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We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices,
when external magnetic and electric fields are simultaneously applied. Our results are based on an
accurate electronic-structure calculation of the polar 23Na40K polar molecule in its absolute ground
state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric
field strength of 5.26(15) kV/cm and an angle of 54.7◦ between this field and the polarization of the
optical laser lead to a trapping design for 23Na40K molecules where decoherence due to electric field
strength and laser-intensity fluctuations, as well as fluctuations in the direction of its polarization,
is kept to a minimum. One standard deviation systematic and statistical uncertainties are given in
parenthesis. Under such conditions pairs of hyperfine-rotational states of v = 0 molecules, used to
induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping
forces.

PACS numbers: 03.75.-b, 33.15.Kr, 37.10.Pq, 67.85.-d

I. INTRODUCTION

The successful creation of near quantum-degenerate
gases of polar molecules in their absolute rovibrational
ground state (e.g. KRb [1], RbCs [2, 3], NaK [4], and
NaRb [5]), opened up the possibility of studying con-
trolled collective phenomena, ultracold chemistry, quan-
tum computing, and of performing precision measure-
ments with polar molecules. In most of these applications
polar molecules likely need to be held in periodic, optical
potentials induced by external laser fields, where two or
more of their rotational hyperfine states are manipulated
and accurate measurement of the transition frequency
between these levels is required.

Dynamic Stark shifts of these hyperfine levels in the
presence of trapping laser fields are generally different,
depending on a range of experimental parameters. As
a result the system is sensitive to laser-intensity fluctu-
ations leading to uncertainties in the transition-energy
measurements or decoherence when attempting to cou-
ple the states of interest for quantum control. Thus, a
careful selection of trapping conditions, where a pair of
internal states experience identical trapping potentials,
can bring substantial benefits. Such experimental condi-
tions are called magic.

Magic electric-field values for polar molecules have ap-
plications in the realm of many-body, non-equilibrium
spin physics. This includes samples of molecules with
long-range dipole-dipole interactions tailored by static
electric fields or by a combination of electric and resonant
microwave fields [6–8]. Working at a magic electric field,
for example, ensures that spatial laser-intensity inhomo-

geneities across a large sample do not significantly change
the resonant condition for the microwave field. Initial ex-
perimental realizations applied electric fields up to a few
kV/cm. Larger electric field apparatuses are now under
development [9, 10] with fields above 10 kV/cm promis-
ing larger dipole moments and individual addressing and
detection.

In a previous study [11], we calculated the dynamic or
AC polarizability of polar KRb and RbCs molecules. We
located optical frequency windows, where light-induced
decoherence is small, and determined van-der-Waals po-
tentials between the molecules [12]. We matched the AC
polarizability of the N = 0 and N = 1 rotational states
of these molecules with a magic electric field and angle
between laser polarization and electric field direction in
Ref. [13]. In parallel, optimal trapping conditions for
homonuclear Rb2 and Cs2 were studied in Refs. [14, 15].

For the KRb molecule we extended our calculations by
including hyperfine coupling between molecular rotation
and the nuclear electric quadrupole moment and found
good agreement with experiment [16]. The coherence
time for a rotational superposition was maximized at the
magic angle. Recently, Ref. [17] suggested that the co-
herence time is now limited by laser-intensity fluctuations
across the molecular sample. Finally, in Ref. [18] we per-
formed an investigation for rovibronic states of 40K87Rb
when three external fields are present, i.e. magnetic, elec-
tric and trapping-laser fields. The magnetic field was
relatively large with a strength near 50 mT and hyper-
fine coupling between the nuclear spins and other angular
momenta had a negligible effect.

In the current study we propose alternative means to
extend coherence times for superpositions of molecular
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rotational states. We focus on decreasing the depen-
dence of the difference of their dynamic polarizabilities
on electric-field and light-intensity fluctuations with re-
spect to intensity by orienting polar molecules in a strong
uniform electric field and creating so called pendular rota-
tional states [19–22]. In such arrangement the DC Stark
effect dominates and the complex coupling between hy-
perfine states with different Stark shifts simplifies.

We present a theoretical study of the dynamic polar-
izability of rotational hyperfine states of ultracold NaK
molecules. The NaK molecule has a large permanent
electric dipole moment and is chemically stable against
atom-exchange reactions [23]. A long-lived quantum gas
of fermionic 23Na40K molecules was created in its ab-
solute ground state using a magnetic field of 8.57 mT
[24]. Each of its rotational states |N,m〉 has 36 hyper-
fine states. At this magnetic field the hyperfine cou-
pling between nuclear spins and orbital angular momenta
is strong and combined fluctuations in the magnetic
and electric field and trapping laser can induce drastic
changes in the complex hyperfine structure. On the other
hand, due to the large dipole moment of polar molecules,
our static electric field will force a simplification of the
hyperfine structure.

The paper is set up as follows. In Sec. II, we present
the molecular Hamiltonian for ground-state alkali-metal
dimers and the pendular model for strong electric fields.
In Sec. III, we apply our theory to non-reactive 23Na40K
to elucidate the role of an electric field, and give its magic
trapping conditions. We summarize in Sec. IV.

II. THEORY

The effectiveness of trapping ultracold polar alkali-
metal molecules with optical lasers is determined by
the (real) dynamic polarizability of their ro-vibrational-
hyperfine states. The polarizability of a molecular eigen-
state i with energy Ei under the influence of a linearly-
polarized laser with frequency ω and intensity Itrap is
defined as the derivative αdyn,i = −dEi/dItrap. The dy-
namic polarizability can then be studied as a function
of the strength and orientation of static magnetic and
electric fields. Eigenenergies of hyperfine states need to
be calculated with care. The starting point is an effec-
tive molecular Hamiltonian that contains all internal and
external interactions. It is described in subsection II A.

With even a moderate electric field, the DC Stark ef-
fect together with the rotational energy dominate over
other interactions. A simplified, pendular model is then
sufficient. It is given in subsection II C and will provide
physical insight as well as an easy way to calculate the
total polarizability in this regime.

A. Molecular Hamiltonian

We focus on rotational, hyperfine states of the lowest
vibrational level of the ground singlet X1Σ+ electronic
potential of alkali-metal dimers in the presence of a mag-
netic and electric field as well as a trapping laser. Our
notation and conventions for angular momentum alge-
bra are based on Ref. [25]. The effective Hamiltonian
is [18, 26]

H = Hrot +Hhf +HZ +HE +Hpol , (1)

where

Hrot = Bv=0N
2 , Hhf =

∑
k=a,b

V k ·Qk ,

HZ = −
∑
k=a,b

gkµB Ik ·B , HE = −d ·E ,

and

Hpol = −1

3
[α||(ω) + 2α⊥(ω)]Itrap

−
√

6

3
[α||(ω)− α⊥(ω)]T2(ε̂, ε̂) · C2(α, β)Itrap .

The rotational Hrot and hyperfine Hhf Hamiltonian de-
scribe the internal field-free molecular interactions. Here,
N is the rotational angular momentum operator of the
molecule and Bv=0 is the rotational constant of vibra-
tional state v = 0. The hyperfine Hamiltonian is the
nuclear electric-quadrupole interaction, where Qk is the
electric quadrupole moment of nucleus k = a or b and V k

is the electric field gradient generated by the electrons at
the position of that nucleus. For nuclear spins Ik with
quantum number Ik > 1 this interaction is equivalent to

Hhf =
∑
k=a,b

(eqQ)k
Ik(Ik − 1)

T2(Ik, Ik) · C2(α, β) , (2)

where Clm(α, β) =
√

4π/(2l + 1)Ylm(α, β) is a modified
spherical harmonic, Ylm(α, β) is the spherical harmonic
of rank l, Euler angles α and β describe the orientation
of the interatomic axis in a space-fixed coordinate frame,
T2m(Ik, Ik) is the rank-2 spherical tensor constructed
from nuclear spin operators and (eqQ)k is the nuclear
electric-quadrupole coupling constant.

The effects of the static magnetic field, the static
electric field, and the trapping laser field are included
through the external nuclear Zeeman Hamiltonian HZ,
the DC Stark effect HE, and molecule-laser interaction
Hpol, respectively. In HZ, gk is the gyromagnetic ratio
of nucleus k, B is the magnetic field, and µB is the Bohr
magneton. In HE, the operator d is the vibrationally-
averaged molecular dipole moment and E is the static
electric field. The Hamiltonian Hpol depends on the
frequency-dependent vibrationally-averaged parallel and
perpendicular polarizabilities α‖(ω) and α⊥(ω), and laser
intensity Itrap. The two rank-2 tensor operators capture
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its dependence on (linear) laser polarization ε̂ and rota-
tional state of the molecule [13]. (The α‖(ω) and α⊥(ω)
will be further discussed in Sec. III A.) We neglect contri-
butions from centrifugal distortions, the rotational Zee-
man interaction, and other hyperfine terms.

B. Basis set, coordinate system, and quantization
axis

It is convenient to find the eigenstates of Eq. 1 using
the uncoupled molecular hyperfine states

|N,m,ma,mb〉 ≡
φv=0(r)YNm(α, β)|Λ〉 |Ia,ma〉|Ib,mb〉, (3)

where φv=0(r)YNm(α, β) is the v = 0 radial vibrational
and rotational wavefunction as a function of the internu-
clear separation and orientation ~r = (r, α, β) in spherical
coordinates. The function φv=0(r) is to good approxima-
tion independent of the rotational quantum number N
when N is small. The kets |Λ〉 and |Ik,mk〉 describe the
electronic and nuclear-spin wavefunctions, respectively.

The projection quantum numbers and angles are de-
fined with respect to a coordinate system and quanti-
zation axis. With zero or very small electric fields, the
natural quantization axis is along the magnetic-field di-
rection B. For even moderate electric fields it becomes
more convenient to define the quantization axis along E.
In this study, we define our quantization axis along the
direction of the electric field but choose our space-fixed
ẑ axis along B. Consequently, the Euler angles are de-
fined with respect to the electric-field direction. For con-
venience, the laser propagates along our ŷ axis and its
polarization ε̂ lies in the xz plane. Finally, θ is the angle
between ε̂ and B and ψm is the angle between ε̂ and E.

We numerically solve for the eigenstates of Eq. 1 by
including basis states from N = 0 up to Nmax. This cor-
responds to (Nmax +1)2(2Ia+1)(2Ib+1) basis states. In
the absence of an electric field Nmax = 1 is sufficient. For
increasing electric field, Nmax must be increased as cou-
pling to higher-lying angular momentum states becomes
more and more important.

C. Pendular model for large electric fields

For a finite electric field HE quickly dominates, along
with Hrot, over the other terms in Eq. 1. Hence, it is
beneficial to investigate the energy structure of H0 =
Hrot + HE in the basis |N,m〉 ≡ φv=0(r)YNm(αβ)|Λ〉,
where the quantization axis is chosen along E. In our

model the dipole moment ~d in the DC Stark Hamilto-
nian has spherical components dq = dv=0C1q(αβ), where
dv=0 =

∫∞
0
dr φv=0(r)D(r)φv=0(r) is the N -independent

vibrationally-averaged dipole moment and D(r) is the
r-dependent permanent electric dipole moment of the
X1Σ+ ground electronic state.

With our choice of quantization axis the electric field
only couples basis states |N,m〉 with the same m and N
that differ by one unit. In fact, for each m, H0 is a sym-
metric tridiagonal matrix with non-zero matrix elements
〈N,m|H0|N,m〉 = N(N + 1)Bv and

〈N,m|H0|N+1,m〉 =
m2 − (N + 1)2√
(2N + 1)(2N + 3)

dv=0E . (4)

Its pendular eigenstates |λ,m〉 with λ = 0, 1, . . . and cor-
responding eigenvalues Eλ,m have been extensively stud-
ied in the context of the molecular orientation and align-
ment [19–21] and are obtained through numerical diag-
onalization. At zero electric field strength λ = N . For
increasing field strengths eigenstates of H0 with the same
λ but different |m| separate away from each other, leaving
a double degeneracy for states with m 6= 0.

The polarizability of pendular states is determined
from the derivative of eigenenergies of H0 + Hpol with
respect to the laser intensity. For optical laser photons
with an energy that is orders of magnitude larger than Bv
(and even vibrational spacings), the N -independent po-
larizabilities α‖,⊥(ω) =

∫∞
0
drφv=0(r)α‖,⊥(r;ω)φv=0(r),

where α‖,⊥(r;ω) are the radial electronic polarizabilities.
Consequently, the eigenenergies of H0+Hpol have a linear
dependence on Itrap, the polarizability of pendular states
is independent of laser intensity, and the so-called higher-
order hyperpolarizabilities are zero. In Ref. [13] some of
us showed the existence of a magic angle, where the po-
larizability is insensitive to laser-intensity fluctuations.
This occurs when C20(ψm, 0) = (3 cos2 ψm− 1)/2 = 0 or,
equivalently, ψm ≈ 54◦.

III. THE 23Na40K DIMER

We can now investigate the energies and polarizabili-
ties of rotational-hyperfine states in the v = 0 vibrational
level of the X1Σ+ electronic potential of 23Na40K. Its ro-
tational constant is Bv=0/h = 2.8217297(10) GHz [23,
27], where h is Planck’s constant. The electric dipole mo-
ment dv=0 = 1.07(2)ea0 [23, 27], where e is the electron
charge and a0 is the Bohr radius. One standard devia-
tion systematic and statistical uncertainties are given in
parenthesis. The nuclear spins are 3/2 and 4 for 23Na
and 40K, respectively. The nuclear electric quadrupole
coupling constants are (eqQ)Na/h = −0.187(35) MHz
and (eqQ)K/h = 0.899(35) MHz [23]. The two nu-
clear gyromagnetic ratios are gNa = 1.477388(1) and
gK = −0.32406(6) [28]. The frequency-dependent dy-
namic parallel and perpendicular polarizabilities have
been computed by us. A brief account of our method
as well as numerical values are given in Sec. III A.

A word on energy scales is already in order. The hyper-
fine and Zeeman interactions as well as Hpol have ener-
gies (in units of the Planck constant) well below the MHz
range as long as the magnetic field strength is below 0.1
T and the laser intensity is no larger than 104 W/cm2.
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FIG. 1. Dynamic parallel (top panel) and perpendicular (bot-
tom panel) polarizabilities in atomic units, a.u.=(ea0)2/Eh,
at the equilibrium separation of the ground X1Σ+ electronic
state of NaK as functions of laser frequency ω. Black markers
are our computed data points, while the solid red curve corre-
sponds to a fit to this data as described in the text. The data
is mainly localized near zero frequency and ω/(2πc) ≈ 10 000
cm−1. The latter corresponds to laser frequencies typically
used for trapping of ultra-cold molecules.

These energy scales are much smaller than Bv as well
as DC Stark shifts induced by reasonable electric fields.
In order to limit our parameter space the magnetic field
B = Bz ẑ with Bz = 8.57 mT throughout. This value
was used by Park et al. [24], who formed weakly-bound
Feshbach molecules at this field before performing a two-
photon transition to create ground-state molecules. If
not otherwise specified, the laser intensity Itrap = 2.35
kW/cm2, typical for ultracold experiments.

There are 36 hyperfine states in each rotational mani-
fold |N,m〉. For electric fields up to 10 kV/cm, rotational
hyperfine states with N up to Nmax = 5 are incorporated
in our numerical calculations.

A. Parallel and perpendicular polarizabilities

The dynamic parallel and perpendicular radial elec-
tronic polarizabilities α‖(r;ω) and α⊥(r;ω) can be ex-

pressed in terms of a sum over all excited 1Σ+ and 1Π
electronic potentials, respectively. We have calculated
these potentials and dynamic polarizabilities of NaK us-
ing the CCSD method of the ab-initio non-relativistic
electronic structure package CFOUR [29]. Relativistic
corrections are small for the relatively light Na and K
atoms. The def2-QZVPP basis sets of Ref. [30] are used
for both atoms and include polarization functions. The
specific contraction of primitive basis functions are (20s
12p 4d 2f )/[9s 5p 4d 2f ] for Na and (24s 18p 4d 3f )/[11s
6p 4d 3f ] for K. The computation is made tractable by
only correlating valence electrons and electrons from the
outer-most closed shell for each atom.

Figure 1 shows the radial electronic α‖(re;ω) and

α⊥(re;ω) computed at the equilibrium separation re =
6.59a0 of the ground X1Σ+ state as functions of laser
frequency ω. The poles in the functions correspond to
frequencies that are equal to the energy difference be-
tween an excited- and ground-state potential at re. Our
pole locations are consistent with the potentials found in
Ref. [27]. Our calculated data points from zero frequency
up to ω/(2πc) = 30 000 cm−1 are well described by

α‖(re;ω) =
495.192

1− (ν/13322.2)2
+

21.3802

1− (ν/19813.6)2
, (5)

α⊥(re;ω) =
228.684

1− (ν/17683.6)2
+

34.6618

1− (ν/21595.1)2
. (6)

in units of (ea0)2/Eh and ν = ω/(2πc) in units of cm−1.
Here, Eh is the Hartree energy and c is the speed of light.
For ν < 21000 cm−1 deviations from the calculated radial
polarizabilities are no larger than 1% and 4% for the par-
allel and perpendicular polarizability, respectively, less
than the uncertainty of the CCSD calculation.

The polarizability of the v = 0 vibrational level is
determined by a vibrational average of α‖(r;ω) and
α⊥(r;ω). The radial v = 0 wavefunction φv=0(r) is spa-
tially localized around re and the r-dependence of the
radial polarizabilities is small and, hence, to very good
approximation α‖,⊥(ω) are equal to the corresponding
radial polarizability at re. (Note also that the linear de-
pendence of α‖,⊥(r;ω) near r = re does not introduce
corrections for nearly Gaussian φv=0(r).)

We find that the static (i.e. zero frequency) polar-
izability for the N = 0, v = 0 state [α‖(re; 0) +

2α⊥(re; 0)]/3 = 348(ea0)2/Eh is in very good agreement
with 351(ea0)2/Eh from Ref. [31]. Furthermore, in most
experimental settings molecules are trapped using lasers
with photon energies that are well away from electronic
transitions. Without loss of generality, we choose a laser
with a wavelength of 1064 nm as used by or suggested
in Refs. [24, 32]. The two v = 0 polarizabilities are
then α‖ = 1013.4(ea0)2/Eh or α‖/h = 4.749 × 10−5

MHz/(W/cm2), and α⊥ = 361.46(ea0)2/Eh or α⊥/h =
1.694× 10−5 MHz/(W/cm2).

B. Energy levels and polarizabilities

Figure 2 shows the lowest 144 rotational-hyperfine
eigenenergies of v = 0 ground-state 23Na40K as a func-
tion of static electric field strength Ex when no trapping
laser is present. These levels correspond to 36 states in
the N = 0 manifold and 108 states in the N = 1 mani-
fold. The electric field is directed along our x̂ axis. Panel
a) shows these eigenenergies on the scale of the rotational
splitting, while panel b) shows a blowup focussing on the
N = 1 manifold for “small” electric fields. We observe
that the DC Stark effect dominates over Hhf and HZ for
Ex > 0.1 kV/cm and states can then be labeled by the
pendular labels λ = 0, 1 and |m|. When the electric field
is near zero, pendular states of the same λ with different
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FIG. 2. Eigenenergies of the lowest rotational-hyperfine states
of the v = 0 vibrational level of the electronic ground-state of
23Na40K as a function of static electric field strength Ex when
no trapping laser is present and Bz = 8.57 mT. The electric
field E = Exx̂ is directed along our x̂ axis. Panels a) and b)
show the same data on two different energy and electric field
scales. Approximate labels λ and m valid for large electric
fields are indicated. The zero of energy is at the hyperfine
barycenter of the N = 1 rotational state when Ex = 0.

|m| are mixed by Hhf and HZ and the N = 1 or equiva-
lently λ = 1 manifold has a complex level structure.

Figure 3 shows the dynamic polarizabilities αdyn,i of
the 144 hyperfine states in the N = 0 and 1 manifolds
for small electric field strengths, ranging from 0 kV/cm
to 0.09 kV/cm, as functions of θ, the angle between the
laser polarization and magnetic field direction. The laser
has a wavelength of 1064 nm and Itrap = 2.35 kW/cm2.
The magnetic field Bz = 8.57 mT and the electric field
is applied along either the ẑ or x̂ direction.

At zero applied electric field, αdyn,i of the 36 hyperfine
states in the N = 0 manifold are independent of θ. In
fact, the total polarizability is given by [16, 33]

α|N=0,m=0〉(ω) = (α‖(ω) + 2α⊥(ω))/3 . (7)

On the other hand, the polarizability of states in the
N = 1 manifold behave almost chaotically and is a con-
sequence of strong mixing between the three m. Thus,
a small fluctuation in the direction of the polarization
will greatly change the trapping potentials for these lat-
ter states. Also, each of the corresponding eigenvectors
changes drastically with a change in θ, making it difficult
to focus on one eigenstate when the directions of external
fields change with respect to each other during an exper-
iment. This non-adiabatic admixing is due to the fact
that the magnetic field is relatively small, and the split-
ting between states that have similar hyperfine character

but different m are comparable to Hpol.
When an electric field is applied, the polarizability of

N = 0 or λ = 0 hyperfine states remain independent of θ.
The polarizability of the λ = 1 hyperfine states gradually
group, where the polarizability of eigenstates dominated
by m = 0 character start to coalesce into a single line on
the scale of the panels in Fig. 3. The polarizability ofm =
±1 states also simplifies but remains a fairly complex for
θ close to zero or 90 degrees. This transition in behavior
coincides with the separation of eigenstate energies for
states |λ = 1,m = 0〉 from those with |λ = 1,m = ±1〉,
as depicted by Fig. 2b).

A comparison of the polarizability for electric fields
along the ẑ and x̂ direction and strengths larger than
0.06 kV/cm shows that the natural quantization axis is
along the electric field direction. One manifestation is
that the αdyn,i for a field along the x̂ and ẑ axis resemble
each other when θ is replaced by 90◦ − θ. I.e. for large
fields the angular dependence of αdyn,i only depends on
the angle between the laser polarization and electric field.
On the other hand the reflection symmetry is not exact.
The grouping of the lines of αdyn,i is not the same for
the same |E|, due to the remaining competition between
the Zeeman and DC Stark Hamiltonians. For example,
the 36 αdyn,i of states in the |λ = 1,m = 0〉 manifold in
Fig. 3f) are more spread out than those in Fig. 3c).

C. Single- and double-magic conditions

A careful study of Figs. 3c and 3f shows that magic
conditions are starting to occur. With the electric field
along the ẑ axis and Ez = 0.09 kV/cm the polarizabilities
αdyn of hyperfine states in the |λ = 0,m = 0〉 and |λ =
1,m = 0〉 manifolds are almost the same near θ = 54.7◦

(or equivalently near ψm = 54.7◦). This occurs regardless
of the hyperfine state in either manifold. Moreover, for
an electric field along the x̂ axis magic conditions occur
for θ ≈ 90◦ − 54.7◦ ≈ 35.3◦.

We study this coalescence of the polarizabilities in
more detail for much larger electric field strengths and
locate a case of double magic conditions. Figure 4 shows
the polarizability of states in the λ = 0 and 1 mani-
folds for electric fields Ex = 2.0 kV/cm, 5.265 kV/cm,
and 8.0 kV/cm along the x̂ axis. The polarizability of
the |λ = 0, 1,m = 0〉 hyperfine states has now fully
collapsed into one of two θ-dependent curves. In fact,
these m = 0 polarizabilities are equal to better than 0.01
% for both λ = 0 and 1 hyperfine manifolds. For the
smallest and largest of the three strong electric fields
the |λ = 0,m = 0〉 and |λ = 1,m = 0〉 curves cross
at the magic angle 54.7◦. Crucially, for the magic in-
termediate electric field strength of 5.265 kV/cm, shown
in Fig. 4b), the polarizabilities of all hyperfine state of
the |λ = 0,m = 0〉 and |λ = 1,m = 0〉 manifolds coin-
cide throughout the entire range of θ. In fact, this magic
electric field strength exists regardless of field direction.

The dynamic polarizability of the |λ = 1,m = ±1〉



6

FIG. 3. Dynamic polarizabilities of the lowest 144 eigen states of 23Na40K as functions of the angle θ at small electric fields,
|E| = 0 kV/cm, 0.06 kV/cm, and 0.09 kV/cm. Panels on the top and bottom row correspond to an electric field along the
ẑ and x̂ axis, respectively. In panels a), b), d), and e) the orange line and purple markers correspond to λ = 0 and λ = 1
hyperfine states, respectively. In panels c) and f) the orange, blue, and purple lines and markers correspond to |λ = 0,m = 0〉,
|λ = 1,m = 0〉, and |λ = 1,m = ±1〉 hyperfine states, respectively. Panels a) and d) for zero electric field are identical. The
copy is only included for easy comparison with other panels. We use Bz = 8.57 mT, a laser wavelength of 1064 nm, and
Itrap = 2.35 kW/cm2.

FIG. 4. Dynamic polarizabilities of the lowest 144 rotational-hyperfine states of the ground vibrational level of 23Na40K as
functions of the angle θ for three strong electric fields E = Exx̂ with Ex = 2.0 kV/cm, 5.265 kV/cm, and 8.0 kV/cm in panel
a), b), and c), respectively. Orange, blue, and purple lines and markers correspond to hyperfine states in the |λ = 0,m = 0〉,
|λ = 1,m = 0〉, and |λ = 1,m = ±1〉 manifolds, respectively. We use Bz = 8.57 mT, a laser wavelength of 1064 nm, and
Itrap = 2.35 kW/cm2.

hyperfine states remains very state dependent regardless
of the electric field strength. Here, the hyperfine and
Zeeman interactions lead to ever changing couplings be-
tween the nearly-degenerate m = ±1 states and, thus, to
changing dynamic polarizabilities as functions of electric
field and angle.

Figure 5 shows the dynamic polarizabilities of the
m = 0 hyperfine states of 23Na40K but now as functions
of electric field strength for eleven angles θ. The field is
directed along the x̂ axis. We see that for all angles the
λ = 0 and 1 polarizabilities cross at Ex = 5.265 kV/cm.
At the special angle of θ = 35.3◦ these polarizabilities
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FIG. 5. Dynamic polarizabilities of m = 0 rotational-
hyperfine states of the ground vibrational level of 23Na40K
as functions of the strength of an applied electric field for the
eleven angles θ = 0◦, 10◦, · · · , 80◦, 90◦ and 35.3◦. The elec-
tric field is directed along the x̂ axis. Orange dashed and
blue solid lines are polarizabilities for hyperfine states of the
|λ = 0,m = 0〉 and |λ = 1,m = 0〉 manifold, respectively. For
θ = 35.3◦ the polarizability for the two manifolds is the same
and independent of Ex. At the red circle where θ = 35.3◦

and Ex = 5.265 kV/cm our double magic condition holds.
We use Bz = 8.57 mT, a laser wavelength of 1064 nm, and
Itrap = 2.35 kW/cm2.

are the same for any electric field |E| > 0.25 kV/cm.
The red circle on this line corresponds to |E| = 5.265
kV/cm and a double magic condition where both the
angular and electric field magic conditions are met. In
fact, this double magic condition exists regardless of the
field direction. It occurs when the angle between the di-
rection of the laser polarization and the direction of the
electric field is ψm = 54.7◦ and |E| = 5.265 kV/cm. Un-
der normal fluctuations of experimental conditions, this
double magic condition provides extra stability for the
matching of trapping potentials of hyperfine states in the
|λ = 0,m = 0〉 and |λ = 1,m = 0〉 manifolds. The dif-
ference in polarizabilities, ∆αdyn, near the double magic
condition is no more than 0.03%, when the electric field
strength and the angle are changed by ±0.1 kV/cm and
±1◦, respectively. Of course, when only one of |E| or ψm
fluctuates, then ∆αdyn is an order magnitude smaller.

The same concept does apply to other ultracold dipolar
species. The value for the magic |E| will be different, of
course, and is determined by the rotational constant, the
permanent dipole moment, as well as the radial electronic
polarizability.

D. Sensitivity to the laser intensity

A second benefit of applying a strong electric field is
the negligible dependence of the dynamic polarizabilities
of m = 0 hyperfine states on laser intensity, consistent
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λ=0, m=0

λ=1, m=±1
λ=1, m=0

FIG. 6. Dynamic polarizabilities of the lowest 144 eigenstates
of the vibrational ground state of 23Na40K as functions of
the trapping laser intensity Itrap at four representative pairs
(Ex, θ) = (0.0, 60◦), (0.09, 60◦), (2.0, 35.3◦) and (5.265, 60◦)
in panels a), b), c) and d), respectively. The electric field is in
units of kV/cm and points along the x̂ axis. In all panels the
orange dashed line corresponds to αdyn of the 36 λ = 0,m = 0
hyperfine states. In panel a) the purple dots correspond to
the 108 λ = 1 hyperfine states with mixed m character. In
panels b), c), and d) the blue and purple dots are eigenstates
dominated by |λ = 1,m = 0〉 and (mixed) |λ = 1,m = ±1〉
pendular functions. In panels c) and d) the polarizibilities of
the m = 0 eigenstates are indistinguishable. Both correspond
to magic conditions for 23Na40K. We use Bz = 8.57 mT and
a laser wavelength of 1064 nm.

with the prediction of the pendular model in Sec. II C.
In Fig. 6, the polarizabilities of the 144 states in the
λ = 0 and 1 manifolds are plotted as functions of laser
intensity for four representative pairs (Ex, θ). When the
electric field is small or zero, i.e. Ex � 0.1 kV/cm, the
108 eigen states in the λ = 1 manifold are mixed with
respect m = 0,±1 and are sensitive to fluctuations in
the experimental conditions, including that of the trap-
ping laser intensity. Figure 6a shows that the dependence
of the polarizabilities of these states on Itrap is compli-
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cated. Even if the polarizabilities are matched for two
states, small fluctuations introduce a mismatch between
the polarizabilities and thus the trapping potentials. As
the electric field strength is increased to 0.1 kV/cm some
states start to be dominated by m = 0 character and
separated from the others. Their polarizabilities group,
as shown in Fig. 6b). As the strength of the electric field
is further increased to Ex � 0.1 kV/cm the polarizabil-
ities of states dominated by |λ = 1,m = 0〉 character
coincide and become independent of the intensity. This
is demonstrated at the magic angle and the magic elec-
tric field in Figs. 6c) and 6d), respectively, where the
polarizabilities of the |λ = 1,m = 0〉 states also equal
that of |λ = 0,m = 0〉 states. The polarizabilities of
|λ = 1,m = ±1〉 states still remain sensitive to laser
intensity fluctuations.

We quantify the dependence of the polarizabilities on
the intensity with the difference in the hyperpolariz-
abilites between the |λ = 0,m = 0〉 and |λ = 1,m = 0〉
states, where the hyperpolarizability of state i is defined
as βi = dαdyn,i/dItrap, where the laser-intensity depen-
dence of the electronic hyperpolarizability of α||(r;ω) and
α⊥(r;ω) can be safely neglected. At the double magic
condition, the difference between the two hyperpolariz-
abilities is ∼0.03 Hz/[kW/cm2]2. This implies that a
change of the trapping laser intensity of 1 kW/cm2 will
result in the change of the polarizability by about one
part in a million. Hence, the intensity dependence of the
total polarizability is insignificant and can be neglected.

IV. SUMMARY

The current study has provided quantitative theoret-
ical information on ultracold polar 1Σ+ molecules that
can be used to improve control of molecular superpo-
sition states and conduct precision frequency measure-
ments. The relevant quantity for controlling molecules
with laser fields is the molecular dynamic polarizability
as a function of radiation frequency and polarization. In-
tegrated over the laser intensity its real part determines
the strength of a trapping or lattice potential. As differ-
ent ro-vibrational states have different lattice depths or
Stark shifts their trapping potential differs. Our goal was
to determine a combination of laser-field parameters and
DC electric and magnetic fields that ensure identical and
strong trapping forces for two internal rotational states
and, simultaneously, low sensitivity to field fluctuations.

Understanding the effect of changing the relative ori-
entation, polarization and strength of these three fields
is of crucial importance for creation of decoherence-free
subspaces built from two or more ro-vibronic and hyper-
fine states. This research was in direct response to recent
experimental advances in creating NaK molecules in their

absolute ground state [4].
We relied on an effective decoupling of rotational and

nuclear degrees of freedom of ultracold polar di-atomic
molecules. This decoupling can be used to prepare pairs
of rotational-hyperfine states that exhibit fluctuation-
insensitive magic trapping conditions, where two states
have the same dynamic polarizability. These magic con-
ditions can be either single or double in nature by giving
stability against one or two distinct types of fluctuations.

Our theoretical predictions are based on a quantita-
tive Hamiltonian for ro-vibrational, hyperfine states of
1Σ+ molecules in the presence of various external electro-
magnetic fields. These include a magnetic field, the static
electric field, and trapping laser fields. Among them, the
electric field is especially useful in simplifying the theory
for states dominated by the rotational projection quan-
tum number m = 0 and, thereby, leads to our hyperfine-
state insensitive magic trapping conditions. This sim-
plified theory leads to pendular states and the physical
intuition of our results.

We studied the electronic ground-state 23Na40K
molecule as an important test case. The results, how-
ever, can be easily transferred to other 1Σ+ molecules.
We used the newly calculated parallel and perpendicular
electronic dynamic polarizabilities of 23Na40K. For strong
electric fields a magic angle of ψm = 54.7◦ is found, which
protects against fluctuations in the angle between the
laser polarization and electric field for the 72 hyperfine
states with |λ = 0,m = 0〉 and |λ = 1,m = 0〉 character.
We also predict the existence of a double magic condition
at an electric field strength of 5.26(15) kV/cm and angle
φm = 54.7◦. It provides stability against electric field
strength fluctuations. For these m = 0 hyperfine states
the laser-intensity dependence of the dynamic polariz-
abilities is shown to be insignificant. The one-standard
deviation uncertainty of the magic electric field is due
to the combined uncertainty of the permanent electric
dipole moment and the parallel and perpendicular elec-
tronic polarizabilities.

For |m| = 1 hyperfine states the dynamic polarizability
shows complex angle, field strength and intensity depen-
dence due the near energy degeneracy of these states in-
dependent of electric field strength. Under these circum-
stances (double) magic conditions between one m = 0
and one |m| = 1 state or between two |m| = 1 states
seems unlikely or, at least, system dependent.
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The European Physical Journal D 49, 67 (2008).

[28] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod.
Phys. 49, 31 (1977).

[29] J. F. Stanton, J. Gauss, M. E. Harding, and P. G. Szalay,
CFOUR, Coupled-Cluster techniques for Computational
Chemistry (2011).

[30] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys.
7, 3297 (2005).

[31] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer,
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