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We show how analogues of a large number of well-known nonlinear-optics phenomena can be
realized with one or more two-level atoms coupled to one or more resonator modes. Through
higher-order processes, where virtual photons are created and annihilated, an effective deterministic
coupling between two states of such a system can be created. In this way, analogues of three-wave
mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and downcon-
version), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering,
the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional
implementations of nonlinear optics, these analogues can reach unit efficiency, only use a minimal
number of photons (they do not require any strong external drive), and do not require more than
two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker
the more intermediate transition steps are needed. However, given the recent experimental progress
in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum
systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these
nonlinear-optics analogues can be realized with currently available technology.

I. INTRODUCTION

In nonlinear optics, a medium responds nonlinearly to
incoming light of high intensity. This nonlinear response
can give rise to a host of effects, including frequency con-
version and amplification, many of which have important
technological applications [1–4]. After the high-intensity
light of a laser made possible the first experimental
demonstration of second-harmonic generation (frequency
upconversion) in 1961 [5], many more nonlinear-optics ef-
fects have been demonstrated using a variety of nonlinear
media. The many applications and the fundamental na-
ture of nonlinear optics have also inspired investigations
of analogous effects in other types of waves. Prominent
examples include nonlinear acoustics [6, 7], nonlinear spin
waves [8], nonlinear atom optics [9, 10], nonlinear Joseph-
son plasma waves [11], and nonlinear plasmonics [12].
Analogies of this kind can sometimes enable simulations
or demonstrations of phenomena that are hard to realize
in other systems [13–15].

In this article, we will show that analogues of many
nonlinear-optics effects can also be realized by coupling
one or more resonator modes to one or more two-level
atoms. This stands in contrast to many other nonlinear-
optics realizations, which require three or more atomic
levels [4, 16]. The key to the analogues we propose lies in
the full interaction between a two-level atom and an elec-
tromagnetic mode, which is given by the quantum Rabi
Hamiltonian [17]. This Hamiltonian includes terms that
can change the number of excitations in the system, en-
abling higher-order processes via virtual photons. These
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photons are created and annihilated in a way that gener-
ates a deterministic coupling between two system states
that otherwise do not have a direct coupling. In this way,
we can realize analogues of various frequency-conversion
processes, parametric amplification, Raman and hyper-
Raman scattering, multiphoton absorption, the Kerr ef-
fect, and other nonlinear processes.

Just as nonlinear-optics effects usually require very
high light intensity to manifest clearly, the higher-order
processes we consider require a very strong light-matter
coupling to become noticeable. Specifically, the light-
matter coupling must be strong enough to ensure that the
effective deterministic coupling between system states,
induced by the higher-order processes, becomes larger
than the relevant decoherence rates in the system. Ultra-
strong coupling (USC, where the coupling strength starts
to become comparable to the resonance frequencies of
the bare system components) between light and matter
has only recently been reached in some solid-state exper-
iments [18–36]. Among these systems, circuit quantum
electrodynamics (QED) [16, 37–39] has provided some of
the clearest examples [19, 20, 29–32, 34–36], including
the largest reported coupling strength [31] and the first
quantum simulations of the USC regime [34, 35].

The experimental progress in USC physics has mo-
tivated many theoretical studies of the interesting new
effects that occur in this regime [40–51]. Some previ-
ous [52–54] and concurrent [55, 56] works explore pro-
cesses in the USC regime where the number of ex-
citations is not conserved, such as multiphoton Rabi
oscillations [53] and a single photon exciting multiple
atoms [54]. Several of these processes can be interpreted
as analogues of nonlinear-optics phenomena.

In this work, we present a unified picture of this type
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of processes and their relation to nonlinear optics. We
also provide many more examples, not previously stud-
ied, which together allow us to make complete tables with
translations between three- and four-wave mixing in non-
linear optics and analogous processes in USC systems. It
should be noted that these analogues, many of which can
be realized in one universal setup, do not use propagat-
ing waves, but instead mix excitations in resonators and
atoms of different frequencies. We emphasize that, un-
like many processes in conventional nonlinear optics, our
setups do not require any external drives, but instead re-
alize analogues of wave-mixing with a minimal number
of photons and unit efficiency.

Given the versatility and technological maturity of the
circuit QED setups, we expect them to become the pri-
mary experimental platform for realising these determin-
istic nonlinear-optics analogues with single atoms and
virtual photons. We believe that these deterministic ana-
logues can find many important applications, including
frequency conversion and the creation of superposition
states for use in quantum information technology. Cir-
cuit QED is already one of the most well-developed plat-
forms for quantum information processing [57], so adding
the full capabilities of nonlinear optics at the single-
photon level to the toolbox of this field could result in
many new exciting possibilities. Indeed, the develop-
ment of nonlinear optics with single photons has been
the subject of much theoretical and experimental work
recently due to the wealth of potential applications [58].
We note here that although our proposal does not use
propagating waves, circuit QED setups with stationary
photons that mimic linear-optics experiments for itiner-
ant photons have already been proposed [59]. Several of
the nonlinear-optics analogues given in the present work
could be incorporated into such an architecture.

This article is organized as follows. In Sec. II, we
give a brief overview of how nonlinear processes in optics
usually occur. We then describe how analogous deter-
ministic processes become possible in the quantum Rabi
model. In Secs. III and IV, we discuss three- and four-
wave mixing, respectively, and give details of the anal-
ogous deterministic processes that can be realized with
resonators ultrastrongly coupled to qubits. Other non-
linear processes, including higher-harmonic generation,
parametric processes, and the Kerr effect, are discussed in
Sec. V. In Sec. VI, we estimate achievable effective cou-
pling strengths and decoherence rates, showing that our
proposals can be realized with state-of-the-art technology
in circuit QED. We conclude in Sec. VII. Some details
are left for the appendices: Appendix A expands on the
classical mechanisms for some nonlinear-optics phenom-
ena, Appendix B gives a derivation of the perturbation-
theory formula used to calculate the strength of the ef-
fective coupling between initial and final states in our
three- and four-wave-mixing analogues, and Appendix C
contains details about a few four-wave-mixing processes
not treated in the main text.

II. MECHANISMS FOR NONLINEARITY

A. Nonlinear optics

In conventional classical electro-optical processes, the
polarization P of a given medium induced by the applied
electric field E is linearly proportional to its strength,
i.e., P = ε0χE, where ε0 is the vacuum permittivity and
χ ≡ χ(1) is the linear susceptibility of the medium, which
can be considered a scalar for linear, homogeneous, and
isotropic dielectric media. Usually, the real and imagi-
nary parts of χ describe, respectively, the refraction and
damping of a light beam going through such medium.

For a strong electric field E and nonlinear media, the
above linear relation for the induced polarization is gen-
eralized to

P = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
, (1)

which is considered a core principle of nonlinear optics [1–
4]. In Eq. (1), χ(2) and χ(3) are the second- and third-
order nonlinear susceptibilities, respectively. In general,

these susceptibilities are tensors χ
(1)
kl , χ

(2)
klm, and χ

(3)
klmn.

However, for simplicity, we consider them as scalars,
which is usually valid for isotropic dielectric media.

Various nonlinear optical phenomena (including wave
mixing) can be explained classically by recalling the
nonlinear dependence of the induced polarization and
electric-field strength, as given by Eq. (1). Standard ex-
amples include Pockels and Kerr effects, which are, re-
spectively, linear and quadratic electro-optical phenom-
ena, in which the induced polarization (and, thus, also
the refractive index) of a medium is proportional to the
amplitude and its square of the applied constant electric
field.

For example, second-harmonic generation in a medium
described by the second-order susceptibility χ(2) can
be described classically as follows. Assuming that a
monochromatic scalar electric field E(t) = E0 cos(ωt) is
applied to the medium, the second-order induced polar-
ization P (2) of the medium is given by

P (2) = ε0χ
(2)E2 = ε0χ

(2)E2
0 cos2(ωt)

= ε0χ
(2)E2

0

(
1 + cos(2ωt)

2

)
= 1

2ε0χ
(2)E2

0 + 1
2ε0χ

(2)E2
0 cos(2ωt), (2)

where the first term in the last line describes frequency-
independent polarization, while the second term in the
last line describes the polarization oscillating at twice
the frequency of the input field. This doubling of the
input frequency can be interpreted as second-harmonic
generation.

In Appendix A, we present a few additional pedagog-
ical classical explanations, based on Eq. (1), of phenom-
ena arising due to the χ(2) and χ(3) nonlinearities. In the
following sections, we write down interaction Hamiltoni-
ans describing many of these nonlinear-optics phenomena
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to better compare them with our proposed analoguous
processes. However, it should be kept in mind that these
interaction Hamiltonians only describe the higher-order
interaction mediated by the χ(2) and χ(3) nonlinearities.
The lower-order interaction due to the χ(1) term remains
and limits the efficiency of the higher-order processes.

B. The quantum Rabi model

The Hamiltonian for a single two-level atom (a qubit)
coupled to a single resonator mode can be written as
(~ = 1 here and in the rest of the article)

Ĥ = ωaâ
†â+ ωq

σ̂z
2 + Ĥint. (3)

In the quantum Rabi model [17], the interaction is given
by

ĤRabi
int = g

(
â+ â†

)
σ̂x = g

(
â+ â†

)
(σ̂− + σ̂+) , (4)

where g is the coupling strength. Here, and in the follow-
ing parts of the paper that discuss deterministic realisa-
tions of nonlinear optics, we use the notation that â, b̂, ĉ,
and d̂ are the annihilation operators of resonator modes
with frequencies ωa, ωb, ωc, and ωd, respectively. In se-
tups with a single qubit, or with several identical qubits,
the qubit transition frequency is denoted ωq. In setups
with qubits having different transition frequencies, the
frequencies are denoted ωq1, ωq2, etc. The qubit opera-
tors σ̂z and σ̂x = σ̂−+ σ̂+ are Pauli matrices; σ̂− and σ̂+
are the qubit lowering and raising operators, respectively.

In the limit g � ωa, ωq, the terms â†σ̂+ and âσ̂− in
HRabi

int can be neglected in the rotating-wave approxi-
mation (RWA), leading to the Jaynes–Cummings (JC)
model [60]

ĤJC
int = g

(
âσ̂+ + â†σ̂−

)
. (5)

Note that in the JC model, the number of excitations
is conserved. In the quantum Rabi model, the number
of excitations can change, but their parity is conserved.
However, the quantum Rabi model can be generalized to

Ĥgen
int = g

(
â+ â†

)
(σ̂x cos θ + σ̂z sin θ) , (6)

where θ parameterizes the amount of longitudinal and
transversal couplings. This generalized quantum Rabi
model does not impose any restrictions on the number of
excitations. The Hamiltonian in Eq. (6) has been realized
in experiments with USC of flux qubits to resonators [19,
20, 29, 31]. In such setups with flux qubits, the flux-qubit
Hamiltonian can be written as

Hq = εˆ̃σz + ∆ˆ̃σx
2 , (7)

where ˆ̃σz,x are Pauli matrices in the qubit basis given by
clockwise- and anti-clockwise-circulating persistent cur-
rents ±Ip in the qubit loop, ε is an energy scale set by Ip

and an external magnetic flux, and ∆ is the tunnelling
energy between the two current states [61]. In this basis,
the inductive coupling to the resonator is given by

Hint = gind
(
â+ â†

) ˆ̃σz, (8)

where the coupling strength gind is set by Ip, the zero-
point current fluctuations in the resonator, and the mu-
tual inductance in the circuit. By rotating to the energy
eigenbasis of the qubit, one arrives at the interaction in
Eq. (6) [19, 20, 29, 31, 62–64]. The parameter θ can be
tuned by changing ε or ∆.

All these models can be straightforwardly extended to
include additional resonators and qubits. The presence
of one or more qubits provides the necessary nonlinearity
to realize various deterministic analogues of nonlinear-
optics processes that we will discuss in this article. For
some of these processes, such as three-wave mixing (see
Sec. III), the number of excitations changes by one; this
requires setups with the generalized quantum Rabi model
and its extensions. For other processes, e.g., four-wave
mixing (see Sec. IV), the number of excitations changes
by an even number or not at all; these processes can be
realized with extensions of the standard quantum Rabi
model or of the JC model, respectively. The fact that we
need to break the parity symmetry of the standard quan-
tum Rabi model for the three-wave-mixing analogues,
but not for the four-wave-mixing case, is reminiscent of
how, in conventional nonlinear optics, inversion symme-
try must be broken to realize χ(2) processes, but χ(3)

processes can occur without breaking that symmetry [4].
In a majority of the nonlinear-optics analogues consid-

ered in this article, higher-order processes, mediated by
the interaction Hamiltonians in Eqs. (4)-(6) (and their
extensions to additional resonators and qubits), connect
an initial state |i〉 with a final state |f〉 of the same energy
through an effective interaction Hamiltonian

Ĥeff
int = geff |f〉〈i|+ H.c., (9)

where geff is the strength of the effective coupling and
H.c. denotes the Hermitian conjugate of the preceding
terms. In many of the intermediate transitions that con-
tribute to this effective coupling, virtual photons are cre-
ated and destroyed. We provide a multitude of examples
of this in the following sections. It is important to note
here that the resonance between |i〉 and |f〉 can be set
up such that all other states |j〉 which potentially could
be reached through lower-order processes are far off reso-
nance. In this way, the influence of lower-order processes
can be made negligible, resulting in the higher-order pro-
cess given by Eq. (9) reaching unit efficiency.

To calculate the effective coupling strength geff ana-
lytically, three different techniques have been employed
in previous works. In Ref. [65], an effective Hamilto-
nian with explicit up- and downconversion terms was de-
rived through a series of unitary transformations com-
bined with approximations that only retained terms of
lowest order in gj/ |ωn − ωm|, where gj are the relevant
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coupling strengths in the setup and |ωn − ωm| are the en-
ergy differences of the relevant intermediate transitions.
In Refs. [52, 53, 55], the intermediate virtual transitions
were adiabatically eliminated, relying on the approxima-
tion that the population of the intermediate levels will
not change significantly if gj � |ωn − ωm|. In this arti-
cle, we follow the approach of Ref. [54], which calculated
geff using standard perturbation theory. Specifically, if
the shortest path between |i〉 and |f〉 is an nth-order
process, the effective coupling is given to lowest order by

geff =
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1) (Ei − Ej2) . . .
(
Ei − Ejn−1

) ,
(10)

where the sum goes over all virtual transitions forming
n-step paths between |i〉 and |f〉, Ek denotes the energy

of state |k〉, and Vkm = 〈k|Ĥint|m〉. A derivation of this
formula is given in Appendix B.

In general, the perturbation-theory method of Eq. (10)
appears to be the simplest way to calculate geff , espe-
cially for higher-order processes involving many virtual
transitions. The other methods mentioned above can be
more cumbersome, but provide more information such
as energy-level shifts and higher-order corrections to the
effective coupling.

III. THREE-WAVE MIXING

In this section, we look at three-wave mixing, start-
ing with a general description of sum- and difference-
frequency generation and then treating special cases such
as upconversion, downconversion, and Raman scattering;
see Fig. 1 for an overview. We provide deterministic ana-
logues based on the generalized quantum Rabi model for
each case.

A. General description: Generation of sum- and
difference-frequency fields

1. Nonlinear optics

The creation and annihilation of a photon with sum
frequency ω+ can be described in the Fock represen-
tation as |n1, n2, n+〉 → |n1 − 1, n2 − 1, n+ + 1〉, and
|n1, n2, n+〉 → |n1 + 1, n2 + 1, n+ − 1〉, respectively; see

also Fig. 1(a). The interaction Hamiltonian Ĥ
(+)
int for this

sum-frequency generation can be given by

Ĥ
(+)
int = gâ1â2â

†
+ + g∗â†1â

†
2â+, (11)

in terms of the annihilation (âj) and creation (â†j) oper-

ators for the input modes (for j = 1, 2) and the output
sum-frequency mode (for j = +), and the three-mode
complex coupling constant g.

Analogously, the creation and annihilation of a photon
with difference frequency ω− can be described in the Fock

representation as |n1, n2, n−〉 → |n1 − 1, n2 + 1, n− +
1〉 and |n1, n2, n−〉 → |n1 + 1, n2 − 1, n− − 1〉; see also

Fig. 1(a). The interaction Hamiltonian Ĥ
(−)
int describing

this process can be given by

Ĥ
(−)
int = gâ1â

†
2â
†
− + g∗â†1â2â−, (12)

using the same notation as in Eq. (11) except that the
subscript ‘+’, corresponding to the sum-frequency mode,
is replaced by ‘−’ for the difference-frequency mode.

The energy conservation principle implies that ω+ =
ω1 +ω2 and ω− = ω1−ω2, and the momentum conserva-
tion principle implies that k+ = k1+k2 and k− = k1−k2
for the wave vectors kj .

Note that in conventional nonlinear optics, the inter-
action Hamiltonians given here only describe the interac-
tion that results from the higher-order χ(2) nonlinearity.
The full interaction Hamiltonian for the system will also
contain lower-order terms, which limit the efficiency of
the sum- and difference-frequency generation described
by Eqs. (11)-(12).

2. Analogous processes

There are several possible setups that can realize ana-
logues of sum- and difference-frequency generation deter-
ministically. One such setup would be three resonators
coupled to a single qubit using the generalized Rabi in-
teraction in Eq. (6). If the resonator frequencies satisfy
ωa + ωb ≈ ωc, the two states |1, 1, 0, g〉 and |0, 0, 1, g〉
become resonant. Here, and in all the following discus-
sions of deterministic processes, kets list photon excita-
tion numbers, starting from the resonator with frequency
ωa, followed by qubit state(s) (g for ground state, e for ex-
cited state). The transition |1, 1, 0, g〉 → |0, 0, 1, g〉 then
corresponds to sum-frequency generation [a = 1, b = 2,
c = + makes the connection explicit with Sec. III A 1 and
Fig. 1(a)] and the transition |0, 0, 1, g〉 → |1, 1, 0, g〉 corre-
sponds to difference-frequency generation (a = 2, b = −,
c = 1).

The transition |1, 1, 0, g〉 → |0, 0, 1, g〉 is enabled by
paths with several intermediate virtual transitions. One
example of such a path is

|1, 1, 0, g〉 b̂σ̂+−−→ |1, 0, 0, e〉 ĉ†σ̂−−−−→ |1, 0, 1, g〉 âσ̂z−−→ |0, 0, 1, g〉,

where the terms from Eq. (6) that generate the transi-
tions are shown above the arrows. Note that the last
transition changes the number of excitations in the sys-
tem by one, which is only possible when the interaction
is given by the generalized quantum Rabi Hamiltonian
of Eq. (6). The last transition is also an example of how
a virtual photon is annihilated in the process. For the
transition in the opposite direction (difference-frequency
generation), a virtual photon is created instead.

By adiabatic elimination, or suitable unitary transfor-
mations combined with perturbation expansion in g over
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(a)
General

three-wave mixing
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ω1
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ω−

(b)
Degenerate

three-wave mixing
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(UC)

ω

ω
2ω
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(DC)

2ω
ω

ω

(c)
Spontaneous

Raman scattering

S
ωL

ωS

ωV
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ωL

ωV

ωA

(d)
Stimulated

Raman scattering

SS

ωL

nωS

(n + 1)ωS

ωV

SAS

ωL

nωA

ωV

(n + 1)ωA

Figure 1. Schematic representations (Feynman-like diagrams) of three-wave-mixing processes. (a) The two general types of
three-wave mixing are sum-frequency generation (SFG, above) and difference-frequency generation (DFG, below). (b) When
two of the involved frequencies are degenerate, we have either second-harmonic generation [SHG, or upconversion (UC), above]
or second-subharmonic generation [SSHG, or downconversion (DC), below]. (c) Another special case is spontaneous Raman
scattering, where a small part of the total energy is carried by a phonon (pictured as a wavy arrow), which is either outgoing
[Stokes Raman scattering (S), above] or incoming [anti-Stokes Raman scattering (AS), also known as sideband cooling, below].
(d) In stimulated Raman scattering, the rate is increased due to the presence of n additional photons of the same frequency
as the outgoing one. Stimulated Stokes Raman scattering (SS) is shown above and stimulated anti-Stokes Raman scattering
(SAS) is shown below.

some frequency, it can be shown that these virtual transi-
tions combine to give an effective interaction Hamiltonian

Ĥeff
int = geff |0, 0, 1, g〉〈1, 1, 0, g|+ H.c., (13)

where the effective coupling geff , in general, becomes
weaker the more intermediate steps are needed. Later
in this section, we will provide examples with detailed
diagrams of the virtual transitions and calculations of
the effective coupling.

In contrast to the interaction Hamiltonians for conven-
tional nonlinear optics given in Sec. III A 1, the effective
interaction given in Eq. (13) does not need to compete
with lower-order processes if the transition energies in
the system are chosen appropriately. For example, given
the resonance condition ωa + ωb ≈ ωc, the intermediate
states |1, 0, 0, e〉 and |1, 0, 1, g〉, with energies ωa+ωq and
ωa + ωc, respectively, will be far off resonance as long as
ωq is chosen sufficiently far from ωb. Thus, even though
these intermediate states can be reached via lower-order
processes, they will not become populated and will not
limit the efficiency of the analogue of three-wave mixing.

We note that, if at least one of the excitations in the
three-wave mixing can be hosted in a qubit, other se-
tups become possible. Both a single resonator coupled to
two qubits and two resonators coupled to a single qubit
could be used to implement the processes in Fig. 1(a).
In particular, Ref. [54] analyzed the former case with
ωa ≈ ωq1 + ωq2, showing an effective coupling between
|1, g, g〉 and |0, e, e〉. In the latter case, the effective cou-
pling of interest would be that between the states |1, 1, g〉
and |0, 0, e〉 when ωa + ωb ≈ ωq.

B. Degenerate three-wave mixing:
Second-harmonic and second-subharmonic

generation

1. Nonlinear optics

Let us assume the degenerate process of three-wave
mixing for which â1 = â2 ≡ â and ω1 = ω2 ≡ ω.
The energy conservation principle implies ω+ = 2ω.
The processes of the creation and annihilation of pho-
tons can be written as |n, n+〉 → |n − 2, n+ + 1〉 and
|n, n+〉 → |n + 2, n+ − 1〉; see also Fig. 1(b). The inter-
action Hamiltonian reads as

Ĥint = gâ2â†+ + g∗â†2â+. (14)

For second-harmonic generation (also referred to as up-
conversion), one can assume that the initial pure state is
|ψ(t0)〉 =

∑∞
n=0 cn|n, 0〉. For second-subharmonic gen-

eration (also called downconversion), one can assume
that the initial pure state is |ψ(t0)〉 =

∑∞
n+=0 cn+ |0, n+〉.

Here, cn and cn+ denote arbitrary complex superposition
amplitudes satisfying the normalization conditions. It is
seen that our description of second-subharmonic genera-
tion can be the same as that for second-harmonic gener-
ation except with a different initial state.

2. Analogous processes

a. Two resonators There are, again, several possi-
ble setups to realize analogues of up- and downconversion
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deterministically. In Ref. [65], it was shown that an ef-
fective Hamiltonian like that of Eq. (14) can be achieved
with two resonator modes coupled to a qubit with the in-
teraction given by Eq. (6). However, in that work some
additional assumptions were made, since ultrastrong cou-
pling had not yet been experimentally demonstrated at
the time. With strong enough coupling, the virtual tran-
sitions shown in the upper left panel of Fig. 2 combine
to achieve a robust effective coupling between the states
|1, 0, g〉 and |0, 2, g〉, which results in both up- and down-
conversion. Note how virtual photons and qubit excita-
tions are created or annihilated in all transitions marked
with dashed arrows.

To be precise, the full Hamiltonian of the system is
here given by

Ĥ = ωaâ
†â+ ωbb̂

†b̂+ ωq
σ̂z
2 + Ĥint, (15)

Ĥint =
[
ga
(
â+ â†

)
+ gb

(
b̂+ b̂†

)]
× (σ̂x cos θ + σ̂z sin θ) , (16)

and the effective interaction due to the virtual transitions
shown in Fig. 2 becomes

Ĥeff
int = geff |1, 0, g〉〈0, 2, g|+ H.c. (17)

The effective coupling geff can be calculated with third-
order perturbation theory. From Eq. (10), we have

geff =
∑
n,m

〈f |Ĥint|n〉〈n|Ĥint|m〉〈m|Ĥint|i〉
(Ei − En) (Ei − Em) . (18)

Looking at the upper left panel of Fig. 2, we see that
there are 12 paths contributing to the effective coupling
between |i〉 = |0, 2, g〉 and |f〉 = |1, 0, g〉. Three of these
paths consist solely of σ̂z-mediated transitions (dashed
red arrows in the figure). Their contribution is

√
2gag2

b sin3 θ

(
1

ωa∆ba
− 1
ωb∆ba

− 1
2ω2

b

)
, (19)

where we introduced the notation ∆nm = ωn−ωm. This
contribution sums to zero on resonance (ωa = 2ωb). The
contribution from the remaining 9 paths is (introducing
the notation Ωnm = ωn + ωm)

√
2gag2

b sin θ cos2 θ

[
1

(∆ab + ωq) Ωaq
− 1
ωa (∆ab + ωq)

− 1
(∆ab + ωq) ∆bq

+ 1
ωb (∆ab + ωq)

− 1
∆abΩaq

+ 1
∆ab∆bq

+ 1
(2ωb − ωq) Ωaq

− 1
ωb (2ωb − ωq)

− 1
2ωb∆bq

]
, (20)

which on resonance reduces to

geff =
3
√

2gag2
bω

2
q sin(2θ) cos θ

4ω4
b − 5ω2

bω
2
q + ω4

q

. (21)

Since the transition paths in the upper left panel of Fig. 2
go via two intermediate levels, geff becomes on the order
of (gj/ω)2 weaker than gj (j = a, b). This expression is
slightly more complicated than that derived in Ref. [65],
where unitary transformations were combined with per-
turbation expansions using the additional simplifying as-
sumptions that gb � |ωq − ωb| � ωa.

A further demonstration of the effective coupling in
Eq. (17) is given in Fig. 3, where we plot some of the
energy levels in the system as a function of ωa for the
JC (dashed-dotted lines), Rabi (dashed lines), and gen-
eralized Rabi (solid lines) interactions. The inset shows
a clear avoided crossing between |1, 0, g〉 and |0, 2, g〉; the
splitting is set by geff . The JC and Rabi interactions
do not give rise to such an avoided crossing since they
cannot change the excitation number by one. However,
all three interactions give rise to an avoided crossing be-
tween |1, 0, g〉 and |0, 0, e〉 to the left in the figure, since
those two states have the same number of excitations.

b. Multiphoton Rabi oscillations An alternative im-
plementation of up- and downconversion is multiphoton
Rabi oscillations, illustrated in the upper middle panel
of Fig. 2 and discussed in Ref. [53]. In this case, virtual
transitions induce an effective coupling (and, thus, Rabi
oscillations) between the states |0, e〉 and |2, g〉 for a single
resonator coupled to a single qubit with ωq ≈ 2ωa. The
transitions are mediated by the generalized Rabi Hamil-
tonian Eq. (6) and give rise to an effective interaction

Ĥeff
int = geff |0, e〉〈2, g|+ H.c. (22)

The effective coupling is easily calculated with second-
order perturbation theory. With |i〉 = |2, g〉 and |f〉 =
|0, e〉, Eq. (10) gives

geff =
√

2g2 sin θ cos θ
(

1
∆aq

− 1
ωa

)
. (23)

Using that on resonance ωa = ωq/2, this reduces to

geff = −2
√

2 sin(2θ) g
2

ωq
, (24)

which was also derived in Ref. [53] using adiabatic elim-
ination. We note that the effective coupling acquires a
factor g/ωq due to the fact that each path between |i〉
and |f〉 contains one intermediate level.
c. Two identical qubits Yet another option, illus-

trated in the upper right panel of Fig. 2 and discussed
in Ref. [54], is to couple a single resonator to two iden-
tical qubits such that the process |1, g, g〉 ↔ |0, e, e〉 is
realized. The Hamiltonian for this setup is

Ĥ = ωaâ
†â+

2∑
j=1

ωq
σ̂

(j)
z

2 + Ĥint, (25)

Ĥint = g
(
â+ â†

) 2∑
j=1

(
σ̂(j)
x cos θ + σ̂(j)

z sin θ
)
. (26)
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Second-subharmonic generation
(downconversion)

2ω
ω

ω

|1, 0, g〉

|1, 1, e〉

|1, 1, g〉

|0, 0, e〉

|0, 0, g〉

|1, 2, e〉

|1, 2, g〉

|0, 1, e〉

|0, 1, g〉

|0, 2, g〉

|0, e〉

|1, e〉

|1, g〉

|2, g〉

|1, g, g〉

1√
2 (|2, e, g〉 + |2, g, e〉)

|2, g, g〉

1√
2 (|0, e, g〉 + |0, g, e〉)

|0, g, g〉

|1, e, e〉

1√
2 (|1, e, g〉
+|1, g, e〉)

|0, e, e〉

2ω

ω

ω

Figure 2. Realizations of down- and upconversion. The upper left panel shows all virtual transitions that contribute to the
downconversion process (second-subharmonic generation) |1, 0, g〉 → |0, 2, g〉 to lowest order. Blue solid arrows mark transitions
that do not change the number of excitations [these transitions are mediated by the terms in the JC model, Eq. (5)], blue dashed
arrows correspond to transitions that change the number of excitations by two [these transitions are mediated by the non-JC
terms in the quantum Rabi model, Eq. (4)], and red dashed arrows show transitions that change the number of excitations by
one [these transitions are mediated by the additional terms in the generalized Rabi model, Eq. (6)]. We have set ωa = 2ωb

and ωq = 1.5ωb. Similarly, the upper middle panel shows all virtual transitions that contribute to the downconversion process
|0, e〉 → |2, g〉 to lowest order. Here, we have set ωq = 2ωa. The upper right panel shows all virtual transitions that contribute
to the downconversion process |1, g, g〉 → |0, e, e〉 to lowest order. In this case, we have set ωa = 2ωq. Note that all intermediate
energy levels in the upper panels are detuned far off resonance from the initial and final states, which means that lower-order
processes will not be part of the effective interaction Hamiltonians given in the text of Sec. III B 2. The lower panel shows the
generic level diagram for the process in nonlinear optics. Dashed horizontal lines denote virtual levels. If the directions of all
arrows in the entire figure are reversed, upconversion (second-harmonic generation) is shown instead.

and the effective interaction becomes

Ĥeff
int = geff |1, g, g〉〈0, e, e|+ H.c. (27)

The third-order-perturbation-theory calculations for this
process following Eq. (10) were already performed in the
appendix of Ref. [54]. Here, we merely restate their result

geff = −8
3
g3

ω2
q

sin θ cos2θ, (28)

which is valid on resonance, when ωa = 2ωq. Again,

we see that the effective coupling has a factor (g/ω)2
,

since each path contributing to the coupling contains two
intermediate states.

In conclusion, we note that the multiphoton Rabi os-
cillation only requires two intermediate transitions, while

the other two proposals require three. This means that
the multiphoton Rabi oscillation has a larger effective
coupling than the other two setups and is easier to im-
plement.

C. Raman scattering

1. Nonlinear optics

In nonlinear optics, Raman scattering is a special
case of nondegenerate three-wave mixing, mixing photons
and optical phonons of the scattering nonlinear medium.
Usually Raman scattering refers to the scattering of a
light beam on optical phonons, which results in chang-
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1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

ωa/ωb

0.2

0.4

0.6

0.8

1.0

1.2
E
/ħ
ω
b

|0, 1, g〉

|1, 0, g〉

|0, 0, e〉

|0, 2, g〉

1.90 1.92 1.94 1.96
1.10

1.12

1.14

1.16

Figure 3. Energy levels for two resonator modes coupled to
a qubit via the JC [Eq. (5), dashed-dotted lines], quantum
Rabi [Eq. (4), dashed lines], and generalized quantum Rabi
[Eq. (6), solid lines] interactions, as a function of the reso-
nance frequency ωa of the first resonator mode. The inset
shows a zoom-in of the area marked by the black rectangle in
the upper right corner. Parameters: ωq = 1.6ωb, ga = 0.07ωb,
gb = 2ga, and θ = π/6. The numerical simulations were per-
formed in QuTiP [66, 67].

ing the frequency of the light beam [68]. We note that
analogous scattering of photons on acoustic phonons is
referred to as Brillouin scattering.

We consider the following fields: a driving laser (L)
mode of frequency ωL, a Stokes (S) mode of frequency
ωS , an anti-Stokes (A) mode of frequency ωA, and optical
vibrational phonon (V ) modes of frequencies ωV j (j =
1, 2, . . . ) as described by the corresponding creation (â†k)
and annihilation (âk) operators for k = L,A, S, V j.

a. Stokes Raman scattering Raman scattering with
Stokes frequency ωS < ωL is shortly referred to as
Stokes (Raman) scattering. The process is illustrated in
Fig. 1(c) and the interaction Hamiltonian can be written
as

Ĥ
(S)
int =

∑
j

gSj âLâ
†
S â
†
V j + H.c., (29)

or its simpler single-phonon version

Ĥ
(S)
int = gS âLâ

†
S â
†
V + H.c. (30)

b. Anti-Stokes Raman scattering (sideband cooling)
One can also analyze the Raman scattering with anti-
Stokes frequency ωA > ωL, referred to as anti-Stokes
(Raman) scattering and illustrated in Fig. 1(c). The in-

teraction Hamiltonian for the anti-Stokes Raman scat-
tering can be written as

Ĥ
(A)
int =

∑
j

g∗Aj âLâ
†
AâV j + H.c., (31)

or its simpler single-phonon version

Ĥ
(A)
int = g∗AâLâ

†
AâV + H.c. (32)

Since a phonon is absorbed in this process, it can also be
referred to as sideband cooling of the phononic mode.

c. Stimulated Raman scattering The presence of ad-
ditional photons in the S or A modes, as shown in
Fig. 1(d), can increase the rate of Raman scattering.
This is called stimulated Raman scattering. To fur-
ther distinguish the processes in Fig. 1(c) from those in
Fig. 1(d), the former can be referred to as spontaneous
Raman scattering.

2. Analogous processes

We can achieve close analogues of Raman scattering in
our deterministic setups by letting a qubit play the role
of a phonon. The qubit is coupled to two resonators, one
representing the laser mode and the other representing
the Stokes or anti-Stokes mode. The Hamiltonian of the
system is given by Eqs. (15) and (16).

a. Stokes Raman scattering Setting ωa = ωb + ωq,
and making the connections a = L, b = S, and q = V ,
the transition |1, 0, g〉 → |0, 1, e〉 emulates Stokes Raman
scattering. The virtual transitions involved are shown in
Fig. 4. This process is further discussed in the concur-
rent work of Ref. [55] as means to achieve single-photon
frequency conversion controlled by the qubit. The ef-
fective interaction due to the virtual transitions when
ωq ≈ ωa − ωb becomes

Ĥeff
int = geff |1, 0, g〉〈0, 1, e|+ H.c. (33)

Second-order perturbation theory using Eq. (10) and
Fig. 4 gives

geff = gagb sin θ cos θ
(

1
−ωa

− 1
∆qa

+ 1
ωb
− 1

Ωbq

)
, (34)

which reduces to

geff = gagb

(
1
ωb
− 1
ωa

)
sin(2θ) (35)

on resonance (ωq = ωa−ωb). This agrees with the result
obtained using adiabatic elimination in Ref. [55].

We also note that it has been shown that a photon scat-
tering off a qubit ultrastrongly coupled to an open trans-
mission line can be downconverted in frequency, leaving
some of its energy with the qubit [48]. However, this
downconversion process is not deterministic.
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Stokes Raman
scattering

ωL
ωS

ωV

|0, 0, g〉

|0, 0, e〉

|1, 0, g〉 |0, 1, e〉

|1, 1, g〉

|1, 1, e〉

ωL

ωS

ωV

Figure 4. Raman scattering and its deterministic analogue.
The upper panel shows all virtual transitions that contribute,
to lowest order, to the process |1, 0, g〉 → |0, 1, e〉, which cor-
responds to Stokes Raman scattering. The lower panel shows
the generic level diagram for the process in nonlinear optics.
The same arrow and level styles as in Fig. 2 are used; we have
set ωa = 3ωq and ωb = 2ωq. If the directions of all arrows
in the entire figure are reversed, and the labels are changed
such that S → L and L→ A, anti-Stokes scattering is shown
instead. Stimulated Stokes (anti-Stokes) Raman scattering is
given by adding n to the photon number in the second (first)
resonator mode in the upper panel and adding n incoming
and outgoing photons to the S (A) mode in the rest of the
figure.

b. Anti-Stokes Raman scattering The same setup as
for Stokes Raman scattering, but considering the reverse
transition |0, 1, e〉 → |1, 0, g〉, implements anti-Stokes Ra-
man scattering. In this case, we need to make the iden-
tifications a = A, b = L, and q = V .

c. Stimulated Raman scattering We can again con-
sider the same setup, but instead look at the transitions
|1, n, g〉 → |0, n + 1, e〉 and |n, 1, e〉 → |n + 1, 0, g〉 to ob-
tain stimulated Stokes Raman scattering and stimulated
anti-Stokes Raman scattering, respectively. In calculat-
ing the effective coupling geff between the initial and final
states, as done above and in Ref. [55] for the case n = 0,
we will, for each possible path between them, multiply
the corresponding transition matrix elements. As can be
seen from Fig. 4, each path contains exactly one transi-
tion that changes the number of excitations in one of the
modes from n to n+ 1. This contributes a factor

√
n+ 1

to the effective coupling, showing that the presence of the
additional photons stimulates the transition.

IV. FOUR-WAVE MIXING

In this section, we treat four-wave mixing, starting as
in Sec. III with a general description and then treating
special cases, such as degenerate four-wave mixing and
hyper-Raman scattering. An overview of these processes
is given in Fig. 5. We again provide deterministic ana-
logues for each case. Since there are many similarities to
the material presented in Sec. III, the treatment here will
be a little more concise. However, compared to Sec. III
there are more processes to cover and longer paths of
virtual transitions to consider in calculating the effective
coupling for those processes.

A. General description

1. Nonlinear optics

Four-wave mixing comes in three types, as illustrated
in Fig. 5(a). Type I, with the interaction Hamiltonian

Ĥint = gâ1â2â
†
3â
†
4 + g∗â†1â

†
2â3â4, (36)

has two incoming and two outgoing signals. Processes
with three incoming signals and one outgoing are here
called type II, and processes with one incoming signal
and three outgoing ones are here referred to as type III.
The interaction Hamiltonian for both types II and III can
be written as

Ĥint = gâ1â2â3â
†
4 + g∗â†1â

†
2â
†
3â4. (37)

2. Analogous processes

There are, just as for three-wave mixing, several possi-
ble setups that allow deterministic analogues of the four-
wave mixing processes. The clearest analogy is proba-
bly four resonators all coupled to a single qubit. Ad-
justing the resonator frequencies to satisfy the condi-
tion ωa + ωb ≈ ωc + ωd, the states |1, 1, 0, 0, g〉 and
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ω4
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ω1
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ω3

ω4
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ω1

ω2
ω3
ω4

(b)
Degenerate

four-wave mixing

THG
(UC)

ω

ω

ω

3ω

TSHG
(DC)

3ω

ω

ω

ω

(c)
Hyper-Raman scattering,

type I

HIS
ωL

ωL

ωS

ωV
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ωL

ωL

ωV

ωA

(d)
Hyper-Raman scattering,

type II
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ωL

ωS

ωV

ωV

HIIAS

ωL

ωV

ωV

ωA

Figure 5. Schematic representations (Feynman-like diagrams) of four-wave-mixing processes. (a) Four-wave mixing can be
divided into three general categories: type I, with two incoming and two outgoing signals (above), type II, with three incoming
signals and one outgoing (middle), and type III, with one incoming signal and three outgoing ones (below). (b) When three of
the frequencies are degenerate, we have either third-harmonic generation (THG, or upconversion, above) or third-subharmonic
generation (TSHG, or downconversion, below). When two of the frequencies are degenerate, four processes are possible (not
pictured here, but shown in Appendix C). (c) When a phonon is involved, the process is called hyper-Raman scattering of
type I. The only change to Stokes (HIS, above) and anti-Stokes (HIAS, below) Raman scattering from the three-wave-mixing
case [see Fig. 1(c)] is that there are two (degenerate) incoming photons instead of one. (d) With two degenerate phonons, the
process is called hyper-Raman scattering of type II. The two phonons replace the single one in the Stokes (HIIS, above) and
anti-Stokes (HIIAS, below) versions of ordinary Raman scattering from Fig. 1(c).

|0, 0, 1, 1, g〉 become resonant and the transitions between
these states will constitute type-I four-wave mixing. Sim-
ilarly, if ωa +ωb +ωc ≈ ωd, the transition |1, 1, 1, 0, g〉 →
|0, 1, 1, 1, g〉 corresponds to type-II mixing and the re-
verse process |0, 1, 1, 1, g〉 → |1, 0, 0, 0, g〉 will be type-III
mixing.

If at least one of the excitations in the four-wave mix-
ing can be hosted in a qubit, additional setups are pos-
sible. With three resonators coupled to a single qubit,
|1, 1, 0, g〉 ↔ |0, 0, 1, e〉 corresponds to type-I mixing and
the processes |1, 1, 1, g〉 ↔ |0, 0, 0, e〉 corresponds to type-
II (→) and type-III (←) mixing, respectively. In the
same way, with two resonators coupled to two qubits,
|1, 1, g, g〉 ↔ |0, 0, e, e〉 are analogues of type-I mixing
and the processes |0, 1, e, e〉 ↔ |1, 0, g, g〉 are some pos-
sible analogues for type-II (→) and type-III (←) mixing,
respectively. Finally, with a single resonator coupled to
three qubits, |1, e, g, g〉 ↔ |0, g, e, e〉 corresponds to type-
I mixing and the processes |0, e, e, e〉 ↔ |1, g, g, g〉 corre-
sponds to type-II (→) and type-III (←) mixing, respec-
tively. Hosting at least one excitation in a qubit may be
preferable, since such setups, in general, will require one
less intermediate virtual transition than the setup with
four resonators and a qubit. Barring destructive inter-
ference between the various virtual transition paths, this
implies that the effective coupling will be weaker in the
latter setup.

All these processes can occur due to intermediate vir-
tual transitions as before. However, in contrast to three-
wave mixing, the four-wave mixing analogues do not re-

quire the generalized Rabi interaction Hamiltonian from
Eq. (6). The standard quantum Rabi model in Eq. (4)
is sufficient, since the parity of the number of excita-
tion is conserved in four-wave mixing. In fact, for type-I
processes, which do not change the number of excita-
tions, the interaction terms from the JC model in Eq. (5)
are sufficient to mediate the required virtual transitions.
However, terms from the full quantum Rabi model can
still give a significant contribution to the effective cou-
pling between the initial and final states of such pro-
cesses.

B. Degenerate four-wave mixing: Third-harmonic
and third-subharmonic generation

In this subsection, we limit our analysis to the cases
where three of the signals involved are degenerate. The
cases with two degenerate signals are reviewed briefly in
Appendix C.

1. Nonlinear optics

Let us analyze a degenerate case of four-wave mixing
assuming â1 = â2 = â3 ≡ â, â4 ≡ â+, and ω+ = 3ω.
The creation and annihilation of a photon in the Fock
basis can be given as |n, n+〉 → |n − 3, n+ + 1〉 for
third-harmonic generation (upconversion) and |n, n+〉 →
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|n+ 3, n+ − 1〉 for third-subharmonic generation (down-
conversion); see also Fig. 5(b). The interaction Hamilto-
nian for both processes reads as

Ĥint = gâ3â†+ + g∗â†3â+. (38)

The initial pure state for third-subharmonic generation
is usually chosen as |ψ(t0)〉 =

∑∞
n=0 cn|n, 0〉, while that

for third-harmonic generation can read as |ψ(t0)〉 =∑∞
n+=0 cn+ |0, n+〉, where cn and cn+ are arbitrary com-

plex amplitudes like in Sec. III B 1.

2. Analogous processes

Also in this case, there are various possible determin-
istic setups, extensions of those discussed in Sec. III B 2.
The three most straightforward setups are illustrated in
Fig. 6. We note from the figure that although these se-
tups in general require one more intermediate step than
in the three-wave-mixing case, the calculations of the ef-
fective coupling are simplified by the fact that we only
need to use transitions mediated by the quantum Rabi
Hamiltonian (blue arrows in the figure), and not the σ̂z
terms of the generalized Rabi Hamiltonian (red arrows in
Fig. 2), since the excitation-number parity is conserved.

a. Two resonators The first analogue, shown in the
upper left panel of Fig. 6, utilizes two resonators, with
frequencies ωa ≈ 3ωb, coupled to a single qubit such
that virtual intermediate transitions enable the process
|1, 0, g〉 ↔ |0, 3, g〉, which realizes both up- and downcon-
version. The full Hamiltonian for this system is given by
Eq. (15) and

Ĥint =
[
ga
(
â+ â†

)
+ gb

(
b̂+ b̂†

)]
σ̂x. (39)

We can derive, in the same way as before, an effective
Hamiltonian

Ĥeff
int = geff |1, 0, g〉〈0, 3, g|+ H.c. (40)

The effective coupling requires fourth-order perturbation
theory to calculate. Summing the four contributing paths
using Eq. (10) with |i〉 = |0, 3, g〉 and |f〉 = |1, 0, g〉 gives

geff =
√

6gag3
b

[
− 1

(Ωaq − 2ωb) ∆abΩaq

+ 1
(Ωaq − 2ωb) ∆ab∆bq

− 1
2ωb (Ωaq − 2ωb) ∆bq

+ 1
2ωb (3ωb + ωq) ∆bq

]
. (41)

Applying the resonance condition ωa = 3ωb simplifies
this result to

geff =
√

6gag3
b

2ωb

[
1

∆bq (3ωb − ωq)
− 1

Ωbq (3ωb + ωq)

]
= 4

√
6gag3

bωq
9ω4

b − 10ω2
bω

2
q + ω4

q

, (42)

which scales as (gj/ω)3, j = a, b, as expected for a fourth-
order process.

b. Multiphoton Rabi oscillations The second option,
shown in the upper middle panel of Fig. 6, is multiphoton
Rabi oscillations between the states |0, e〉 and |3, g〉 with
a single resonator coupled to a single qubit (ωq ≈ 3ωa),
a process studied in Refs. [52, 53]. The Hamiltonian for
the system is given by Eqs. (3) and (4).

The effective interaction Hamiltonian for this process
is

Ĥeff
int = geff |0, e〉〈3, g|+ H.c. (43)

The effective coupling for three-photon Rabi oscillations
follows immediately from third-order perturbation theory
as there is only a single path contributing. With |i〉 =
|3, g〉 and |f〉 = |0, e〉, Eq. (10) gives

geff =
√

6g3

2ωa∆aq
= −9

√
6g3

4ω2
q

, (44)

where we used the resonance condition ωq = ωa/3 in the
last step. This result was also derived in Ref. [52] using
adiabatic elimination.
c. Three identical qubits A third possibility, shown

in the upper right panel of Fig. 6, is coupling a single
resonator to three identical qubits (ωa = 3ωq), such that
the process |1, g, g, g〉 ↔ |0, e, e, e〉 is implemented, as dis-
cussed in Ref. [54]. In this case, the Hamiltonian for the
system is

Ĥ = ωaâ
†â+

3∑
j=1

ωq
σ̂

(j)
z

2 + Ĥint, (45)

Ĥint = g
(
â+ â†

) 3∑
j=1

σ̂(j)
x , (46)

and the effective interaction Hamiltonian of interest is

Ĥeff
int = geff |1, g, g, g〉〈0, e, e, e|+ H.c. (47)

The effective coupling can be calculated with fourth-
order perturbation theory. Following Eq. (10), adding up
the contributions from the two paths with |i〉 = |0, e, e, e〉
and |f〉 = |1, g, g, g〉, leads to

geff = g3
(

3
∆2
qa

+ 6
2ωq∆qa

)
= −3g3 (ωa − 3ωq)

ωq∆2
qa

, (48)

which goes to zero on resonance (ωa = 3ωq); the two
paths interfere destructively then. However, as shown
numerically in the appendix of Ref. [54], a coupling be-
tween the states |1, g, g, g〉 and |0, e, e, e〉 nevertheless ex-
ists close to that resonance. This is partly due to the fact
that the energy levels are shifted from their bare-state
values to the dressed states induced by the ultrastrong in-
teraction and partly due to the influence of higher-order
processes.

Comparing the three analogues given here, we note
that the multiphoton Rabi oscillations and the single
photon exciting three qubits both require one less inter-
mediate step than the setup with two resonators and one
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Figure 6. Realizations of down- and upconversion with four-wave mixing. The upper left panel shows all virtual transitions
that contribute to the downconversion process (third-subharmonic generation) |1, 0, g〉 → |0, 3, g〉 to lowest order. Similarly, the
upper middle panel shows all virtual transitions that contribute to the downconversion process |0, e〉 → |3, g〉 to lowest order,
and the upper right panel shows all virtual transitions that contribute to the downconversion process |1, g, g, g〉 → |0, e, e, e〉 to
lowest order. The lower panel show the generic level diagram for the process in nonlinear optics. The same arrow and level
styles as in Fig. 2 are used. In the upper left panel, ωa = 3ωb and ωq = 2ωb; in the upper middle panel, we have set ωq = 3ωa;
in the upper right panel, ωa = 3ωq. If the directions of all arrows in the entire figure are reversed, upconversion (third-harmonic
generation) is shown instead.

qubit. However, in the three-qubit case this does not nec-
essarily translate into a stronger effective coupling due to
destructive interference between the virtual transitions.
The possibility of such destructive interference diminish-
ing the effective coupling needs to be kept in mind when
designing analogues of nonlinear optics in these setups.
We will see one more example of this phenomenon below.

C. Hyper-Raman scattering, type I: Two-photon
processes

1. Nonlinear optics

Hyper-Raman scattering is a generalization of Raman
scattering (see Sec. III C) to include either multiple in-
coming photons or multiple phonons. Here, we first an-
alyze hyper-Raman scattering based on two-photon pro-
cesses (we refer to this as type I hyper-Raman scattering),
as described by the following Hamiltonians for Stokes fre-

quency,

Ĥ
(S)
int = gS â

2
Lâ
†
S â
†
V + H.c., (49)

and anti-Stokes frequency (which could also be called
sideband hypercooling of type I),

Ĥ
(A)
int = g∗Aâ

2
Lâ
†
AâV + H.c. (50)

These processes are sketched in Fig. 5(c). We note that
here ωS > ωL, contrary to the standard Raman scatter-
ing case. For simplicity, we have omitted multiphonon
versions analogous to Eq. (29).

2. Analogous processes

Just as in Sec. III C 2, we consider setups where qubit
excitations play the role of phonons in the deterministic
analogues of hyper-Raman scattering. For the type I pro-
cess, two resonators (one corresponding to the L mode,
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one corresponding to the S or A mode) are coupled to a
single qubit. This setup is studied further in our concur-
rent work Ref. [55] as a means to implement deterministic
up- and downconversions controlled by a qubit.

a. Stokes Hyper-Raman scattering, type I Setting
ωa+ωq ≈ 2ωb and making the connections a = S, b = L,
and q = V , we see that the process |0, 2, g〉 → |1, 0, e〉
corresponds to Stokes hyper-Raman scattering of type I.
In the upper panel of Fig. 7, we show the virtual tran-
sitions contributing to this process. From the full sys-
tem Hamiltonian, given by Eqs. (15) and (39) just as for
the three-photon frequency conversion in Sec. IV B 2 a,
we can derive the effective Hamiltonian

Ĥeff
int,HIS = geff |0, 2, g〉〈1, 0, e|+ H.c. (51)

Third-order perturbation theory following Eq. (10) gives

geff =
√

2gag2
b

(
1

−2ωb∆qb
+ 1

∆ab∆qb
+ 1

∆abΩaq

)
=
√

2gag2
b (ωa − 2ωb)
ωb∆2

ab

, (52)

where we used the resonance condition ωq = 2ωb − ωa in
the last step.

We note that one of the paths contributing to the cou-
pling [the second term in Eq. (52)] only requires interac-
tions given by the JC version of the interaction Hamilto-
nian,

Ĥint = ga
(
âσ̂+ + â†σ̂−

)
+ gb

(
b̂σ̂+ + b̂†σ̂−

)
. (53)

Omitting the other terms from Eq. (52) and setting ωq =
2ωb − ωa, the result is

geff = −
√

2gag2
b

∆2
ab

. (54)

These effective couplings are also calculated in Ref. [55]
using adiabatic elimination. In that case, the results are
a little more complicated since some higher-order con-
tributions are included, but to lowest order the results
coincide with those given here.

b. Anti-Stokes Hyper-Raman scattering, type I If we
instead set ωa ≈ 2ωb + ωq in the same setup as for
Stokes hyper-Raman scattering of type I (and make the
connections a = A, b = L, and q = V ), the transi-
tion |0, 2, e〉 → |1, 0, g〉 corresponds to anti-Stokes hyper-
Raman scattering of type I. The effective interaction
Hamiltonian becomes

Ĥeff
int,HIAS = geff |0, 2, e〉〈1, 0, g|+ H.c. (55)

The virtual transitions contributing to the process
|0, 2, e〉 → |1, 0, g〉 are shown in Fig. 8. Third-order per-
turbation theory following Eq. (10) gives

geff =
√

2gag2
b

(
1

2ωbΩqb
− 1

∆abΩqb
+ 1

∆ab∆aq

)
=
√

2gag2
b (ωa − 2ωb)
ωb∆2

ab

, (56)

Stokes hyper-Raman
scattering, type I

ωL

ωL

ωS

ωV

|0, 2, g〉

|1, 2, e〉

|0, 1, e〉

|1, 1, g〉

|0, 0, g〉

|1, 0, e〉

ωL

ωL

ωS

ωV

Figure 7. Stokes hyper-Raman scattering of type I and its
deterministic analogue. The upper panel shows all virtual
transitions that contribute to lowest order to the transition
|0, 2, g〉 → |1, 0, e〉. The lower panel shows the generic level
diagram for the process in nonlinear optics. The connection
becomes clear with the identifications a = S, b = L, and
q = V . The same arrow and level styles as in Fig. 2 are used;
we have set ωa = 3ωq and ωb = 2ωq.

where we used the resonance condition ωq = ωa − 2ωb in
the last step. We note that the expression is the same
as the one obtained for type-I Stokes hyper-Raman scat-
tering in Eq. (52), despite the resonance condition being
different.

This effective coupling is also calculated in Ref. [55] us-
ing adiabatic elimination. Again, in that case, the result
is a little more complicated since some higher-order con-
tributions are included, but to lowest order it coincides
with Eq. (56).
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Anti-Stokes hyper-Raman
scattering, type I

ωL

ωL

ωV

ωA

|0, 2, e〉

|1, 2, g〉

|0, 1, g〉

|1, 1, e〉

|0, 0, e〉

|1, 0, g〉

ωV

ωL

ωL

ωA

Figure 8. Anti-Stokes hyper-Raman scattering of type I (side-
band hypercooling) and its deterministic analogue. The upper
panel shows all virtual transitions that contribute to lowest
order to the transition |0, 2, e〉 → |1, 0, g〉. The lower panel
shows the generic level diagram for the process in nonlinear
optics. The connection becomes clear with the identifications
a = A, b = L, and q = V . The same arrow and level styles as
in Fig. 2 are used; we have set ωa = 5ωq and ωb = 2ωq.

D. Hyper-Raman scattering, type II: Two-phonon
processes

1. Nonlinear optics

Hyper-Raman scattering can also be based on two-
phonon processes (we refer to this as type II hyper-
Raman scattering), as described by the following inter-
action Hamiltonians with Stokes frequency,

Ĥ
(S)
int = gS âLâ

†
S â
†
V 1â

†
V 2 + H.c., (57)

and with anti-Stokes frequency (which could also be
called sideband hypercooling of type II),

Ĥ
(A)
int = g∗AâLâ

†
AâV 1âV 2 + H.c. (58)

These processes are sketched in Fig. 5(d).

2. Analogous processes

The closest analogue here is a setup with two res-
onators both coupled to two identical qubits. The full
system Hamiltonian is given by

Ĥ = ωaâ
†â+ ωbb̂

†b̂+
2∑
j=1

ωq
σ̂

(j)
z

2 + Ĥint, (59)

Ĥint =
[
ga
(
â+ â†

)
+ gb

(
b̂+ b̂†

)] 2∑
j=1

σ̂(j)
x . (60)

If the frequencies satisfy the resonance condition ωa ≈
ωb + 2ωq, the process |1, 0, g, g〉 → |0, 1, e, e〉, whose
virtual transitions are shown in Fig. 9, corresponds to
Stokes hyper-Raman scattering of type II, given that we
make the connections a = L, b = S, and q = V . The
reverse process corresponds to anti-Stokes hyper-Raman
scattering of type II, if we instead identify a = A and
b = L.

The virtual transitions give rise to the effective Hamil-
tonian

Ĥeff
int = geff |1, 0, g, g〉〈0, 1, e, e|+ H.c., (61)

which describes both processes. Adding up the two paths
in Fig. 9 using second-order perturbation theory follow-
ing Eq. (10), we obtain

geff = 2gagb
(

1
∆qa

+ 1
Ωbq

)
= −2gagb (∆ba + 2ωq)

∆aqΩbq
,

(62)
which goes to zero on resonance (ωa = ωb + 2ωq). How-
ever, a finite coupling should result from the fact that
bare energy levels are shifted to dressed ones and higher-
order processes can contribute, analogous to the situa-
tion for the single photon exciting three qubits discussed
in Sec. IV B 2 c.

V. OTHER NONLINEAR PROCESSES

While three- and four-wave mixing have been the main
focus of this article, there are several other nonlinear-
optics processes for which analogues can be found. In
this section, we treat a few of these.

A. Higher-harmonic and -subharmonic generation

A plethora of processes are possible when considering
wave-mixing involving five or more frequencies. To shed
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Stokes hyper-Raman
scattering, type II

ωL

ωS

ωV

ωV

|1, 0, g, g〉

1√
2 (|1, 1, e, g〉 + |1, 1, g, e〉)

1√
2 (|0, 0, e, g〉 + |0, 0, g, e〉)

|0, 1, e, e〉

ωL

ωS

ωV

ωV

Figure 9. Stokes hyper-Raman scattering of type II and its
deterministic analogue. The upper panel shows all virtual
transitions that contribute to lowest order to the transition
|1, 0, g, g〉 → |0, 1, e, e〉. The lower panel shows the generic
level diagram for the process in nonlinear optics. The connec-
tion becomes clear with the identifications a = L, b = S, and
q = V . The same arrow and level styles as in Fig. 2 are used;
we have set ωa = 2ωb = 4ωq. If the directions of all arrows in
the entire figure are reversed, and the labels are changed such
that S → L and L→ A, anti-Stokes hyper-Raman scattering
of type II is shown instead.

light on the relevant considerations for the deterministic
analogues of these processes, it is sufficient to consider
higher-harmonic and -subharmonic generation as a sim-
ple representative example.

1. Nonlinear optics

We consider the degenerate case of m-wave mixing
assuming â1 = â2 = . . . = âm−1 ≡ â, âm ≡ â+,

and ω+ = (m − 1)ω. The creation and annihilation
of a photon in the Fock basis can then be given as
|n, n+〉 → |n−m+1, n+ +1〉 for (m−1)th-harmonic gen-
eration (upconversion) and |n, n+〉 → |n+m−1, n+−1〉
for (m−1)th-subharmonic generation (downconversion).
The interaction Hamiltonian for both processes can be
written as

Ĥint = gâm−1â†+ + g∗â†(m−1)â+, (63)

generalizing Eq. (14) for three-wave mixing and Eq. (38)
for four-wave mixing.

2. Analogous processes

It is straightforward to extend the three approaches
discussed in Sec. III B 2 for three-wave mixing and in
Sec. IV B 2 for four-wave mixing. One can use two res-
onators, with frequencies ωa = (m − 1)ωb, coupled to a
single qubit such that the process |1, 0, g〉 ↔ |0,m− 1, g〉
is enabled by virtual intermediate transitions, realizing
both up- and downconversion. The other approaches are
to use multiphoton Rabi oscillations between |0, e〉 and
|m−1, g〉 using a single resonator coupled to a single qubit
with ωq = (m− 1)ωa [53]; or to couple a single resonator
to m− 1 identical qubits [ωa = (m− 1)ωq] such that the
process |1, g, . . . , g〉 ↔ |0, e, . . . , e〉 is realized [54].

What these three approaches, and all other analogues
of m-wave mixing, have in common are that they require
an increasing number of intermediate virtual transitions
as m increases. In general, the effective coupling geff ,
determining the transition rate, will be proportional to
(g/ω)n−1 if n steps of intermediate virtual transitions
are required to go between the initial and final states.
Here, g and ω are the coupling and the relevant sys-
tem frequencies, respectively, in the quantum Rabi model
discussed in Sec. II B. Considering this, the fact that
the multiphoton Rabi oscillations require one less inter-
mediate step than the other two approaches described
above (see Secs. III B 2 and IV B 2) makes them the most
suited to implement an analogue of higher-harmonic and
-subharmonic generation.

We also note that the standard quantum Rabi model,
Eq. (4), is sufficient to mediate the virtual transitions
needed for m-wave mixing when m is even. If m is odd,
the interaction terms from the generalized quantum Rabi
model, Eq. (6), are necessary to realize the analogues dis-
cussed here.

B. Multiphoton absorption

1. Nonlinear optics

Simultaneous absorption of multiple photons in a sys-
tem is a nonlinear process, first predicted by Göppert-
Mayer [69]. Unlike most of the wave-mixing processes
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discussed above (except Raman scattering), this process
changes the net energy of the system.

2. Analogous processes

A clear analogy of multiphoton absorption is provided
by the multiphoton Rabi oscillations [53] already dis-
cussed in the context of harmonic and subharmonic gen-
eration in Secs. III B 2, IV B 2, and V A 2. During a multi-
photon Rabi oscillation, a single qubit absorbs n photons
from the resonator it is coupled to; this is the process
|n, g〉 → |0, e〉. We also note that circuit-QED experi-
ments with flux qubits have demonstrated multiphoton
absorption in a driven qubit-resonator system [32, 63].

C. Parametric processes

1. Nonlinear optics

Many of the processes discussed above can be analyzed
for the case where one of the fields is a strong drive that
can be approximated as classical. As an example, con-
sider the general three-wave-mixing processes described
by Eqs. (11) and (12) in Sec. III A 1. We denote the fre-
quencies by ωp ≡ ω1 for the pump (drive) mode, ωs ≡ ω2
for the signal mode, and ωi ≡ ω± for the idler mode.
We then apply the parametric approximation âp(t) ≈
〈âp(t)〉 ≈ αp(t) ≡ |αp| exp [−i(ωt+ φp)], which is usu-
ally valid if 〈n̂p(t)〉 ≈ 〈n̂p(t0)〉 � max{1, 〈n̂s(t)〉, 〈n̂i(t)〉},
where n̂x is the number of photons in mode x. For the
case ωp = ωs + ωi, Eq. (12) then becomes

Ĥ(amp) = g∗α∗pâiâs + gαpâ
†
i â
†
s

= κ
[
âiâse

i(ωt+φ) + â†i â
†
se
−i(ωt+φ)

]
, (64)

where ω ≡ ωp, the coupling constant g is rescaled as
κ = |gαp|, and φ = φp − arg(g). This equation describes
parametric amplification (downconversion). For the spe-
cial case ωs = ωi, it corresponds to degenerate para-
metric downconversion. Similarly, under the parametric
approximation, with â1 ≡ âp ≈ αp, Eq. (11) describes
parametric frequency conversion.

2. Analogous processes

As discussed in Sec. III B 2 a, Ref. [65] showed that a
setup with two resonator modes coupled to a qubit with
the interaction of Eq. (6) can give an effective interaction
of the form

Ĥeff
int = ζ

(
â†2b̂+ â2b̂†

)
σ̂z, (65)

where

ζ = g2
ag

2
b sin θ sin(2θ)
ωa (ωq − ωb)

. (66)

This interaction results in degenerate parametric down-
conversion and squeezing. Note that the qubit state will
affect the process since the interaction is proportional to
σ̂z, which is absent in Eq. (64). However, if we assume
that the qubit remains in its ground (or excited) state
during the system evolution, we can recover Eq. (64)
from Eq. (65). Such qubit “freezing” can be achieved,
e.g., by Zeno-type effects.

In general, similar effective interaction Hamiltonians
should be possible to derive for all setups considered in
this article where the initial and final states for the sys-
tem have the same qubit state. Thus, most parametric
processes from nonlinear optics have deterministic ana-
logues involving virtual photons.

D. Kerr, cross-Kerr, and Pockels effects

1. Nonlinear optics

The Kerr, cross-Kerr, and Pockels effects differ from
the other nonlinear-optics phenomena discussed so far in
that they do not involve any change in the number of ex-
citations in some mode. Instead, the frequency of a mode
a is modified, either through self-interaction (Kerr effect)
or through interaction with a second mode b (Pockels ef-
fect when the change is proportional to the amplitude
of the field; cross-Kerr effect when the change is propor-
tional to the square of said amplitude). These effects can
be described by the following Hamiltonians:

ĤK = χK
(
â†â
)2
, (67)

ĤcK = χcKâ
†âb̂†b̂, (68)

ĤP = χPâ
†â
(
b̂+ b̂†

)
, (69)

where χx gives the strength of the nonlinear interaction.

2. Analogous processes

The Kerr effect can be realized with a single qubit
coupled to a resonator with only the JC interaction of
Eq. (5). In the dispersive regime, where g � |ωa − ωq|, a
perturbation expansion in the small parameter g/(ωa −
ωq) yields a term [70]

Ĥdisp
K = χK

(
â†â
)2
σ̂z, (70)

where

χK = − g4

(ωa − ωq)3 (71)

This Hamiltonian reduces to the standard Kerr Hamilto-
nian, given in Eq. (67), if we can assume that the qubit
remains in one and the same state during the system
evolution, as discussed above in Sec. V C 2. More gen-
eral derivations for multiple resonator modes and a multi-
level atom in the dispersive regime have shown how both



17

Kerr and cross-Kerr effects can be realized [71, 72]. In
particular, Ref. [72] demonstrates clearly how an atom
coupled to two resonators in the dispersive regime via a
general coupling like Eq. (6) gives rise to the Kerr and
cross-Kerr effects due to fourth-order processes involving
virtual photons in the same way as all other analogues of
nonlinear optics discussed previously in this article. We
note that these Kerr and cross-Kerr terms, just like in
Eqs. (65) and (70), involve sums over the diagonal qubit
operators |g〉〈g| and |e〉〈e|.

Based on the above theory, experiments in circuit
QED have recently demonstrated both the single-photon
Kerr [73] and cross-Kerr effects [74]. A large cross-Kerr
effect for propagating photons interacting with a three-
level artificial atom in circuit QED has also been studied
theoretically [75] and experimentally [76]. However, to
the best of our knowledge, no such experimental demon-
strations exists for the Pockels effect and we have been
unable to find a mechanism for engineering it in the se-
tups we consider.

VI. EXPERIMENTAL FEASIBILITY

In this section, we evaluate the experimental feasibility
of our proposed analogues of nonlinear-optics processes.
In most of these analogues, the process consists of trans-
ferring population from an initial state |i〉 to a final state
|f〉. The timescale for this process is given by the inverse
of the effective coupling strength geff for the interaction
that connects the two states [see Eq. (9)]. For the trans-
fer to be succesful, geff must exceed the relevant decoher-
ence rates in the system: qubit decoherence (relaxation
and dephasing) at a rate γ and resonator losses at a rate
κ. To observe energy-level anti-crossings in spectroscopy,
revealing the effective coupling between |i〉 and |f〉, it is
sufficient that geff > κ, γ; for the transfer to be essentially
deterministic, i.e., have close to unit efficiency, geff � κ, γ
is required. Note that when either |i〉 or |f〉 contain mul-
tiple excitations, the relevant loss rates that geff should
be compared to are the total loss rates for those states.
For example, in the case of nth-subharmonic generation
through multiphoton Rabi oscillations with |i〉 = |0, e〉
and |f〉 = |n, g〉, discussed in Sec. V A 2, the effective
coupling must be compared to γ and nκ.

Although USC has been realized in several solid-state
systems, as noted in Sec. I, we limit the discussion here to
circuit QED, where we believe the proposed experiments
are easiest to implement. The experimental demonstra-
tions of USC with qubits coupled to resonators in circuit
QED have all used flux qubits, coupled either to lumped-
element LC oscillators [19, 31, 36] or transmission-line
resonators [20, 29, 32]. In such circuit QED experi-
ments, qubit and resonator frequencies are usually in
the range ωq, ωa ∼ 2π × 1-10 GHz. Recent experimen-
tal work on flux qubits has demonstrated γ on the or-
der of 2π × 10 kHz [77, 78], and an improvement of the
flux qubit design [79], which comes at the price of re-

duced anharmonicity, has been shown to reduce γ even
further [80]. Superconducting transmon qubits, which
have lower anharmonicity than flux qubits, can have γ
approaching 2π × 1 kHz [81, 82]. For transmission-line
resonators, quality factors Q = ωa/κ on the order of 106

have been demonstrated [83]. Recently, superconducting
qubits are often coupled to 3D cavities, where the quality
factor can be another two orders of magnitude larger [84].

Taken together, the numbers above indicate that
γ, κ ∼ 10−6ωa can be reached in state-of-the-art circuit-
QED experiments. Regarding the coupling strength,
Refs. [19, 20, 29, 32] have reached g & 0.1ωa and
Refs. [31, 36] demonstrated g ∼ ωa. Using the lower
of these values as a very conservative estimate, we cal-
culate most of the effective coupling strengths derived in
Secs. III and IV. The results are given in Table I. We
see that even with this conservative estimate for the bare
coupling, and even though processes up to fourth order
are considered, the effective coupling strengths are orders
of magnitude larger than the decoherence rates that have
been demonstrated in experiments. If such low decoher-
ence rates would be hard to reach, the effective coupling
can instead be much strengthened by a modest increase
of the bare coupling.

We note that already one of the first circuit QED ex-
periments to reach the USC regime, Ref. [20], achieved
sufficiently small decoherence to clearly observe an
energy-level anticrossing due to effective coupling be-
tween states |1, 0, g〉 and |0, 1, e〉. Furthermore, as noted
in Sec. V D 2, the single-photon Kerr and cross-Kerr ef-
fects, even though these are fourth-order processes, have
also been experimentally demonstrated in circuit QED
using transmon qubits and 3D cavities [73, 74]. In the
case of the Kerr effect, the Kerr coefficient was χK =
2π×325 kHz, much larger than γ, κ ∼ 2π×10-20 kHz [73].

From the estimates in this section, we conclude that
most, if not all, of the nonlinear-optics analogues pro-
posed in this article can be implemented with existing
experimental technology in circuit QED. It appears that
the effective coupling strengths can be orders of magni-
tude larger than the system decoherence rates, ensuring
that the relevant processes can reach close to unit effi-
ciency.

VII. SUMMARY AND OUTLOOK

We have shown how analogues of nonlinear optics can
be realized in systems where one or more qubits are cou-
pled to one or more resonator modes. These analogous
processes are all based on the light-matter interaction
between a qubit and a photonic mode described by the
quantum Rabi Hamiltonian or some generalized version
thereof. This interaction allows the number of excita-
tions in the system to change, which makes possible the
creation and annihilation of virtual photons and qubit
excitations. In this way, initial and final states of the
nonlinear-optics processes can be connected via a number
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Table I. Conservative estimates of the effective coupling strengths geff for most of the analogues of three- and four-wave mixing
processes given in this article. In each case, we have assumed the bare coupling g to be 10% of the lowest transition frequency
in the setup. The effective coupling is given in units of that transition frequency. We note that the parameter θ can be chosen
quite freely in experiments with flux qubits.

Process Parameters Equation Effective coupling |geff |
|1, 0, g〉 ↔ |0, 2, g〉 ωa = 2ωb, ωq = 1.5ωb, ga/b = 0.1ωb, θ = π/6 Eq. (21) 3 · 10−3ωb

|0, e〉 ↔ |2, g〉 ωq = 2ωa, g = 0.1ωa, θ = π/4 Eq. (24) 1 · 10−2ωa

|1, g, g〉 ↔ |0, e, e〉 ωa = 2ωq, g = 0.1ωq, θ = π/6 Eq. (28) 1 · 10−3ωq

|1, 0, g〉 ↔ |0, 1, e〉 ωa = 3ωq, ωb = 2ωq, ga/b = 0.1ωq, θ = π/4 Eq. (35) 2 · 10−3ωq

|1, 0, g〉 ↔ |0, 3, g〉 ωa = 3ωb, ωq = 2ωb, ga/b = 0.1ωb Eq. (42) 1 · 10−4ωb

|0, e〉 ↔ |3, g〉 ωq = 3ωa, g = 0.1ωa Eq. (44) 6 · 10−4ωa

|0, 2, g〉 ↔ |1, 0, e〉 ωa = 3ωq, ωb = 2ωq, ga/b = 0.1ωq Eq. (52) 7 · 10−4ωq

|0, 2, e〉 ↔ |1, 0, g〉 ωa = 5ωq, ωb = 2ωq, ga/b = 0.1ωq Eq. (56) 2 · 10−4ωq

of virtual transitions, creating an effective deterministic
coupling between the states. The effective coupling de-
creases when the number of intermediate transition steps
increases. However, with the recent experimental demon-
strations of USC in a variety of systems, circuit QED in
particular, it should now be possible to observe many of
these nonlinear-optics phenomena in new settings. When
the light-matter coupling becomes ultrastrong, even the
weaker effective coupling can be larger than the relevant
decoherence rates in the system.

For the case of three-wave mixing, we have shown how
analogues can be constructed for sum- and difference-
frequency generation, including the special cases of
second-harmonic generation (upconversion) and second-
subharmonic generation (downconversion) as well as
Stokes and anti-Stokes spontaneous and stimulated Ra-
man scattering. A summary of all the three-wave-mixing
processes and their analogues is given in Table II.

Similarly, for the case of four-wave mixing, we have
shown how analogues can be realized for all types of
non-degenerate and degenerate mixing, including third-
harmonic and third-subharmonic generation as well as all
forms of hyper-Raman scattering. We provide a summary
of all the four-wave-mixing processes and their analogues
in Table III. Finally, we have also shown that analogues
working according to the same principle are available for
higher-harmonic and -subharmonic generation, multipho-
ton absorption, parametric processes, and the Kerr and
cross-Kerr effects.

It is noteworthy that some of the setups we consider,
especially the relatively simple setups of a single qubit
coupled to one or two resonators, can be used to realize
many analogues of nonlinear-optics phenomena in one
universal system. It is also remarkable that these ana-
logues work at unit efficiency with a minimal number
of photons without any need for external drives, which
is not the case for conventional nonlinear optics. While
some processes that we discuss here have been investi-
gated in previous and concurrent publications, we have
now provided a unified and clear picture of how and why
nonlinear-optics analogues can be constructed in these

setups. One important difference to conventional non-
linear optics is that we are able to suppress lower-order
processes by making the final state of such processes far
off-resonant with the initial state.

There are many directions for future work following
this article. They include deriving effective Hamiltoni-
ans for more parametric processes based on the setups
discussed here and finding an analogue of the Pockels
effect. An interesting way to take the ideas of the cur-
rent work one step further is to consider analogues of
nonlinear-optics processes where the excitations are ex-
changed only between atoms and any resonators in the
setups are only excited virtually, which is treated in a
concurrent publication [56]. We also see a great poten-
tial for using the processes described here to create var-
ious superposition states with applications in quantum
information processing, and we expect that adding the
capabilities of nonlinear optics at the single-photon level
to current quantum technology will spawn many more
important applications. Considering an experimental im-
plementation, we have shown that most, if not all, of the
processes discussed here can be realized with currently
available technology in circuit QED. Given that ultra-
strong light-matter coupling has been demonstrated in
several other solid-state systems as well, the processes
proposed here could potentially also be implemented in
other setups in the future.
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Table II. A summary of three-wave-mixing processes in nonlinear optics and their deterministic analogues with single atoms and virtual photons. In the case of
nondegenerate three-wave mixing, with the exception of Raman scattering, the given frequencies and transitions are just some of the possibilities.

Nonlinear-optics process Analogous setup Frequencies Transition Hamiltonian Reference

Degenerate
three-wave

mixing

Second-harmonic generation
(upconversion)

1 resonator, 1 qubit ωq = 2ωa |2, g〉 → |0, e〉 Gen. Rabi Sec. III B, [53]

2 resonators, 1 qubit ωa = 2ωb |0, 2, g〉 → |1, 0, g〉 Gen. Rabi Sec. III B, [65]

1 resonator, 2 qubits ωa = 2ωq |0, e, e〉 → |1, g, g〉 Gen. Rabi Sec. III B, [54]

Second-subharmonic generation
(downconversion)

1 resonator, 1 qubit ωq = 2ωa |0, e〉 → |2, g〉 Gen. Rabi Sec. III B, [53]

2 resonators, 1 qubit ωa = 2ωb |1, 0, g〉 → |0, 2, g〉 Gen. Rabi Sec. III B, [65]

1 resonator, 2 qubits ωa = 2ωq |1, g, g〉 → |0, e, e〉 Gen. Rabi Sec. III B, [54]

Non-
degenerate
three-wave

mixing

Spontaneous
Raman scattering

Stokes

2 resonators, 1 qubit ωa = ωb + ωq

|1, 0, g〉 → |0, 1, e〉 Gen. Rabi Sec. III C, [55]

anti-Stokes |0, 1, e〉 → |1, 0, g〉 Gen. Rabi Sec. III C, [55]

Stimulated
Raman scattering

Stokes |1, n, g〉 → |0, n+ 1, e〉 Gen. Rabi Sec. III C

anti-Stokes |n, 1, e〉 → |n+ 1, 0, g〉 Gen. Rabi Sec. III C

Sum-frequency generation

1 resonator, 2 qubits ωa = ωq1 + ωq2 |0, e, e〉 → |1, g, g〉 Gen. Rabi Sec. III A, [54]

2 resonators, 1 qubit ωa + ωb = ωq |1, 1, g〉 → |0, 0, e〉 Gen. Rabi Sec. III A

3 resonators, 1 qubit ωa + ωb = ωc |1, 1, 0, g〉 → |0, 0, 1, g〉 Gen. Rabi Sec. III A

Difference-frequency generation

1 resonator, 2 qubits ωa = ωq1 + ωq2 |1, g, g〉 → |0, e, e〉 Gen. Rabi Sec. III A, [54]

2 resonators, 1 qubit ωa + ωb = ωq |0, 0, e〉 → |1, 1, g〉 Gen. Rabi Sec. III A

3 resonators, 1 qubit ωa + ωb = ωc |0, 0, 1, g〉 → |1, 1, 0, g〉 Gen. Rabi Sec. III A
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Table III. A summary of four-wave-mixing processes in nonlinear optics and their deterministic analogues with single atoms and virtual photons. In the case of
nondegenerate four-wave mixing, the given frequencies and transitions are just some of the possibilities. For degenerate four-wave mixing with two degenerate signals,
see Appendix C.

Nonlinear-optics process Analogous setup Frequencies Transition Hamiltonian Reference

Degenerate
four-wave

mixing

Third-harmonic generation
(upconversion)

1 resonator, 1 qubit ωq = 3ωa |3, g〉 → |0, e〉 Rabi Sec. IV B, [52, 53]

2 resonators, 1 qubit ωa = 3ωb |0, 3, g〉 → |1, 0, g〉 Rabi Sec. IV B

1 resonator, 3 qubits ωa = 3ωq |0, e, e, e〉 → |1, g, g, g〉 Rabi Sec. IV B, [54]

Third-subharmonic generation
(downconversion)

1 resonator, 1 qubit ωq = 3ωa |0, e〉 → |3, g〉 Rabi Sec. IV B, [52, 53]

2 resonators, 1 qubit ωa = 3ωb |1, 0, g〉 → |0, 3, g〉 Rabi Sec. IV B

1 resonator, 3 qubits ωa = 3ωq |1, g, g, g〉 → |0, e, e, e〉 Rabi Sec. IV B, [54]

Hyper-Raman scattering,
type I

Stokes
2 resonators, 1 qubit

ωa + ωq = 2ωb |0, 2, g〉 → |1, 0, e〉 JC Sec. IV C, [55]

anti-Stokes ωa = 2ωb + ωq |0, 2, e〉 → |1, 0, g〉 Rabi Sec. IV C, [55]

Hyper-Raman scattering,
type II

Stokes
2 resonators, 2 qubits ωa = ωb + 2ωq

|1, 0, g, g〉 → |0, 1, e, e〉 Rabi Sec. IV D

anti-Stokes |0, 1, e, e〉 → |1, 0, g, g〉 Rabi Sec. IV D

Non-
degenerate
four-wave

mixing

Type I
(2 inputs, 2 outputs)

3 resonators, 1 qubit ωa + ωb = ωc + ωq |1, 1, 0, g〉 → |0, 0, 1, e〉 JC Sec. IV A

4 resonators, 1 qubit ωa + ωb = ωc + ωd |1, 1, 0, 0, g〉 → |0, 0, 1, 1, g〉 JC Sec. IV A

2 resonators, 2 qubits ωa + ωb = ωq1 + ωq2 |1, 1, g, g〉 → |0, 0, e, e〉 JC Sec. IV A

1 resonator, 3 qubits ωa + ωq1 = ωq2 + ωq3 |1, e, g, g〉 → |0, g, e, e〉 JC Sec. IV A

Type II
(3 inputs, 1 output)

3 resonators, 1 qubit ωa + ωb + ωc = ωq |1, 1, 1, g〉 → |0, 0, 0, e〉 Rabi Sec. IV A

4 resonators, 1 qubit ωa + ωb + ωc = ωd |1, 1, 1, 0, g〉 → |0, 0, 0, 1, g〉 Rabi Sec. IV A

2 resonators, 2 qubits ωa = ωb + ωq1 + ωq2 |0, 1, e, e〉 → |1, 0, g, g〉 Rabi Sec. IV A

1 resonator, 3 qubits ωa = ωq1 + ωq2 + ωq3 |0, e, e, e〉 → |1, g, g, g〉 Rabi Sec. IV A

Type III
(1 input, 3 outputs)

3 resonators, 1 qubit ωa + ωb + ωc = ωq |0, 0, 0, e〉 → |1, 1, 1, g〉 Rabi Sec. IV A

4 resonators, 1 qubit ωa = ωb + ωc + ωd |1, 0, 0, 0, g〉 → |0, 1, 1, 1, g〉 Rabi Sec. IV A

2 resonators, 2 qubits ωa = ωb + ωq1 + ωq2 |1, 0, g, g〉 → |0, 1, e, e〉 Rabi Sec. IV A

1 resonator, 3 qubits ωa = ωq1 + ωq2 + ωq3 |1, g, g, g〉 → |0, e, e, e〉 Rabi Sec. IV A
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Appendix A: Classical description of nonlinear
optical phenomena

Here we give a few examples showing how mixing of
classical waves can be explained classically by applying
the principal relation of nonlinear optics,

P = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
= P(1) + P(2) + P(3) + . . . . (A1)

In this pedagogical introduction to nonlinear optics,
based on Ref. [1], we give the classical explanations of
a few standard wave-mixing processes by applying the
lowest-order required nonlinear polarization P(n) and the
corresponding nonlinear susceptibility χ(n). Our exam-
ples include the linear (Pockels) and quadratic (Kerr)
electro-optical phenomena. Second-harmonic generation
in a χ(2) medium was already treated in Sec. II A.

1. Wave mixing in a χ(2) medium and the Pockels
effect

Assume that two monochromatic scalar electric waves,
E1(t) = E10 cos(ω1t) and E2(t) = E20 cos(ω2t), are
applied to a medium described by the second-order
frequency-independent susceptibility χ(2). Then, the in-
duced second-order polarization P (2) is given by

P (2) = ε0χ
(2)E2 = ε0χ

(2) {E10 cos(ω1t) + E20 cos(ω2t)}2

= ε0χ
(2)
{
E2

10 cos2(ω1t) + E2
20 cos2(ω2t)

+2E10E20 cos(ω1t) cos(ω2t)
}

= 1
2ε0χ

(2)
{
E2

10[1 + cos(2ω1t)] + E2
20[1 + cos(2ω2t)]

+2E10E20 (cos[(ω1 − ω2)t] + cos[(ω1 + ω2)t])
}

= 1
2ε0χ

(2)
{(
E2

10 + E2
20
)

+ E2
10 cos(2ω1t)

+E2
20 cos(2ω2t) + 2E10E20 cos[(ω1 − ω2)t]

+2E10E20 cos[(ω1 + ω2)t]
}

≡ P (2)
0 + P

(2)
2ω1

+ P
(2)
2ω2

+ P
(2)
ω1−ω2

+ P
(2)
ω1+ω2

, (A2)

where the induced second-order nonlinear polarization

P
(2)
ωx , oscillating with frequency ωx = 0, 2ω1, . . ., is de-

fined by the corresponding ωx-dependent term in the
second-last equation in Eq. (A2).

We see that this process can be interpreted as mixing
of two waves with frequencies ω1 and ω2. Alternatively,
in a general case, this effect can be interpreted as six-
wave mixing if we include also the four output (mixed)
frequencies 2ω1, 2ω2, |ω1 − ω2|, and ω1 + ω2. In a quan-
tum description, the latter interpretation is convention-
ally applied.

In a special case, let us assume that ω2 = 0; then
E2 = E20 = const, and

P
(2)
ω1−ω2

+ P
(2)
ω1+ω2

= 2P (2)
ω1

= ε0

(
2χ(2)E20

)
E1(t). (A3)

We see that the effective first-order-like susceptibility

χ
(1)
eff ≡ 2χ(2)E20 is proportional to the amplitude of the

constant electric field. This phenomenon is usually re-
ferred to as the (linear) Pockels effect or linear electro-
optical effect.

A few comments can be made on the momentum (and
energy) conservation when fields of frequencies ω1 and
ω2 are mixed to generate fields with sum (ω+ = ω1 +ω2)
and difference (ω− = |ω1 − ω2|) frequencies. These new
fields can be amplified depending on which momentum
condition k+ = k1 + k2 or k− = k1 − k2 is satisfied
for the corresponding wave vectors kj . Usually only one
of these conditions is satisfied. If both conditions are
fulfilled, then the wave mixing has a local character. For
example, if ω1 = ω2 ≡ ω and k1 = k2 ≡ k, then ω+ = 2ω,
ω− = 0, k+ = 2k, and k− = 0.

2. Third-harmonic generation in a χ(3) medium

Assume that a monochromatic electric wave E(t) =
E0 cos(ωt) is applied to a medium described solely by a
third-order susceptibility χ(3). Then we observe

P (3) = ε0χ
(3)E3 = ε0χ

(3)E3
0 cos3(ωt)

= ε0χ
(3)E3

0

[
3 cos(ωt) + cos(3ωt)

4

]
= 3

4ε0χ
(3)E3

0 cos(ωt) + 1
4ε0χ

(3)E3
0 cos(3ωt)

= P (3)
ω + P

(3)
3ω , (A4)

where the term P
(3)
3ω describes the induced polarization,

oscillating with triple the frequency of the input field,
which can be interpreted as third-harmonic generation.

3. Wave mixing in a χ(3) medium and the Kerr
effect

Assume that two monochromatic electric beams,
E1(t) = E10 cos(ω1t) and E2(t) = E20 cos(ω2t), are ap-
plied to a medium described by a third-order susceptibil-
ity χ(3), and that χ(3) is frequency independent. Then
the third-order induced polarization P (3) of the medium
is given by

P (3) = ε0χ
(3)E3 = ε0χ

(3) [E10 cos(ω1t) + E20 cos(ω2t)]3

= P (3)
ω1

+ P (3)
ω2

+ P
(3)
3ω1

+ P
(3)
3ω2

+ P
(3)
2ω1−ω2

+P (3)
2ω1+ω2

+ P
(3)
2ω2−ω1

+ P
(3)
2ω2+ω1

, (A5)

where we do not give (except two terms) an explicit form

of these induced third-order nonlinear polarizations P
(3)
ωx ,

but only indicate their frequencies ωx.
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Analogously to wave mixing in a χ(2) medium, one can
interpret this process as mixing of two waves with fre-
quencies ω1 and ω2. Alternatively, this effect, in a general
case, can be interpreted as mixing of eight waves (includ-
ing the output waves) with frequencies ω1, ω2, 3ω1, 3ω2,
|2ω1 ± ω2|, and |2ω2 ± ω1|. In a quantum description,
the latter convention is usually applied.

In a special case, we have

P
(3)
2ω2±ω1

= 3
4ε0χ

(3)E2
20E10 cos[(2ω2 ± ω1)t]. (A6)

If we assume that ω2 = 0, we obtain

P
(3)
2ω2±ω1

= 3
4ε0χ

(3)E2
20E10 cos(ω1t) ≡ ε0χ(1)

eff E1(t). (A7)

Thus, the effective first-order-like susceptibility χ
(1)
eff ≡

3
4χ

(3)E2
20 is proportional to the square of the constant

electric field E2(t) = E20. This is a standard classical
explanation of the Kerr effect, which is also referred to
as the quadratic electro-optical effect.

Appendix B: Perturbation theory

In this appendix, we show how to derive the expres-
sion for the effective coupling given in Eq. (10). In all
processes we considered in Secs. III and IV, there is an
initial state |i〉 and a final state |f〉 connected by the
effective coupling in an effective interaction Hamiltonian

Ĥeff
int = geff |f〉〈i|+ H.c. (B1)

As stated in Sec. II B, if the shortest path between |i〉 and
|f〉 is an nth-order process, the effective coupling geff is
given to lowest order by

geff =
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1) (Ei − Ej2) . . .
(
Ei − Ejn−1

) ,
(B2)

where the sum goes over all virtual transitions forming n-
step paths between |i〉 and |f〉. The formula in Eq. (B2)
can be derived by considering the Dyson series of the time
evolution operator in the interaction picture,

ÛI(t, t0) = 1− i
∫ t

t0

dt′Ĥint(t′)

+(−i)2
∫ t

t0

dt′
∫ t′

t0

dt′′Ĥint(t′)Ĥint(t′′) + . . . , (B3)

when the interaction Hamiltonian Ĥint is time-
independent. Assuming the system starts in the eigen-
state |i〉 of the noninteracting Hamiltonian at time t0,
the probability of the transition |i〉 → |f〉 is given to
lowest (nth) order by the nth-order term in Eq. (B3),

I

ω1

ω1

ω2

ω3

I

ω1

ω2

ω3

ω3

II

ω1
ω1
ω2

ω3

III
ω1

ω2
ω2
ω3

Figure 10. Schematic representations (Feynman-like dia-
grams) of the four-wave-mixing processes with two degener-
ate frequencies. Going clockwise from the upper left corner,
they are: type-I four-wave mixing with the frequencies of the
two incoming signals degenerate (2ω1 = ω2 + ω3), type-II
four-wave mixing with the frequencies of two of the incom-
ing signals degenerate (2ω1 + ω2 = ω3), type-III four-wave
mixing with the frequencies of two of the outgoing signals
degenerate (ω1 = 2ω2 + ω3), and type-I four-wave mixing
with the frequencies of the two outgoing signals degenerate
(ω1 + ω2 = 2ω3).

U
(n)
I (t, t0), through

P (|i〉 → |f〉) =
∣∣∣〈f |Û (n)

I (t, t0)|i〉
∣∣∣2 =

(
1− ei(Ef−Ei)

)2
(Ef − Ei)2

×

∣∣∣∣∣∣
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1) (Ei − Ej2) . . .
(
Ei − Ejn−1

)
∣∣∣∣∣∣
2

,

(B4)

which in the limit t→∞ gives the transition rate

W(|i〉→|f〉) = 2πδ (Ef − Ei)

×

∣∣∣∣∣∣
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1) (Ei − Ej2) . . .
(
Ei − Ejn−1

)
∣∣∣∣∣∣
2

.

(B5)

This is just Fermi’s golden rule, showing that the effec-
tive Hamiltonian in Eq. (B1) with the coupling strength
geff given by Eq. (10) gives the correct coupling matrix
element between |i〉 and |f〉.

Appendix C: Four-wave mixing with two degenerate
frequencies

For completeness, we here show, in Fig. 10, schematic
representations of the four degenerate four-wave-mixing
processes where two frequencies are degenerate (omit-
ted from Fig. 5). Analogues for these processes can
be constructed in the same way as for the other four-
wave mixing processes treated in Sec. IV and listed in
Table III. The most obvious setup is three resonators
all coupled to a single qubit. In that case, the process
|2, 0, 0, g〉 ↔ |0, 1, 1, g〉 corresponds to the type-I mixing
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shown in the figure. Similarly, |2, 1, 0, g〉 ↔ |0, 0, 1, g〉 re-
alizes analogues of the pictured type-II (→) and type-III
(←) processes, respectively.

Just as for the nondegenerate mixing processes dis-
cussed in Secs. III A 2 and IV A 2, additional setups be-
come possible if we allow at least one of the excitations
to be hosted in a qubit. With two resonators coupled to
a single qubit, the two type-I mixing processes shown in
Fig. 10 could be emulated by |2, 0, g〉 ↔ |0, 1, e〉, which

we recognise as the analogue of type-I hyper-Raman scat-
tering already treated in Sec. IV C 2. The pictured type-
II and type-III mixing could similarly be emulated by,
e.g., the process |2, 1, g〉 ↔ |0, 0, g〉. In the same way,
a setup with a single resonator coupled to two qubits
could realize analogues of the pictured type-I processes
through the transition |2, g, g〉 ↔ |0, e, e〉, and of the pic-
tured type-II and type-III processes through the transi-
tion |2, e, g〉 ↔ |0, g, e〉.
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