multi-emitter CQED system [Fig. 1(a)] and an-
alyze the influence of inhomogeneous broadening to the
photon blockade effect. Using the quantum master equa-
tion with an extended Tavis-Cummings model, we dis-
cover conditions for polaritonic, subradiant and uncon-
ventional PB [Fig. 1(b)]. The subradiant PB is a new
interference effect owing to the inhomogeneous broaden-
ing of the emitters which results in a purer and a more
robust single photon emission than the polaritonic PB.
Using the effective Hamiltonian approach, we describe
the origin and the time-domain evolution of these phe-
nomena.
The model—The interaction Hamiltonian for our

CQED system consists of the cavity, emitter and cou-
pling terms (~ = 1):

HI = ωCa
†a+

N∑
n=1

[ωEnσ
†
nσn + gn(σ†na+ a†σn)], (1)

where a and ωC represent the annihilation operator and
resonant frequency of the cavity mode; σn, gn and ωEn
are the lowering operator, cavity coupling strength and
transition frequency of the n-th out of N = 2 emitters.
To treat the cavity and emitter detunings more explicitly,
we rewrite emitter frequencies as ωE1 = ωC + ∆C and
ωE2 = ωC + ∆C + ∆E and the Hamiltonian transforms
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(a)

(b)

FIG. 1. (a) An N = 2 multi-emitter CQED system scheme
and (b) an example of a dressed ladder with arrows illus-
trating photon processes in three types of photon blockade
annotated at the bottom; solid (dashed) black lines repre-
sent energy levels of a dressed (bare) cavity, dressed levels
are represented with linewidths; red, blue and yellow states
belong to the first, second and third rungs, respectively; spac-
ing between rungs is not to scale; {κ, γ, g1, g2,∆C ,∆E}/2π =
{25, 0.1, 10, 10, 30, 5} GHz.

into:

HN=2
I = ωCa

†a+(ωC+∆C)σ†1σ1+(ωC+∆C+∆E)σ†2σ2

+ g1(σ†1a+ a†σ1) + g2(σ†2a+ a†σ2), (2)

The system is characterized by the cavity energy decay
and emitter linewidth {κ, γ}/2π = {25, 0.1} GHz, corre-
sponding to quality factor Q ≈ 15, 000, emitter lifetime
τ = 10 ns, and the individual emitter-cavity coupling
rate gn/2π = 10 GHz. Coupling rate is defined by the
emitter lifetime, emission branching ratio into the zero-
phonon line ρZPL, cavity index of refraction n, mode
volume V , and the relative electric field the dipole expe-
riences locally (electric field and dipole orientations form
the angle φ) in the resonant mode η = |E(r) cosφ/Emax|
as g = η

√
3πc3ρZPL/2τω2

Cn
3V [20]. Comparing to the

state-of-the-art results with silicon-vacancy centers in a
photonic crystal cavity [19], the quoted values could be

achieved by designing nanocavities with doubled quality
factor and five-fold increased coupling rate, which can
be achieved by reducing the mode volume several times
and providing higher-precision positioning of the color
centers at the field maximum [21]. The exact value of
the emitter linewidth (here, three-fold smaller), which is
the smallest system rate in the bad cavity regime, does
not change the dynamics significantly when its order of
magnitude is maintained.

To model the interaction of the system with its envi-
ronment, we use the quantum master equation to calcu-
late the steady state solution of the density matrix ρ:

ρ̇ = −i[HI + EP (aeiωt + a†e−iωt), ρ] + κL[a]

+

N∑
n=1

γL[σn], (3)

where EP = κ/50 represents the laser field amplitude,
and loss terms are introduced through the superoperator
L[O] = Oρ(t)O† − 1

2ρ(t)O†O − 1
2O
†Oρ(t). The system

is then transformed into a rotating frame to remove the
time-dependence [22] and obtain the steady state solu-
tion. When calculating emission spectra as 〈a†a〉, we
leave the EP term out and add a pump term in the Li-
ouvillian as PL[a†], where P represents the laser power.

We gain a more intuitive understanding of the sys-
tem dynamics by diagonalizing the effective Hamiltonian,
constructed with the complex frequencies that account
for cavity and emitter loss [12]:

Heff = HI − i
κ

2
a†a− i

N∑
n=1

γ

2
σ†nσn. (4)

The real and the imaginary part of its eigenvalues repre-
sent frequencies and half-linewidths of the excited energy
states, respectively, while the eigenvectors quantify the
cavity-like and the emitter-like character of the excited
state. Figure 1(b) shows the dressed ladder of state for
a sample system of nonidentical emitters detuned from
the cavity. The energy levels are illustrated with their
linewidths which form the absorption zones for n-photon
events. In contrast to CQED systems with a single emit-
ter where all excited states contain two levels, here we see
that an additional emitter generates new excited states.
The new state in the first rung resembles the wavefunc-
tion of a subradiant state known from atomic systems not
to couple to the environment well. There are also two
new states in the second rung. These additional levels
ultimately lead to a much richer set of physics phenom-
ena. Not only do we find an enhanced regime of photon
blockade from the subradiant states, but a newly discov-
ered unconventional photon blockade regime [6] can also
be achieved in the system. We now explore these effects
as a function of the emitter detuning ∆E .
Results—We present calculation results for cavity de-

tunings ∆C/2π = 0, 20 and 30 GHz which capture sys-
tem’s trends and features. The emission spectra are
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FIG. 2. (a) Emission spectrum, (b) equal-time second- and (c) third-order coherence of transmitted light calculated by the
quantum master equation. Green, yellow and magenta arrows indicate parameters of polaritonic, subradiant and unconventional
PB, respectively. (d) Frequency overlap between the k-th order rungs of the dressed ladder of states of Heff, presented as
ωk/k − ωC with indicated linewidths, first, second and third rung are marked by red, blue and yellow areas, respectively;
∆C/2π takes values of (i) 0, (ii) 20 and (iii) 30 GHz. The circled area indicates a contradictory region of PB.

shown in Fig. 2(a). In parallel, we calculate the eigen-
states of the first rung of the effective Hamiltonian, shown
as red surfaces in Fig. 2(d). The three transmission
peaks are in a close agreement with these eigenfrequen-
cies, which expectedly indicates that the bottom peak
is cavity-like, and the top two peaks emitter-like. To
understand the effects that non-identical emitters bring
into CQED more closely, we now focus on the emerg-
ing subradiant state for ∆E/2π ≤ 3 GHz. Qualitatively
similar spectra have been calculated for superconducting
cavities coupled to an ensemble of spins [23] and experi-
mentally observed in superconducting circuits [24]. The

collective strong coupling rate G2 =
√
g2

1 + g2
2 places

the two polariton peak frequencies close to ω∆E=0
pol± =

ωC+ ∆C

2 −i
κ+γ

4 ±
√

4∆2
C+16G2

2+2κγ+4i∆Cκ−4i∆Cγ+iκ2+iγ2

4 .
Here, we describe the subradiant state in more detail by
deriving approximations to its frequency ωsub and state
vector vsub for 0 < ∆E � G2,

κ−γ
2 :

ωsub ≈ ωC + ∆C +
g2

1

G2
2

∆E − i
(
γ

2
+
κ− γ
8G2

2

∆2
E

)
, (5)

vsub ≈
1√
A

{(
−g2∆E

G2
2

+ i
κ− γ
8g2

∆2
E

G2
2

)
a†

+

[
−g1

g2

8g2
2 + i(κ− γ)∆E

8g2
1 − i(κ− γ)∆E

]
σ†1 + σ†2

}
|0〉 , (6)
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where A is a normalization factor and |0〉 represents the
state with empty cavity and all emitters in the ground
state. For vanishing ∆E the cavity term in vsub becomes
zero, diminishing state’s coupling to the environment.
With an increasing ∆E , the frequency of the subradiant
state grows linearly, while the linewidth and the ampli-
tude increase quadratically, closely matching the trend
in the simulated emission spectra for ∆E/2π ≤ 3 GHz.

Next, we quantify the system’s photon blockade by
analyzing the equal-time second- and third-order coher-
ence of light transmitted through the system [Figs. 2(b-
c)], g(n)(0) = 〈(a†)nan〉/〈a†a〉n. Areas of suppressed
g(2)(0) statistics (red areas) indicate the potential for
single-photon emission, which is further supported if the
g(3)(0) values are simultaneously reduced. Polaritonic
PB is identified close to the frequencies of the emission
peaks (green arrows in Fig. 2b), and its quality improves
for higher detuned emitter-like peaks. This is consis-
tent with the findings in single-emitter CQED systems
where the photon blockade at the polariton peak fre-
quency strengthens with the emitter-cavity detuning [3].

We identify a novel effect of reduced second order co-
herence value at the frequency of the subradiant peak –
the subradiant photon blockade (yellow arrows in Fig.
2b). While this effect has no direct analog in single
emitter CQED we discover its origin with the help of
the effective Hamiltonian approach. Analyzing the fre-
quency overlap Ek/k − ωC between eigenstates of differ-
ent order (k) rungs of Heff [Fig. 2(d)] we find that the
two photon emission is suppressed for the frequencies
where single photon absorption is possible (red areas),
but the second photon absorption is not (no overlap-
ping blue areas which would, together with red ones,
form violet areas in the plot). Surprisingly, for large
∆E this condition disappears for the subradiant peak,
but the subradiant photon blockade still persists (cir-
cled region in Fig. 2d). To understand this apparent
contradiction, we perform an additional analysis of the
eigenstate character for ∆C/2π = 20 GHz, presented in
Fig. 3. We compare dressed states to the bare states
in |C,E1, E2〉 basis, whose terms represent the cavity,
the first and the second emitter excitations, respectively.
We find that for an increasing ∆E the eigenstates in
the first two rungs of the ladder ψI1 , ψ

I
2 , ψ

I
3 , ψ

II
1 , ψII2 , ψII3

and ψII4 (enumerated in an increasing energy or-
der), have the highest scalar product with bare
states |1, 0, 0〉 , |0, 1, 0〉 , |0, 0, 1〉 , |2, 0, 0〉 , |1, 1, 0〉 , |1, 0, 1〉,
and |0, 1, 1〉, respectively. In other words, they start be-
having like the corresponding bare states. Therefore,
the dipolar coupling between the subradiant state ψI2
and doubly excited state ψII3 has to be inhibited due
to
〈
1, 0, 1|a†|0, 1, 0

〉
= 0, at higher detunings, which in

turn suppresses the second photon absorption. With this
combination of spectral and vector component properties
obtained from the diagonalization of the effective Hamil-
tonian we predict parameters that give rise to enhanced
single photon emission. The properties also hold for non-
identically coupled emitters (g1 6= g2, G2 > κ/2), which
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FIG. 3. Scalar product of the dressed eigenstates of (a) the
first and (b) the second rung of Heff and their main contribut-
ing bare states for ∆C = 20 GHz.

is favorable for systems with randomly positioned color
centers whose coupling strength can not be imposed uni-
formly.

In addition to these trends, we also find conditions for
realization of a superbunching effect recently dubbed the
unconventional photon blockade [6], which confirms that
the reduction in two-photon statistics is not a sufficient
condition for single-photon emission. This effect occurs
in the system with ∆C/2π = 30 GHz in the region around
ω/2π = 25 GHz (magenta arrow in Fig. 2b) which has a
low g(2)(0) but high g(3)(0) value, indicating preferential
three-photon emission. To understand the occurrence of
this regime in our system, we look into the third rung
of the dressed ladder shown in yellow at Fig. 2(d-iii)
and reveal that this frequency region has an overlapping
three-photon absorbing process, but no two-photon ab-
sorbing process, which explains the calculated statistics.
Thus, the multi-emitter CQED system will not just ad-
vance the single-photon generation, but also allow for the
exploration of exciting regimes of multi-photon physics
and statistics.

Finally, we analyze the system dynamics in the
time domain in terms of interferences between the ex-
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FIG. 4. (a) Zero-delay second- and third-order coherences
for {∆C ,∆E}/2π = {30, 5} GHz system as a function of
laser detuning from the cavity; emission spectrum in dashed
lines illustrates the relationship between features. (b) g(2)(τ)

at frequencies of the corresponding g(2)(0) minima from the
plot (a) representing unconventional (magenta/dotted), sub-
radiant (yellow/solid) and polaritonic (green/dashed) photon
blockade.
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FIG. 5. Comparison between second-order coherence in N =
2 and N = 1 emitter-cavity systems; emission spectra in thin
lines at the bottom illustrate the relationship between fea-
tures. Each emitter is characterized by frequency and cou-
pling rate, {ωE1, ωE2, g}/2π = {20, 26, 10} GHz.

cited states. We look into the three g(2)(0) dips for
{∆C ,∆E}/2π = {30, 5} GHz [Fig. 4(a)] which repre-
sent unconventional (magenta/dotted), subradiant (yel-
low/solid) and polaritonic (green/dashed) photon block-
ade, respectively. The second-order coherence evolution
of the unconventional photon blockade frequency [ma-
genta/dotted line in Fig. 4(b)] represents a damped os-
cillation and once again confirms that the system can not
be a good single photon source at these frequencies. The
dominant oscillation frequency (ω/2π) is 5.2 GHz, while
the first 200 ps also exhibit additional 11 GHz oscilla-
tion. The origin of the unconventional PB oscillations
is currently unclear and will require more theoretical
consideration in future. The subradiant and polaritonic
PB second-order coherence traces represent a decay to
an uncorrelated statistics. The characteristic half-width
at half-maximum times are 0.7 ns and 0.2 ns, respec-
tively, and represent a speedup in single photon emission
compared to a bare quasi-emitter (10 ns). Both func-
tions exhibit 44 GHz oscillations with small amplitudes
in the first 200 ps, which corresponds to the oscillation
between the polaritonic eigenstates of the first rung of
the dressed ladder and is analogous to the experimen-
tally observed oscillations in single atom-cavity systems
[25]. The (green/dashed) polaritonic PB trace also oscil-
lates at 7.7 GHz at longer times, whose origin we assign
to the interference between the upper polaritonic and the
subradiant states. This trend is also observed for other
sets of parameters.

Discussion—To illustrate the advantages of multi-
emitter over single-emitter cavity quantum electrody-
namics we plot the second-order coherence as a function
of laser detuning for comparable N = 2 and N = 1 sys-
tems (Fig. 5). First, we notice that, in addition to the
polaritonic PB dip, only the two-emitter system (black
solid line) exhibits the subradiant PB dip characterized
in this paper. Next, its g(2)(0) value is lower than the

one of the individually coupled emitters (magenta/dotted
and red/triangles), and even of the individual emitters
coupled with a collective rate for a two-emitter system
g
√

2 (green/dashdot and blue/dashed). From a practi-
cal point of view, in addition to providing lower g(2)(0)
value, transmission through the subradiant state extends
an opportunity for a more robust single photon gener-
ation. The frequency and the second-order coherence
values of light transmitted through the subradiant state
are close to constant for variable emitter detuning. This
implies that for any pair of nonidentical emitters (3 GHz
≤ ∆E/2π ≤ 20 GHz) the quality of single photon emis-
sion is governed by the cavity detuning from the first
emitter. This controllability is experimentally accessi-
ble as the cavity detuning can be controlled by gas tun-
ing techniques without influencing the operating laser
frequency [19]. Finally, the cross-polarized reflectivity
method to addressing CQED systems [26] can be applied
to block the pump laser at the output channel.

In conclusion, we have analyzed nonclassical light gen-
eration in a strongly coupled two-emitter CQED system
for variable cavity and emitter detuning. Combining
quantum master equation and effective Hamiltonian ap-
proaches, we identified the parameters that give rise to
a new, subradiant, mechanism of robust photon block-
ade, and explained their origin in the overlap between
the eigenstates of multiple rungs of the dressed ladder.
We also characterized the oscillations in g(2)(τ) function
as interference between the states of the first rung. The
time scale of the single photon emission represents an
order of magnitude speedup over the bare emitter dy-
namics, while the g(2)(0) values are improved over the
system with a single emitter in a cavity. In light of the
presented opportunities in polaritonic, subradiant and
unconventional photon blockade, multi-photon emission
and operating rate speedup, we expect that N > 2 multi-
emitter CQED systems will unveil even richer physics.
For systems with more than several emitters, numeri-
cal calculations may prove lengthy due to the large size
of the density matrix, however, our theoretical analysis
based on the diagonalization of the effective Hamiltonian
can provide a quick insight into the potential parameter
areas with robust single photon emission. Finally, the
introduction of dephasing into the model will help per-
form an even more accurate study of more realistic cavity
quantum electrodynamics systems.
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