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Spin-orbit coupling (SOC) is at the heart of many exotic band-structures and can give rise to
many-body states with topological order. Here we present a general scheme based on a combination
of microwave driving and lattice shaking for the realization of 2D SOC with ultracold atoms in
systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC
can be independently tuned in a spin-dependent square lattice. More generally, our method can
be used to open gaps between different spin states without breaking time-reversal symmetry. We
demonstrate that this allows for the realization of topological insulators with non-trivial spin textures
closely related to the Kane-Mele model.

I. INTRODUCTION

The coupling between a particle’s spin and its momen-
tum plays an important role in many aspects of modern
physics. It is responsible for the familiar fine-structure
splitting of atomic levels [1], central to the rapidly grow-
ing field of spin-orbitronics [2], and a key requirement for
realizing time-reversal (TR) invariant topological insula-
tors [3–11].

When interactions are added to the mix, the physics
can become even richer. For example, it has been
suggested that interacting bosons subject to SOC can
fermionize in 2D and form exotic many-body states [12].
In topological insulators, strong interactions are pre-
dicted to give rise to the topological Mott insulator phase,
where the electron spin acquires the non-trivial band
topology [13]. However, the physics of strongly inter-
acting particles in the presence of large SOC has not yet
been experimentally explored in depth, partly due to the
relatively weak SOC achievable in solids.

Ultracold atoms provide a promising alternative plat-
form for studying this situation [14]. In these systems,
strong interactions are routinely obtained by increasing
the depth of optical lattices or utilizing Feshbach reso-
nances [15, 16]. However, since atoms are neutral and
experience no Lorentz force, SOC does not naturally oc-
cur and must be engineered.

The SOC Hamiltonians of interest are the Rashba [17]
and Dresselhaus [18] couplings, which take the form

ĤR,D = αR,D (σ̂xky ∓ σ̂ykx) (1)

In solid-state systems, SOC is always TR invariant be-
cause the Dirac equation describing the underlying elec-
tron orbits respects TR symmetry – consequently, any
generic SOC can be described by a linear combination of
ĤR and ĤD.

In cold atom systems, a common technique to generate
SOC is to couple an atom’s momentum to its hyperfine
state, which acts as a pseudospin, with Raman lasers [19–
22]. Using this method, equal weights of Rashba and

Dresselhaus SOC [23–26] and pure Dresselhaus SOC [27]
have been experimentally realized in the absence of an
optical lattice.

Implementing SOC in optical lattices has proven to be
more challenging. Although SOC with equal Rashba and
Dresselhaus magnitudes have been proposed [28–30] and
realized [31, 32], to access more general forms of SOC,
most proposals [33–37] and recent experimental work [38]
focus on generating non-Abelian gauge fields, which can
be considered as TR-breaking forms of SOC. There exist
only a few proposals for specific forms of (TR-invariant)
SOC [39, 40] and, thus far, no experimental realization.

Here, we introduce a general scheme for realizing
generic SOC in 2D optical lattices. We apply it to
spin-dependent square lattices and show that indepen-
dently tunable Rashba- and Dresselhaus SOC can be

FIG. 1. SOC in optical lattices: (a) Starting with two pseu-
dospins |↑〉 and |↓〉 with band structures related by reversing
their order and offsetting them by energy ~ω0, tunable SOC
is realized for states |⇑〉 = |↑,+〉 and |⇓〉 = |↓,−〉 by a com-
bination of microwave driving and lattice shaking. The latter
depends on the Berry connection Â (see Eq. (6)) and can be
implemented by an oscillatory force F (t) with frequency ω.
The scheme can be realized, e.g., in an inversion-symmetric,
spin-dependent square lattice (b), and lifts the spin degener-
acy in the band structure up to Kramer’s degeneracies (c).
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implemented. Our method relies on a combination of
microwave (MW) drives to change the spin states and
lattice shaking [29] to couple the spins with the atomic
motion. If the optical lattice is inversion symmetric, the
resulting SOC can be TR invariant. We show that this
allows for the realization of TR invariant topological in-
sulators with non-trivial spin textures in the presence of
spin-dependent magnetic fields [41].

II. GENERAL PROCEDURE

We consider two independent (pseudo-) spin states |↑〉
and |↓〉 in 2D, both of which are subject to the same dis-
persion relation ε(k). We assume that the corresponding
Hamiltonian is invariant under the anti-unitary TR op-

erator θ̂,

Ĥ(k) = θ̂†Ĥ(−k)θ̂, (2)

which implies that ε(−k) = ε(k) is symmetric.
In Fig. 1 (a) we show the specific model which we use to

derive SOC in a square lattice, where the energy of iden-
tical Bloch wavefunctions is reversed for different spin

states. In this case θ̂ = Kiσ̂y ⊗ τ̂x consists of a spin-flip
(iσ̂y) and a simultaneous change of the Bloch band de-
scribed by τ̂x = |+〉〈−|+ h.c., where K denotes complex
conjugation. Our basis states are labeled by the pseudo-
spin σ =↑, ↓ and the two motional degrees of freedom
τ = ± associated with the band structure.

Our goal is to engineer SOC, which mixes the two
pseudo-spin states | ↑〉, | ↓〉 while preserving TR. That
is, the resulting Hamiltonian should be TR invariant and
should not commute with σ̂z. In general, we need to
engineer terms of the form

ĤSOC(k) = f(k) · σ̂, (3)

which are TR invariant if f(k) is an odd function of k,
i.e. f(k) = −f(−k). The lattice versions of Rashba and
Dresselhaus SOC are obtained by choosing

fR,D(k) = αR,D(sin ky,∓ sin kx)T . (4)

To engineer the terms in Eq.(3), we consider a second
order Raman transition as shown in Fig. 1 (a), which res-
onantly couples |⇑〉 = |↑,+〉 to |⇓〉 = |↓,−〉 through the
virtually excited states |↓,+〉 and |↑,−〉. While the spe-
cific model considered so far guarantees an ideal Franck-
Condon overlap for this process, it is not a strictly nec-
essary condition for our protocol to work.

Spin flips between |↑〉 and |↓〉, with energy cost ~ω0, are
achieved by two direct MW transitions j = 1, 2 with Rabi

frequencies Ω
(j)
MW. The second leg of the Raman transi-

tion between bands |+〉 and |−〉 of the same spin state is
realized by near-resonant lattice shaking with frequency
ω. This coupling is described by [42–44]

ĤF (k, t) = F (t) · Â(k), (5)

where F (t) = (Fx cos(ωt), Fy cos(ωt+φF ))T is an oscilla-
tory force, which we assume to be weak: Fa� ~ω, where
a is the lattice constant. Without loss of generality, we
fix the overall phase of lattice shaking. The elements of
the U(2) Berry connection are

Aµ,ν(k) = 〈uµ(k)|i∇k|uν(k)〉, (6)

with µ, ν = ± and where |uµ(k)〉 denotes the cell-periodic
Bloch wavefunction corresponding to the state |µ〉 at
quasimomentum k.

For two-photon resonance, the MW frequencies are
ω1,2 = ω0 ± ω. Assuming ω0 � ω we obtain an effec-
tive Rabi coupling between |⇑〉 and |⇓〉 of the form

ĤSOC(k) ∝
∑
j

~Ω
(j)
MW

∆k
F ·A−,+(k) |⇓〉〈⇑|+ h.c. . (7)

The k-dependent detuning from the intermediate state
is given by ∆k = 2ε(k) + ~ω if the band structure is
particle-hole symmetric, as in Fig. 1a. Note that Eq.(7)
is in the form of Eq.(3), where σ̂ is defined in the basis

of |⇑〉, |⇓〉 and f(k) ≡ ~Ω
(j)
MW

∆k
F ·A−,+(k).

Eq. (7) is TR invariant and thus realizes synthetic
SOC if A−,+(k) = −A−,+(−k). To guarantee this sym-
metry, we consider systems which are invariant under
spatial inversion, P̂ Ĥ(k)P̂ = Ĥ(−k). Consequently, cell-
periodic Bloch states |uµ(±k)〉 are related by

P̂ |uµ(k)〉 = eiχµ(k)|uµ(−k)〉, (8)

where χµ(k) is determined by the gauge choice. It follows
that

Aµ,ν(−k) = −ei(χµ(k)−χν(k))Aµ,ν(k). (9)

If we can make a gauge choice where χµ(k) = χν(k)

for all relevant bands µ, ν, then A−,+(k) is an anti-
symmetric function, as required for TR invariance. Note
however that the value of χµ(kTR) = 0, π at TR invari-
ant momenta kTR ≡ −kTR mod G, with G a reciprocal
lattice vector, is fixed and can not be changed by gauge
transformations. In this case, eiχµ(kTR) = ξµ(kTR) = ±1
denotes the parity eigenvalues at kTR. Therefore, in ad-
dition to inversion symmetry, we require that

ξµ(kTR) = ξν(kTR) for all µ, ν, (10)

at TR invariant momenta. As we later show, this con-
dition can be dropped for particles in a spin-dependent
artificial magnetic field.

The effective Hamiltonian in the |⇑〉-|⇓〉 subspace is
derived in detail in Appendix A. When only MW beam

j (with phase φ
(j)
MW) is switched on, we obtain

Ĥ(j) = ε(k) +
|R1(k)|2|⇓〉〈⇓|+ |R2(k)|2|⇑〉〈⇑|

∆k

+
(~Ω

(j)
MW)2

4∆k
(δj,1|⇓〉〈⇓|+ δj,2|⇑〉〈⇑|)

+
~Ω

(j)
MW

2∆k

[
|⇓〉〈⇑|e−iφ

(j)
MWR∗j (k) + h.c.

]
, (11)
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where Rj = 1
2

[
FxA+,−

x +Fye
iφ

(j)
F A+,−

y

]
with φ

(1)
F = φF =

−φ(2)
F . The first two lines in Eq.(11) describe the free

dispersion, which is renormalized by spin-dependent AC
Stark shifts. If A+,−(k) is anti-symmetric, the last line
in Eq.(11) describes the desired TR invariant SOC.

III. SOC IN A SPIN-DEPENDENT SQUARE
LATTICE

We proceed by considering the specific Berry connec-
tion for a spin-dependent square lattice,

A+,−(k) = (Ax sin kx, Ay sin ky)
T
, Ax,y ∈ R. (12)

Note that |R1(k)|2 = |R2(k)|2 = |R(k)|2 in this case.
The last line of Eq.(11) now becomes

Ĥ(j)
SOC(k) =

~Ω
(j)
MW

4∆k
(sin kx, sin ky)

(
g

(j)
x −f (j)

y

f
(j)
x −g(j)

y

)(
σ̂x

σ̂y

)
,

(13)
with tunable amplitudes given by

g(j)
x = FxAx cos(φ

(j)
MW), f (j)

x = FyAy cos(φ
(j)
MW + φ

(j)
F ),

f (j)
y = FxAx sin(φ

(j)
MW), g(j)

y = FyAy sin(φ
(j)
MW + φ

(j)
F ).

With only one microwave drive, the spin-dependent
AC Stark shifts in Eq.(11) break TR invariance. The
simplest way to restore TR symmetry is to switch on both

MW beams with equal Rabi frequencies Ω
(1)
MW = Ω

(2)
MW.

In this case, however, we can realize only equal-strength
Rashba and Dresselhaus SOC due to interference effects
between the two paths j = 1 and 2 (see Appendix B).

Alternatively, TR symmetry can be restored for an ef-
fective Floquet Hamiltonian when the two MW beams
are switched on and off in an alternating fashion with fre-

quency ωs. By choosing equal MW parameters (φ
(1)
MW =

φ
(2)
MW, Ω

(1)
MW = Ω

(2)
MW) and switching the phase of the lat-

tice shaking φF between φ0
F while Ω

(1)
MW 6= 0 is on, and

−φ0
F while Ω

(2)
MW 6= 0 is on, the spin-orbit part of the

Hamiltonian becomes time-independent. For the choice
φMW = −φ0

F = π/2, this realizes tunable Rashba- and
Dresselhaus couplings

αR,D =
~ΩMW

8∆
(FxAx ± FyAy) , (14)

where we approximated ∆k ≈ ∆.
To lowest order in 1/ωs, the effective Floquet Hamil-

tonian contains SOC with amplitudes αR,D given in
Eq. (14), and the AC Stark shift becomes (|R(k)|2 +
|~ΩMW|2/8)/∆k, independent of the spin. More gener-
ally, we show in Appendix A that the effective Floquet
Hamiltonian is TR invariant to all orders in 1/ωs.

A realistic implementation of our scheme is possible
using a square optical lattice with hopping amplitude J ,

Floquet
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FIG. 2. SOC in a spin-dependent square lattice: (a) We show
the full band structure of the Floquet Hamiltonian (in units
of ~ωs = ~ω/4 = 4J). Kramer’s degeneracies at TR invariant
momenta (crosses in (c)) are a direct consequence of the TR
invariance of the system. (b) The bands of the free Hamilto-
nian are shown for δ = 6J , as chosen in the numerics. Curves
for all values of ky are plotted on top of each other. In (c), we
compare the value of the gap between the lowest two bands
∆SOC (due to SOC) obtained from the exact Floquet calcu-
lation and from the perturbative result in Eq.(11). We set
~ΩMW = 5J and ω0 = 100ω.

superimposed by a spin-dependent superlattice with off-
set ±δσ̂z on the respective sublattices (see Fig. 1 (b)).
A similar case has been considered in Ref. [34]. The
resulting Bloch Hamiltonian is particle-hole symmetric
and reads Ĥ0(k) = ε(k) τ̂z ⊗ σ̂z. In the limit of a deep
superlattice (δ � J) this realizes a reversed band struc-
ture, and we obtain ε(k) = −(δ + β2

k4J2/δ), where βk =
cos(kx)+cos(ky), and the Berry connection becomes spin-

dependent, i.e, A+,−(k) ∝ σ̂z (see Appendix B). In the
limit δ � J we obtain A+,−(k) = σ̂z(sin kx, sin ky)TJ/δ,
as anticipated in Eq.(12).

Tunable Rashba- and Dresselhaus SOC can be imple-
mented as previously described using the model shown
in Fig. 1 (a). To account for the additional ”−” sign

due to the σ̂z-term in A+,−, the phase φ
(1)
MW = φ

(2)
MW + π

needs to be shifted. The resulting SOC amplitudes are
αR,D = λSOC (Fx ± Fy), where λSOC = ~ΩMWJ/(8δ∆).

In Fig. 2 we present an exact calculation of the effec-
tive Floquet Hamiltonian in the square lattice for realistic
experimental parameters. The band structure in Fig. 2
(a) shows Kramer’s degeneracies as a consequence of TR
symmetry. The exact result closely resembles the per-
turbative calculation (based on Eq.(11)) shown on the
same scale in Fig. 1 (c). This agreement is confirmed by
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FIG. 3. SOC in magnetic fields: Two identical but time-
reversed band structures, with opposite Chern numbers [41]
for spins |↑〉 and |↓〉 (indicated by opposite cyclotron orbits)
can be coupled by microwave beams and lattice shaking. A
two-photon process through a virtually excited state allows
for the realization of TR invariant SOC.

the comparison of the gap ∆SOC between the two lowest-
lying bands in Fig. 2 (c).

IV. SOC IN THE PRESENCE OF MAGNETIC
FIELDS

Now we demonstrate how SOC can be generated in
more general situations. Our starting point are two iden-
tical but time-reversed copies of a Chern insulator (| ↑〉
and |↓〉) with opposite Chern numbers C = ±1. This sit-
uation was considered by Kane and Mele [3], who showed
that even when SOC mixes the two systems, a Z2 topo-
logical invariant characterizing the topological insulator
remains quantized as long as TR symmetry is retained.
While two time-reversed copies of a system with equal
but opposite Chern numbers have been realized exper-
imentally using ultracold atoms [41], the effect of SOC
has not yet been investigated in this context.

A direct generalization of our scheme is shown in Fig. 3.
As before, TR invariant SOC between the Bloch band
|⇑〉 = |u1(k), ↑〉 and its TR partner |⇓〉 = K|u1(−k), ↓〉
at quasimomentum k is generated by a combination of
MW transitions and lattice shaking. In contrast to the
case of the reversed Bloch bands in the simplified model
of Fig. 1 (a), the MW transitions are renormalized by
a gauge-dependent Franck-Condon overlap Km,n(k) =
〈Kum(−k)|un(k)〉. This allows us to drop condition (10)
and assume only that the system has inversion symmetry
(see Eq.(8)). As a result (see Appendix C for details)
the effective Rabi coupling between | ⇑〉 and | ⇓〉 is an
anti-symmetric function of k, independent of the gauge
choice.

Here we only consider the case when both MW beams

Ω
(1,2)
MW = ΩMW are switched on simultaneously. To avoid

spin-dependent AC Stark shifts, we make the choice φF =
0, corresponding to linear lattice shaking. These condi-
tions guarantee TR invariance of the resulting Hamilto-
nian (see Appendix C and Ref. [45]). Furthermore, we

choose φ
(1)
MW = φ

(2)
MW + π to obtain constructive interfer-

-0.5

0

0.5

0 0.05 0.1 0.15 0.2
-1

-0.5

0

0.5

1

FIG. 4. SOC in the Hofstadter model: (a) We start from two
spin-degenerate time-reversed bands in the Hofstadter model
(dashed lines) at magnetic flux per plaquette α = ±1/4. Cou-
pling the bands by MW beams and lattice shaking leads to TR
invariant SOC, which partly lifts the spin degeneracy (solid
lines). The two lowest bands are a Z2 topological insulator,
which can be seen from the eigenvalues exp(iϕW ) of the U(2)
Wilson loop (b). Parameters are ~ω = 6J , ~ω0 = 100J ,
~ΩMW = 5J , φMW = π and Fx = Fy = 5J/a, where J is the
tunneling amplitude.

ence between the two pathways.
In Fig. 4, we present an exact calculation of the band

structure in a Hofstadter model [41, 46]. When MW cou-
pling and lattice shaking are switched on, the initial spin
degeneracy is lifted by the presence of synthetic SOC.
At TR invariant momenta, we obtain Kramer’s degen-
eracies as a consequence of the symmetry. The resulting
band structure is a Z2 topological insulator, which can
be checked by calculating the winding of the U(2) Wil-
son loops [47] (see Fig. 4). Wilson loops can be directly
measured [42, 44] to experimentally test our prediction.
Our scheme can also be applied to add SOC to the Hal-
dane model [48, 49] more closely resembling the situation
considered in the Kane-Mele model [3].

V. SUMMARY AND OUTLOOK

In this article we introduced a general scheme for re-
alizing TR invariant synthetic 2D SOC in optical lat-
tices. We made use of a combination of direct MW
transitions and near-resonant lattice shaking, which pro-
vides the required momentum dependence in the effec-
tive Hamiltonian. Spin-dependent optical lattices pro-
vide a realistic platform where our scheme can be used
to implement Rashba and Dresselhaus SOC with fully
tunable strengths. We expect that this will not only en-
able quantum simulations of ubiquitous model Hamilto-
nians known from solid-state physics, but also allows for
an experimental investigation of exotic physics related to
SOC, ranging from studies of supersymmetric Hamilto-
nians [50] to statistical transmutations induced by strong
interactions [12].
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Our scheme can also be used to introduce SOC in the
presence of magnetic fields. In particular, it allows for the
realization of TR invariant Z2 topological insulators with
non-trivial spin textures, as in the celebrated Kane-Mele
model [3]. This will enable experiments with ultracold
atom to explore topologically protected edge states, in
a situation closely resembling realistic solids with strong
interactions in the presence of SOC.
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Appendix A: SOC Hamiltonian for the model with
reversed Bloch bands

In this appendix we present a detailed derivation of the
effective SOC Hamiltonian explained in the main text.
We consider the idealized situation shown in Fig. 1(a) of
the paper, where the Bloch bands corresponding to spin
up (| ↑〉) particles are obtained by reversing the order
of the Bloch bands associated with the spin down (| ↓〉)
degrees of freedom and shifting them in energy by an
amount ~ω0. Without the additional couplings, the free
Hamiltonian reads (we use ~ = 1 in all appendices)

Ĥ0(k) = ε(k)σ̂z ⊗ τ̂z +
ω0

2
(1− σ̂z) . (A1)

Here σ̂z = | ↑〉〈↑ | − | ↓〉〈↓ | acts on (pseudo) spin degrees
of freedom, and τ̂z = |+〉〈+| − |−〉〈−| labels motional
degrees of freedom associated with the band structure;
The corresponding cell-periodic Bloch wavefunctions are
|u±(k)〉.

We assume that pseudospins are offset in energy by
ω0. To eliminate ω0 from the Hamiltonian, we introduce
a rotating basis |↓̃〉 = e−iω0t| ↓〉. In the new frame the
free part becomes

Ĥ0(k) = ε(k)σ̂z ⊗ τ̂z, (A2)

and to keep the notation compact we replace |↓̃〉 by |↓〉.
Lattice shaking.– As a first step towards SOC, we intro-

duce couplings between the two bands |u±(k)〉 by lattice
shaking. To this end an oscillating force is applied, which
will be parametrized by

F (t) = exFx cos(ωt) + eyFy cos(ωt+ φF (t)). (A3)

We assume that the driving frequency ω is close to, but
not in resonance with, the band gap 2|ε(k)|; φF (t) de-
notes the phase of the driving. As a result of this force,

the quasimomentum of particles in the Brillouin zone
changes in time,

k(t) = k(0)−
∫ t

0

dτ F (τ). (A4)

For simplicity we assume that the Bloch oscillation fre-
quency is small compared to the shaking frequency,

|F |a� ω, (A5)

allowing to approximate k(t) ≈ k(0) ≡ k. Then we
obtain the following Hamiltonian describing the effect of
the oscillatory force, see e.g. Refs. [42–44],

ĤF (k, t) = F (t) · Â(k). (A6)

Next we make use of the rotating wave approximation
(RWA), which is justified because |Â · F | ' |F |a � ω
and since we assume that ω ≈ 2|ε(k)| is comparable to
the band gap. We use the decomposition

Â(k) = Ax(k)τ̂x + Ay(k)τ̂y + Az(k)τ̂z, (A7)

where Aµ are real vectors (µ = x, y, z) with components
Aµi (i = x, y). For spin | ↑〉, where |+〉 is lower in energy
than |−〉, the RWA result is

F (t)·Â(k)
RWA
≈ R(k, φF (t))eiωt|+, ↑〉〈−, ↑ |+h.c., (A8)

where R(k, φF ) is defined by

R(k, φF ) =
1

2

[
Fx (Axx − iAyx) + Fye

iφF
(
Axy − iAyy

)]
.

(A9)
For spin | ↓〉 on the other hand, where |+〉 is higher in
energy than |−〉, the RWA result is

F (t) · Â(k)
RWA
≈ R(k,−φF (t))e−iωt|+, ↓〉〈−, ↓ |+ h.c.

(A10)
Note that within the RWA we may also neglect the terms
F (t) ·Az(k) which are oscillating at frequency ω.

MW couplings.– To obtain an effective SOC Hamilto-
nian for the two pseudospin states

|⇑,k〉 = |↑〉|u+(k)〉, |⇓,k〉 = |↓〉|u−(k)〉, (A11)

we include MW couplings between different spins. They
will only be switched on one at a time to avoid interfer-
ence effects, and their frequencies are chosen such that
|⇑〉 and |⇓〉 are resonantly coupled by a second order pro-
cess. The Hamiltonians for these two processes (j = 1, 2)
are given by

Ĥ(j)
MW(t) = Ω

(j)
MW cos

(
ωjt+ φ

(j)
MW

)
σ̂x, (A12)

where ω1 = ω0 + ω and ω2 = ω0 − ω. We assume that

ω0 � ω (A13)
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such that ω1,2 > 0 before going to the frame rotating
with frequency ω0.

In the frame rotating with frequency ω0, on the other
hand, ω1,2 are replaced by ω1,2 = ±ω. The last condition
Eq. (A13) together with the assumption

|Ω(j)
MW| � ω, j = 1, 2 (A14)

justifies using the RWA, from which we obtain

Ĥ(1)
MW(t)

RWA
≈

Ω
(1)
MW

2
ei(ω1t+φ

(1)
MW)|+, ↑〉〈+, ↓|+ h.c. ,

(A15)

Ĥ(2)
MW(t)

RWA
≈

Ω
(2)
MW

2
ei(ω2t+φ

(2)
MW)|−, ↑〉〈−, ↓|+ h.c. .

(A16)

Hamiltonian in RWA.– Combining the terms derived
above by applying the RWA leads to the following Hamil-
tonian, formulated in the frame rotating at frequency ω0.
If the MW beam j = 1 is switched on we obtain

Ĥ(1)
tot(k) = Ĥ0(k) +

[
Ω

(1)
MW

2
ei(ω1t+φ

(1)
MW)|+, ↑〉〈+, ↓|

+R(k, φF (t))eiωt|+, ↑〉〈−, ↑ |

+R(k,−φF (t))e−iωt|+, ↓〉〈−, ↓ |+ h.c.

]
, (A17)

and a similar expression is derived when MW beam j = 2
is switched on.

Effective Hamiltonian.– When both lattice shaking and
one of the MW drivings (j) is switched on, we obtain an
effective Hamiltonian coupling |⇑〉 and |⇓〉 from second
order perturbation theory and within RWA. In the frame
rotating with frequency ω0 it reads

Ĥ(j) = ε(k) +
|R1(k)|2|⇓〉〈⇓|+ |R2(k)|2|⇑〉〈⇑|

∆k

+
(Ω

(j)
MW)2

4∆k
(δj,1|⇓〉〈⇓|+ δj,2|⇑〉〈⇑|)

+
Ω

(j)
MW

2∆k

[
|⇓〉〈⇑|e−iφ

(j)
MWR∗j (k) + h.c.

]
, (A18)

Here ∆k = 2ε(k) + ω and we introduced R1(k) =
R(k, φF (t)) and R2(k) = R(k,−φF (t)). The first line in-
cludes the bare dispersion ε(k), AC Stark shifts for both
pseudospins from lattice shaking as well as MW driving.

Floquet Hamiltonian.– The spin-dependent AC Stark
shift corresponds to a broken TR symmetry. In order
to eliminate it, we consider a pulsed sequence where the
two MW beams j = 1, 2 are switched on and off in an
alternating fashion. In the first interval, from t = 0 to
Ts/2, only the j = 1 beam is operating, and from t =
Ts/2 to t = Ts only the j = 2 beam is switched on. When
j = 2 is acting on the system, the phase of the driving
force is reversed, i.e. φF (t) = −φ0

F for Ts/2 < t < Ts and

φF (t) = φ0
F for 0 < t < Ts/2. The switching frequency

is defined by ωs = 2π/Ts. These dynamics give rise to

an effective Floquet Hamiltonian Ĥeff which we calculate
in the limit of large ωs using the Magnus expansion. To

lowest order we obtain for Ω
(1)
MW = Ω

(2)
MW = ΩMW and

φ
(1)
MW = φ

(2)
MW = φMW

Ĥ(0)
eff (k) = ε(k) +

|R1(k)|2 + |R2(k)|2 + (ΩMW)2/4

2∆k
+

+
ΩMW

2∆k

[
|⇓〉〈⇑|e−iφMWR∗(k, φ0

F ) + h.c.
]
, (A19)

where the first line describes how the dispersion relation
is renormalized. The second line represents SOC and can
be written as

ĤSOC(k) =
ΩMW

2∆k

(
σ̂x Re

[
eiφMWR(k, φ0

F )
]

− σ̂y Im
[
eiφMWR(k, φ0

F )
])
. (A20)

This term is TR invariant in the presence of the following
symmetry

R(−k, φ0
F ) = −R(k, φ0

F ), (A21)

as discussed in the main text. The properties of the re-
sulting SOC depend on off-diagonal elements of the Berry
connection Â(k) and can be tuned by the phases φ0

F of
the shaking and φMW of the MW beams.

Higher order terms in the Magnus expansion give rise
to corrections in the effective Floquet Hamiltonian, that
may be relevant for the effective band structure. Now we
proof that such corrections are TR invariant to all orders
if the SOC Hamiltonian has this property. The effective

Hamiltonian Ĥ(∞)
eff is defined as

Ûk = e−iTsĤ
(∞)
eff (k) = e−iĤ

(2)(k)Ts/2e−iĤ
(1)(k)Ts/2,

(A22)

and it is TR invariant if θ̂†Ĥ(∞)
eff (k)θ̂ = Ĥ(∞)

eff (−k), i.e.

for θ̂†Ûkθ̂ = Û†−k. Because by construction θ̂†Ĥ(2)(k)θ̂ =

Ĥ(1)(−k) it follows that

θ̂†Ûkθ̂ = eiĤ
(1)(−k)Ts/2eiĤ

(2)(−k)Ts/2 = Û†−k. (A23)

Appendix B: SOC in a spin-dependent square lattice

In this appendix we apply our idealized scheme to the
realistic situation of a spin-dependent square lattice. As
described in the main text, the Hamiltonian consists of
nearest-neighbor hopping with amplitude J , and a spin-
dependent superlattice potential generating energy off-
sets ±δ for opposite spins and different sublattices. In
second quantization, the Hamiltonian reads

Ĥ = −J
∑
〈i,j〉

(
â†i,σâj,σ + h.c.

)
+ δ

∑
j

(−1)σ(−1)j â†j,σâj,σ,

(B1)
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where (−1)j = −1(+1) for j from the A (B) sublattice,
and similarly (−1)↓ = −1 and (−1)↑ = 1.

Band structure.– The Bloch Hamiltonian can conve-
niently be written

Ĥ0(k) = δ σ̂z ⊗ τ̃z − 2Jβkτ̃
x, (B2)

where βk = cos(kx) + cos(ky) and the Pauli matrix τ̃z is
defined in the basis |A〉, |B〉 of the A and B sublattice.

Because {Ĥ0(k), τ̃y} = 0, the Hamiltonian is particle-

hole symmetric and we can write Ĥ0(k) = ε(k, σ) τ̂z,
where τ̂z is defined in the eigenbasis.

The cell-periodic Bloch states |u±k,σ〉, with τ̂z|u±k,σ〉 =

±|u±k,σ〉, can conveniently be written in the eigenbasis

|±y〉 of τ̂y ≡ τ̃y,

|u±k,σ〉 =
(
|+y〉 ± eiϑk,σ |−y〉

)
/
√

2. (B3)

It holds ε(k, σ) = −σ̂zδ cosϑk,σ + 2Jβk sinϑk,σ, where
the mixing angle is given by tanϑk,σ = −σ̂z2Jβk/δ.
Hence we can write the Hamiltonian as

Ĥ0(k) = ε(k) σ̂z ⊗ τ̂z, (B4)

where we defined

ε(k) = −δ cosϑk + 2Jβk sinϑk, (B5)

tanϑk = −2Jβk/δ. (B6)

This shows that the band energies are completely in-
verted for different spins.

The Bloch wavefunctions are completely inverted,
|u+

k,↑〉 = |u+
k,↓〉, only for a deep superlattice δ � J . In

the other limit J � δ there is no inversion and it holds
|u+

k,↑〉 = |u−k,↓〉. As a consequence, the U(2) Berry con-

nection becomes spin dependent. From Eq.(B3) we ob-
tain the exact result

A+,−(k) = −σ̂z J
δ

cos2 ϑk∇kβk. (B7)

Using this gauge choice, it follows immediately that
A+,−(k) = −A+,−(−k) is antisymmetric. Thus
ξ+(kTR) = ξ−(kTR) as required for TR invariance of
the effective SOC Hamiltonian. We also note that
A+,−(k) ∝ σ̂z to all orders in J/δ. Because cosϑk =
1 +O(J/δ)2 we obtain

A+,−(k) = σ̂z
J

δ
(sin kx, sin ky)

T
+O(J/δ)3. (B8)

Effective SOC.– As described in the main text, our
method for generating tunable SOC can be applied to
the spin-dependent square lattice. Taking into account
the additional spin-dependence of the Bloch states leads
to the following effective Hamiltonian,

Ĥ(j) = ε(k) +
|R1(k)|2|⇓〉〈⇓|+ |R2(k)|2|⇑〉〈⇑|

∆k

+
(Ω

(j)
MW)2|λ|2

4∆k
(δj,1|⇓〉〈⇓|+ δj,2|⇑〉〈⇑|)

+ (−1)j
Ω

(j)
MW

2∆k

[
|⇓〉〈⇑|e−iφ

(j)
MWλR∗j (k) + h.c.

]
. (B9)

The only difference to Eq.(A18) is the additional minus
sign in the last line, due to the factor σ̂z in Eq.(B7), and
the appearance of Franck-Condon factors

λ = 〈u±k,↓|u
±
k,↑〉 =

1

2

(
1 + e2iϑk

)
. (B10)

Note that we defined Rj(k) using the expression for

A+,−(k) with σ̂z = 1.

Because λ is independent of the path j, the methods
discussed for the idealized situation still guarantee a TR
symmetric effective Hamiltonian. To leading order in J/δ
the Franck-Condon factors are equal to one, λ = 1 −
2iβkJ/δ + O(J/δ)2. Therefore in the limit J � δ the

results from Appendix A carry over directly, if φ
(1)
MW →

φ
(1)
MW +π is shifted by π to compensate for the additional

minus sign (−1)j in the last line of Eq.(B9). λ merely
renormalizes the coupling strength of SOC.

Equal Rashba- and Dresselhaus SOC.– Here we discuss
how equal Rashba and Dresselhaus SOC can be generated
in the spin-dependent square optical lattice. To this end
both MW beams are switched on with equal strengths,

Ω
(1,2)
MW = ΩMW. For simplicity we work in the limit J � δ,

where A+,−(k) is real, see Eq.(B8), AC-Stark shifts are
independent of the spin, and λ ≈ 1.

The effective Hamiltonian becomes,

Ĥeff = ε(k) +
|R(k)|2 + (ΩMW)2/4

∆k
+ ĤSOC(k), (B11)

where the SOC is described by

ĤSOC(k) =
ΩMW

2∆k
[σ̂x Re(ηk)− σ̂y Im(ηk)] , (B12)

ηk = eiφ
(2)
MWR(k,−φF )− eiφ

(1)
MWR(k, φF ). (B13)

Due to interference effects between the two beams, only
equal Rashba-Dresselhaus SOC can be generated in this

way. For example, the choice φ
(1)
MW = φ

(2)
MW = φMW leads

to

ĤSOC(k) =
ΩMW

2∆k

J

δ
Fy sin(φF )

× sin(ky) [cos(φMW)σ̂y + sin(φMW)σ̂x] . (B14)

Appendix C: SOC in the presence of magnetic fields

In this appendix we present a detailed derivation of the
effective SOC Hamiltonian in the presence of (artificial)
magnetic fields. We consider the situation shown in Fig. 3
of our paper, where the band structure of spin down (|↓〉)
particles is obtained from the up spins (| ↑〉) by time-
reversal (i.e. complex conjugation in this case). Without
the additional couplings, the free Hamiltonian reads (~ =
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1)

Ĥ0(k) = |↑〉〈↑ |
∑
n

εn(k)|un(k)〉〈un(k)|+

+ |↓〉〈↓ |
∑
n

εn(k)K|un(−k)〉〈Kun(−k)|, (C1)

where |un(k)〉 denotes the magnetic Bloch wavefunctions

of Ĥ↑(k) with energies εn(k). For example, we can choose

Ĥ↑(k) to describe the Haldane [48] or the Hofstadter
model [46]. The Hamiltonian for spin down states is ob-
tained by TR,

Ĥ↓(k) = KĤ↑(−k)K, (C2)

and the corresponding eigenfunctions at energy εn(k) are
given by K|un(−k)〉. As in the construction by Kane and

Mele [3], the Hamiltonian Ĥ0 is TR invariant,

θ̂†Ĥ0(k)θ̂ = Ĥ0(−k), (C3)

where θ̂ = Kiσ̂y.
Lattice shaking.– Next we introduce lattice shaking by

applying an oscillatory force F (t) parametrized as in
Eq.(A3). It couples the lowest band n = 1, which we
are interested in, to higher bands n,

ĤF (k, t) = F (t) · Â(k)
RWA
≈

RWA
≈

∑
n>1

[
Rn(k)eiωt|↑〉〈↑ | ⊗ |1〉〈n|+ h.c.

]
+

+
∑
n>1

[
R∗n(k)eiωt|↓〉〈↓ | ⊗ |1〉〈n|+ h.c.

]
. (C4)

The k-dependent couplings are given by

Rn(k) =
1

2

[
FxA1,n

x (k) + Fye
iφFA1,n

y (k)
]

(C5)

R∗n(k) =
1

2

[
FxA1,n

∗,x(k) + Fye
iφFA1,n

∗,y (k)
]
, (C6)

where the Berry connection in the ↑ sector is

An,m(k) = 〈un(k)|i∇k|um(k)〉 (C7)

and in the |↓〉 sector it is given by

An,m
∗ (k) = 〈Kun(−k)|i∇kK|um(−k)〉

= (An,m(−k))
∗
. (C8)

MW coupling.– To obtain an effective SOC Hamilto-
nian for the two pseudospin states

|⇑,k〉 = |↑〉|u1(k)〉, |⇓,k〉 = |↓〉K|u1(−k)〉, (C9)

we introduce MW transitions Ω
(1,2)
MW between |↑〉 and |↓〉

states with frequencies ω1,2 = ω0 ± ω as shown in Fig. 3

of the paper. Assuming that ω0 � ω we obtain within
the RWA

Ĥ(j)
MW

RWA
≈

Ω
(j)
MW

2
ei(ωjt+φ

(j)
MW)|↑〉〈↓ |+ h.c. (C10)

Projection onto the band eigenstates gives rise to the
following effective MW couplings

Ĥ(j)
MW =

∑
n,m

Ω
(j)
MW

2
(Km,n(k))

∗
ei(ωjt+φ

(j)
MW)|↑, n〉〈↓,m|+h.c.

(C11)
which are renormalized by Franck-Condon factors,

Km,n(k) = 〈Kum(−k)|un(k)〉. (C12)

Symmetries.– Before deriving the effective Hamilto-
nian, we make some symmetry considerations that will
allow us to understand under which conditions the sys-
tem is TR invariant. We will assume that the system
is inversion symmetric and we make a gauge choice re-
specting this symmetry. Hence P̂ Ĥ0(k)P̂ = Ĥ0(−k) and
Bloch states at ±k are related by

P̂ |un(k)〉 = eiχn(k)|un(−k)〉, (C13)

where χn(k) is a gauge-degree of freedom. It follows that

An,m(−k) = −e−i[χn(k)−χm(k)]An,m(k), (C14)

and from Eq. (C8) we derive that

An,m
∗ (k) = −e−i[χn(k)−χm(k)]Am,n(k). (C15)

For the lattice shaking matrix elements we obtain the
relation

R∗,n(k, φF ) = − [Rn(k,−φF )]
∗
e−i[χ1(k)−χn(k)] (C16)

and it follows that

|Rn(−k, φF )|2 = |Rn(k, φF )|2, (C17)

|R∗,n(−k, φF )|2 = |Rn(k,−φF )|2. (C18)

These expressions appear in the AC Stark shifts caused
by lattice shaking. Unless φF = −φF the amplitudes
for |↑〉-states (|Rn|2) and for |↓〉-states (|R∗,n|2) differ,
breaking TR invariance. Hence we will restrict ourselves
to values

φF = 0, π. (C19)

For the matrix elements associated with MW transi-
tions, we obtain from P̂KP̂ = K that

Kn,m(−k) = ei[χn(k)−χm(k)]Kn,m(k). (C20)

Notably, the following product is an anti-symmetric func-
tion of k independent of the gauge choice χn(k),

R∗n(k)K1,n(k) = −R∗n(−k)K1,n(−k). (C21)
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As will be shown next, this symmetry leads to a TR
invariant effective Hamiltonian.

Effective SOC.– From second order perturbation the-
ory, in F and ΩMW, we derive the effective Hamiltonian
in the subspace spanned by | ⇑〉 and | ⇓〉. As explained
around Eq.(C19) we consider the case when φF = −φF
and Ω

(1)
MW = Ω

(2)
MW = ΩMW to avoid TR breaking by

spin-dependent AC Stark shifts from lattice shaking and
MW transitions, respectively. As a result we obtain for

φ
(1)
MW = φMW + π and φ

(2)
MW = φMW,

Ĥeff(k) = ε1(k) +
∑
n>1

(ΩMW)
2 |Kn,1(k)|2

4∆n(k)
+
|Rn(k)|2

∆n(k)

+
∑
n>1

ΩMW

∆n(k)

[
|⇓〉〈⇑|e−iφMWR∗n(k)K1,n(k) + h.c.

]
.

(C22)

The detuning ∆n(k) = ε1(k)− εn(k) +ω is symmetric in
k, i.e. ∆n(−k) = ∆n(k).

Using the symmetry in Eq.(C21) it follows that the
effective Hamiltonian in Eq.(C22) is TR invariant and
represents an effective spin-orbit interaction. The first
line of Ĥeff(k) denotes the spin-independent dispersion
relation, renormalized by AC Stark shifts. An alterna-
tive way to check TR invariance of the effective Hamilto-
nian is to study the original time-dependent Hamiltonian
H(t) (before applying RWA and perturbation theory).
As shown in Ref. [45] it is sufficient to proof that it is
time-reversal invariant, H(t0 + t) = H(t0 − t) for some
t0. We checked that this is the case for the situation
discussed in this part of the appendix.
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