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We explore, both experimentally and theoretically, the propagation dynamics of spatially entangled 

photon pairs (biphotons). Characterization of entanglement is done via the Schmidt number, which is a 
universal measurement of the degree of entanglement directly related to the non-separability of the state 
into its subsystems. We develop expressions for the terms of the Schmidt number that depend on the 
amplitude and phase of the commonly used double-Gaussian approximation for the biphoton wave 
function, and demonstrate migration of entanglement between amplitude and phase upon propagation. We 
then extend this analysis to incorporate both phase curvature in the pump beam and higher spatial 
frequency content of more realistic non-Gaussian wave functions. Specifically, we generalize the classical 
beam quality parameter M2 to the biphotons, allowing the description of more information-rich beams and 
more complex dynamics. Agreement is found with experimental measurements using direct imaging and 
Fourier optics. 

 
 
 

Entanglement is a key resource in quantum information. 
While entanglement in discrete variables, such as spin or 
polarization [1-5], forms the basis of qubits, of growing 
interest is entanglement in continuous variables, such as 
transverse spatial position and momentum. The conjugate 
nature of these variables underlies imaging and 
propagation, while their infinite-dimensional Hilbert space 
holds much potential for quantum computation [6-9]. 
Typically, the photon source for continuous-variable 
entanglement is spontaneous parametric down-conversion 
(SPDC) [10-14] but, remarkably, there have been few 
investigations into its amount and distribution upon 
propagation [15,16].  

A universal metric to quantify the degree of entanglement 
is the Schmidt number, which is directly related to the 
non-separability of the state’s (two) subsystems [17-19]. 
While interferometric measurements of the Schmidt 
number have been proposed [15] and demonstrated [16], 
such methods do not examine the manifestation of the 
entanglement, i.e., non-separability of amplitude or phase. 
Furthermore, theoretical analysis has thus far focused 
primarily on Gaussian spatial profiles, which are not 
generated experimentally.  

Here, we present an analysis of the Schmidt number of 
realistic non-Gaussian entangled photon wave functions, 
explicitly revealing the migration of entanglement with 
propagation from amplitude to phase and back again [15]. 
First, we present a Schmidt decomposition of the 
commonly used double-Gaussian approximation for the 
biphoton wave function. We clearly identify amplitude and 
phase components and demonstrate migration between 
them during propagation. This migration depends on the 
focusing geometry of the pump used to generate the photon 
pairs, as its phase profile directly determines the far-field 
properties of the biphoton wave function. We then examine 
more realistic biphoton wave functions that have different 
propagation behavior from the ideal double-Gaussian. In 

particular, the higher spatial frequency content of non-
Gaussian beams causes increased diffraction of the 
biphoton. To characterize this, we introduce an effective 
quantum M 2  factor, generalizing the quality parameter 
commonly used to describe classical laser beams [20]. We 
demonstrate good predictive capability of our model, and 
make comparisons to experimental measurements 
conducted with a single-photon-sensitive electron-
multiplying CCD (EMCCD) camera [21,22]. 

The quantum state of an entangled-photon pair 
(biphoton) may be described by a wave function which 
propagates according to Maxwell’s equations [23-26]. 
Assuming degenerate, collinear down-conversion and a 
collimated strong (classical) pump beam, the momentum 
space wave function is [12] 
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where N' is a normalization constant, sinc(x) = sin(x)/x, L is 
the crystal thickness, kp is the wave number of the pump, 
qi = kx,ik̂x,i + ky,ik̂y,i are the transverse components of the 
wave vector, and Ẽp is the spatial frequency spectrum of 
the pump field. The real-space biphoton wave function at 
the output surface of the crystal is given by the 4D inverse 
Fourier transform of Eq. (1), which is 
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where N is another normalization constant, Ssi is the 
shifted sine integral [27], ρi = xix̂i + yiŷi are the transverse 
coordinates of each photon, and Ep is the spatial 
distribution of the pump field. In general, Eq. (2) is not 
separable in the coordinates of the two subsystems (ρ1, ρ2), 
meaning it represents a spatially entangled state. However, 
it is separable in the sum and difference coordinates, 
defined by ρ± = (ρ1 ± ρ2)/√2, i.e., ψ(ρ+, ρ–) = ψ–(ρ–)ψ+(ρ+). 



Phyically, ψ+(ρ+) is proportional to the spatial profile of 
pump field and ψ–(ρ–) depends on the longitudinal profile 
of the nonlinear susceptibility of the crystal, which we have 
here assumed to be constant.  

Because Eq. (2) is rather inconvenient to work with, the 
biphoton wave function is often approximated by a double-
Gaussian function [12,15,28-30], which in (ρ+, ρ–) 
coordinates is 
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where k0 = 2π/λ, is the down-converted wavelength. ψdG 
has many similarities with classical Gaussian laser beams. 
In particular, the standard deviations of |ψdG|2 in sum and 
difference coordinates σ± have the same z dependence as 
the radius of a TEM00 Gaussian beam 
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where σ±,0 = σ±(z = 0) are the minima. The quantities z0,± = 
2kσ±,0

2 are analogous to the Rayleigh range of a classical 
Gaussian beam. The spatially dependent phase terms 
depend on the radii of curvature along the ρ± directions, 
which follow 
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in analogy to the radius of curvature of the phase fronts of 
a Gaussian beam. Finally, ζ(z) = tan–1(z/z0,–) + tan–1(z/z0,+) 
is analogous to the classical Gouy phase. Based on this 
analytic double-Gaussian wave function, it is 
straightforward to evaluate entanglement during 
propagation. 

A general approach to characterizing the degree of 
entanglement of a bipartite system is via the Schmidt 
decomposition, which expresses a pure entangled state as 
|Ψ⟩ = ∑nλn

1/2|un⟩|vn⟩, where ∑nλn = 1. As the number of 
terms is directly related to the non-separability of the state, 
the degree of entanglement can be characterized by the 
Schmidt number K ≡ (∑nλn

2)–1. While K describes the 
fundamental meaning of entanglement, i.e., the non-
separability of the two sub-systems [18,19,28], it contains 
no information about the form in which the entanglement is 
manifest—that is, in amplitude or phase [15,16]. For the 
double-Gaussian wave function, the Schmidt number can 
be expressed directly in terms of the wave function (see 
Supplementary Information) 
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Evaluating KdG with Eq. (3) yields an analytic expression 
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In sum, KdG represents the total degree of entanglement, 
and is related to the average first-order coherence of the 
beam [31,32]. In parts, the two terms have a clear physical 
meaning. The first term depends only on the amplitude of 
ψdG, specifically the ratios of the standard deviations in ρ+ 
and ρ–. We will therefore refer to this as Kamp. It is 
essentially a measure of how many correlation areas there 
are within the beam, and is equal to the expression from 
[28]. The second term depends on the phase of the 
biphoton wave function, in terms of the difference of 
curvature in the ρ+ and ρ– planes. We therefore refer to the 
second term as Kphase. This represents, to the best of our 
knowledge, the first explicit expression for entanglement 
within the spatial phase of entangled photon pairs. 

Fig. 1 shows the evolution of the components of the 
Schmidt number upon propagation, using Eqs. (4) and (5) 
in Eq. (7), showing migration from amplitude to phase and 
back as the biphoton beam goes from the near-field to the 
far-field. The wavelength here and throughout is 810 nm. 
Note that in this case z0,– ≪ z0,+, and the entanglement in 
amplitude and phase are equal at z = z0,– and z = z0,+. 

 

 
FIG. 1.  Migration of spatial entanglement between amplitude and 
phase. (a) Evolution of the components of the KdG with 
σ+(0) = 100 µm and σ–,0 = 5.5 µm for (solid) collimated, and non-
collimated pump beam (dashed, b) Rp = 18.7 cm (zp = –7.6 cm) 
and (dotted, c) Rp = –18.7 cm (zp = 7.6 cm). Rayleigh ranges are 
indicated by the gray vertical lines indicate z0,– = 470 µm and z0,+ 
= 155 mm. The Schmidt number begins in the near-field entirely 
in the amplitude (red (dark gray)), migrates into the phase (blue 
(light gray)) upon propagation, and back to amplitude in the far-
field, such that the total (top black) remains constant. Rayleigh 
ranges z0,– = 469 µm, and z0,+ = 155 mm are indicated by the 
vertical gray lines. For non-collimated pump beams, Kamp and 
Kphase follow much the same form as the collimated case up to z ≈ 
2 cm, beyond which the influence of the curved pump wavefronts 
causes an altered migration of entanglement, and different far 
field behavior 

The effect of the pump beam’s phase profile can also be 
included. A non-collimated Gaussian pump, i.e., a focusing 
or defocusing beam, has field profile 
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where σp and Rp are the pump’s standard deviation and 
radius of curvature, respectively. At the crystal, 
σ+ = √(2)σp, R+ = Rp, and z0,+ = z0,p (the Rayleigh range of 
the pump). We define the distance between the pump beam 
waist and the PDC crystal as zp, and incorporate its effect 
on ψdG by letting z → z – zp in the expressions for σ+ and 
R+. In Fig. 1 we also show two additional cases of the 
evolution of the Schmidt number: the pump focusing 
before and after the crystal. Here, Kphase is nonzero in the 
far-field due to the phase curvature of the pump, given by 
the initial difference between R+ and R– (at z = 0, R– = ±∞ 
and R+ = Rp). When the pump is focusing into the crystal, 
R+ starts out negative, goes to –∞ as the phase fronts 
flatten, changes sign to +∞ at z = zp as divergence takes 
over, reduces to a local minimum value at z = z0,+, and then 
increases. In contrast, R– starts out positive and increases 
faster than R+, since z0,– < z0,+. At z ≈ zp + z0,+

2/zp (assuming 
σ–,0 ≪ σ+,0), the curvatures become equal (R+ = R–) and 
Kphase drops to zero. For positive Rp (negative zp), R+ is 
always positive and greater than R–, and no such oscillatory 
features are observed.  

 

 
FIG. 2.   Evolution of entanglement of realistic biphoton wave 
function. (a) Evolution of the “Gaussian” components of the 
Schmidt number (Eq. (7)), of the realistic biphoton wave function 
(Eq. (2)) where σ–,0 = 5.5 µm, σ+,0 = 100 µm, and M–

2 = 1.89 
which contains only a portion of (dotted green line) the total 
Schmidt number K. Rayleigh ranges are indicated by the vertical 
solid gray lines, and the dashed gray line is z0,– / M–

2. The higher 
spatial frequency content of the Ssi(x2) function causes greater 
diffraction (in ρ–) than the double-Gaussian (dashed red curve), 
leading to a more rapid migration of entanglement from 
amplitude to phase, and higher maxima of Kphase and Kamp in the 
far-field. Difference-coordinate dependence of the (solid black 
curve) realistic biphoton wave function (Eqs. (1) and (2)) with 
(dotted red curve) Gaussian fits in the (b) near- and (c) far-field. 
The oscillatory structure of the realistic wave function is lost in 
the Gaussian approximation. In (b) q– = (q1 – q2)/√2. 
 

Unfortunately, the actual biphoton wave function is not 
well approximated by a double-Gaussian, particularly not 
upon propagation. FIG. 2(b) and 2(c) show the dependence 
of the realistic biphoton wave function on difference 
coordinates, along with a Gaussian fit, in both the near and 

far fields. The fine oscillatory structure is completely lost 
in the double-Gaussian approximation. Kamp in Eq. (7) 
therefore does not represent the entirety of the 
entanglement of the amplitude. In particular, the functions 
may have the same variances, and thus the same Kamp, but 
very different Schmidt numbers K. The oscillatory nature 
of Ssi(x2) means that the amplitude of Eq. (2) will never be 
separable in (ρ1, ρ2) coordinates, even when σ– = σ+. This 
means that the common experimental practice of 
measuring {σ±, σ} and evaluating Kamp [14,33] does not 
accurately capture the entirety of the spatial entanglement 
information content, but rather only a small portion 
[16,28]. 

In general, proper evaluation the Schmidt number must 
be done numerically, so there is no analytic form that 
clearly identifies the amplitude and phase components. 
Still, we may use Eq. (7) to evaluate the “Gaussian” 
components of the Schmidt number, with the 
understanding that they will necessarily be less than the 
total. To do so, we numerically propagate the realistic 
biphoton wave function (Eq. (2) with a collimated 
Gaussian pump) a distance z and fit the result to a double-
Gaussian wave function to determine σ± and R±. Fitting in 
this way, rather than, say, directly evaluating the variances 
and effective radii of curvature [34], yields a Gaussian 
approximation that more accurately reflects both the peak 
probability density and its full width at half maximum 
(FWHM) [12]. This is essentially what is done 
experimentally: measure the biphoton probability 
distribution and fit the result to a Gaussian to determine σ– 
and σ+ [14,16,35-37]. For σ– = 5.5 µm and σ+ = 100 µm, 
this procedure yields FIG. 2(a). This “Gaussian” part of the 
Schmidt number, KdG, not only migrates from amplitude to 
phase and back, but also changes its total upon 
propagation, although never reaching the total Schmidt 
number K.  

 



 
FIG. 3.   Images of the (a, b) irradiance and (c, d) correlation 
distributions in the (a, c) near and (b, d) far field. Black regions of 
(c) have been zeroed out to eliminate charge-smearing artifact 
[14] 

The evolution of the components of KdG of the realistic 
biphoton wave function can be accounted for through a 
modified double-Gaussian approximation. The Ssi(x2) 
function has higher spatial frequency content than a 
Gaussian and therefore diffracts more rapidly, resulting in 
a more rapid migration of entanglement from amplitude 
into phase. To describe such increased diffraction, we 
borrow the concept of “beam quality” parameter 
M 2 ≡ 2σxσk commonly used to characterize classical laser 
beams [20]. It is a measure of how far a beam is from 
diffraction-limited, and equal to the ratio of the divergence 
angle of a realistic beam to that of an ideal TEM00 
Gaussian beam of the same waist. For this ideal minimum-
uncertainty beam, M 2 = 1, while deviations (enhanced 
diffraction) result in increasing M 2. To extend this concept 
to the biphoton wave function, we introduce the dual 
“biphoton quality” parameters M±

2, in ρ– and ρ+ 
coordinates. Using the Gaussian fits in FIG. 2(b) and 2(c) 
of the realistic biphoton wave function ψ–, we find M–

2 = 
1.89, while M+

2 = 1 (since the pump is assumed to be 
TEM00). We can then modify both σ±(z) and R±(z) in the 
same manner done for classical laser beams by modifying 
the Rayleigh ranges z0,± → z0,± / M±

2. Thus Eqs. (4) and (5) 
become 
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respectively. Evaluating Kamp and Kphase using this modified 
expression reproduces the “Gaussian” parts of the Schmidt 
number in FIG. 2(a).  

An interesting point is that the ratio of Kamp in the near 
and far fields is related to that of M+

2 and M–
2. Assuming, 

σ–,0 ≪ σ+,0 (or alternatively √(L/kp) ≪ σp), as is typically the 
case in experiment, we find 
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For an ideal double-Gaussian wave function, where M±
2 = 

1, the ratio is unity, while for the realistic biphoton wave 
function in Eq. (2) it is 3.56 (see FIG. 2(a)). This agrees 
well with the value calculated from Eq. (11) of 
(1.89/1.0)2 = 3.57. 

To confirm this behavior, we performed experiments 
using an electron multiplying CCD (EMCCD) camera, 
which has both single-photon sensitivity and massively 
parallel measurement capabilities, making it convenient for 
biphoton measurements [14,37-39]. A spatially filtered 405 
nm CW laser beam pumps a type I SPDC crystal (BBO, L 
= 3 mm), generating near-collinear entangled photons, and 
nearly degenerate pairs are selected via spectral filter. Two 
lens systems image the near- and far-fields of the crystal 
onto the camera, which has 16×16 µm2 pixels, and operates 
at –85 °C, a 17 MHz read out rate, and 0.3 µs vertical shift 
time. The marginal (irradiance) distributions are measured 
by long exposures. To measure the conditional 
distributions, the camera is operated in photon counting 
mode, with a binary thresholding on each pixel level and a 
mean count rate per pixel of ~0.15, chosen to optimize the 
signal-to-noise ratio [40]. Conditional probabilities are 
calculated by auto-correlation (self-convolution) of each 
frame for near-field (far-field), with background 
subtracted, calculated via cross-correlation (cross-
convolution) between successive frames. 104 frames were 
collected at each z-position. The camera was translated Δz 
about z = 0, and for far-field measurements the effective 
far-field distance was calculated using 
z = f(f + m2Δz)/(m2Δz), where f is the focal length of the 
Fourier transform lens and m is the magnification.  
 



 
FIG. 4.   Comparison of (circles) measured Kamp with (solid red 
(dark gray)) theory for (a) σ–= 11.2 µm, σ = 533 µm, M+

2 = M–
2 = 2.67, and zp = 0, and (b) σ–= 11.3 µm, σ = 345 µm, 
M+

2 = 4, M–
2 = 3, and zp = 30 cm (Rp = –96 cm). Dashed red curve 

shows Kamp with same parameters but M±
2 = 1. Blue (light gray) 

and top black curves show corresponding Kphase and KdG, 
respectively. Errors in measured Kamp are ~ 10 % (not shown). 
 

FIG. 3 shows typical measurements in both the near- and 
far-fields. At these planes, both the spatial correlation in 
real-space (position) and anti-correlation in k-space 
(momentum) are approximately Gaussian. Their relative 
uncertainties are given by their standard deviations; 
correspondingly, it is easy to demonstrate the EPR 
paradox. In our case, we find a violation σx–σk+ = 
(2.7 ± 0.1) × 10–2 ≪ 1/2. In terms of information content, 
we find Kamp = 1133 ± 38 in the near field and 1136 ± 70 in 
the far field. The irradiance and correlation profiles for 
several defocused planes from the ideal image and Fourier 
planes of the crystal reveal the fall-off of the correlation 
with propagation, i.e., the decay of entanglement in 
amplitude.  

FIG. 4 shows measurements of Kamp about the near and 
far fields, for both collimated and focusing pump beams. 
Excellent agreement with theory is obtained with values of 
M±

2 > 1. Also plotted are the corresponding components 
Kphase and KdG, which reach values nearly an order of 
magnitude greater than Kamp, indicating that only a small 

portion of the total Schmidt number resides in the 
“Gaussian” part. Note that many effects could be 
responsible for the relatively large values of M±

2, such as 
the bandwidth of the bandpass filters (50 nm), non-
collinear phase matching, spatial walk-off within the 
crystal, aberrations in the imaging systems, and imperfect 
spatial filtering. 

In conclusion, we have studied the dynamics of spatial 
entanglement and the distribution of information content 
with the biphoton wave function. For the double-Gaussian 
approximation for entangled photon pairs, we have 
presented an analytic expression of the Schmidt number 
with separate amplitude and phase terms, and studied 
migration of entanglement between the two with 
propagation. For more realistic wave functions, we 
introduced the biphoton quality parameters M±

2 to allow 
more accurate modeling and better characterization of the 
evolution of spatial entanglement. By identifying the 
information content in the amplitude and phase, and 
following the migration between them, it becomes possible 
to engineer the degree of entanglement in either component 
and transfer it to the other upon propagation. With more 
parameters, these ideas can be extended to include higher-
order moments and address more degrees of freedom 
within the fine structure of continuous-variable wave 
functions. 
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APPENDIX 
 

We derive the expression for the “Gaussian” part of the 
Schmidt number in terms of the biphoton wave function, 
equation (6) in the main text. Following [16], we can 
express the Schmidt modes in terms of the creation 
operators of the signal and idler photons 
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With the electric field operator 
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and Ê(–)(ρ1) = [Ê(+)(ρ1)]†, the first-order coherence function 
is given by 
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and likewise for ρ2. The Schmidt modes of a double-
Gaussian wave function are Hermite-Gaussian 
polynomials, which have symmetry properties  
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Letting ρ1' = –ρ1 allows simplification of the first-order 
coherence function 
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where we have added the subscript dG to indicate that this 
is valid for the “double-Gaussian” wave function. 
Integrating over ρ1, and using the normalization of φn(ρ1), 
yields 
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We now apply two properties of the eigenvalues of the 
Schmidt modes. First; they decrease exponentially with n, 
i.e., λn = λ0α-n [15,16,30,41], yielding 
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Second; they are normalized such that ∑nλn = 1, meaning 
λ0 = 1 – α–1. This allows the simplification 
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the inverse of which is the definition of the Schmidt 
number. Therefore the “Gaussian” part of the Schmidt 
number is related to the average first-order coherence.  

In terms of the double-Gaussian biphoton wave function 
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Integrating over ρ1 gives 
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the inverse of which is equal to the Schmidt number. 
Changing variables from (ρ1, ρ2) to (ρ+, ρ–) transforms the 
wave function according to ψ(ρ1, ρ2) → ψ(ρ+, ρ–) and ψ(–
ρ1, ρ2) → ψ(–ρ–, –ρ+) 

yielding Eq. (6): 
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