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We experimentally and theoretically study the effect of the intraspecies scattering length onto the
heteronuclear Efimov scenario, following up on our earlier observation of Efimov resonances in an
ultracold Cs-Li mixture for negative [Pires et al., Phys. Rev. Lett. 112, 250404 (2014)] and positive
Cs-Cs scattering length [Ulmanis et al., Phys. Rev. Lett. 117, 153201 (2016)]. Three theoretical
models of increasing complexity are employed to quantify its influence on the scaling factor and
the three-body parameter: a simple Born-Oppenheimer picture, a zero-range theory, and a spinless
van der Waals model. These models are compared to Efimov resonances observed in an ultracold
mixture of bosonic 133Cs and fermionic 6Li atoms close to two Cs-Li Feshbach resonances located
at 843 G and 889 G, characterized by different sign and magnitude of the Cs-Cs interaction. By
changing the sign and magnitude of the intraspecies scattering length different scaling behaviors of
the three-body loss rate are identified, in qualitative agreement with theoretical predictions. The
three-body loss rate is strongly influenced by the intraspecies scattering length.

PACS numbers: 34.50.Cx, 67.85.Pq, 31.15.ac, 21.45.-v

I. INTRODUCTION

The Efimov scenario [1] addressing universal properties
of three particles interacting via resonant forces has be-
come one of the cornerstones of modern few-body quan-
tum physics [2, 3]. The hallmark of this bizarre effect
is the manifestation of an infinite geometrical progres-
sion of three-body bound states, the Efimov states, that
follow a discrete scaling law. Such series have been ob-
served in experiments with homonuclear Bose [4], three-
component Fermi [5], and heteronuclear Bose-Fermi [6–
8] systems (see Ref. [9] for a recent review), to a good
extent confirming one of the long-standing predictions:

the universal law a
(n)
− = λa

(n−1)
− , where a

(n)
− is the po-

sition of the n-th Efimov resonance that is described by
the s-wave scattering length a, and λ is the universal
scaling factor that depends only on quantum statistics,
number of resonant interactions, and mass ratios of the
three atoms [2, 10]. The excited helium trimer 4He3, as
observed in a molecular beam experiment, has recently
been found to accurately obey the predictions for a uni-
versal Efimov trimer [11].

The universality in the Efimov scenario manifests it-
self at asymptotically large scattering lengths and ther-
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mal wavelengths. If the specific details of the short-
range interactions are not resolved, their effect can be
incorporated in a single quantity, the three-body param-
eter (3BP). In ultracold homonuclear systems that inter-
act through pairwise −C6/r

6 potentials the 3BP is con-
nected to the molecular van der Waals (vdW) tails by
an approximate, species-independent constant [12, 13].
Apart from slight modifications due to short-range ef-
fects [13, 14], this general scaling constitutes an example
of the so-called vdW universality [15] and can be seen as
a precursor to a larger class of universal low-energy three-
body observables that are governed by mutual power-law
interactions at small particle separations [16–18].

Although the Efimov effect in ultracold heteronuclear
gases is based on the same physical principles as in
homonuclear systems, its signatures are much richer. The
inclusion of an additional short-range length scale and in-
teraction complicate the simple picture. For a mass im-
balanced system consisting of two heavy bosonic atoms
that resonantly interact with one lighter atom, the 3BP is
predicted to depend not only on the pairwise vdW tails,
but also on the mass ratio and the intraspecies scattering
length between the two heavy atoms [19]. Furthermore,
owing to denser trimer spectra [10] and a comparatively

small |a(0)
− |, Efimov states are found in the transition

regime between the long- and short-range dominated po-
tential parts [6, 20]. Thus the spectra may contain con-
tributions from both regimes. Additionally, in a real ul-
tracold atomic system, the inter- and intraspecies inter-
actions are generally not controlled independently and
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therefore deviations from the exact log-periodic scaling
behavior are expected, reflecting in a period dependent
scaling factor λ(n) [20, 21]. The experimental exploration
of such scenarios, however, so far has been limited. To
date, mainly isolated Efimov resonances were observed,
as for K-Rb [22] and 7Li-87Rb [23] mixtures. In the 6Li-
133Cs system successive Efimov resonances have been ob-
served for attractive [6, 7, 20] and repulsive [8] CsCs in-
teractions.

In this paper we juxtapose the heteronuclear Efimov
scenario for two heavy bosons B and one distinguish-
able particle X for positive and negative intraspecies
scattering lengths. We discuss three theoretical mod-
els at different levels of complexity that can be used
to solve the three-body Schrödinger equation, and show
that the boson-boson scattering length critically mod-
ifies the three-body energy spectrum. The qualitative
influence of the boson-boson scattering length and the
finite-range effects is already revealed with a minimalistic
hybrid Born-Oppenheimer (BO) approximation, treating
the BX interaction as contact like and the BB interac-
tion as hardcore van der Waals potential. A more quanti-
tative approach is given by the universal zero-range the-
ory in the hyperspherical adiabatic approximation [8].
This description also includes the universal BB dimer
state for positive intraspecies interactions, which leads
to a splitting of the traditional Efimov scenario into two
Efimov branches. Efimov states with energy smaller than
the dimer energy at the intraspecies unitarity do not con-
nect to the three-body threshold and thus can lead to the
absence of Efimov resonances in three-body recombina-
tion spectra. As the third model, we use the spinless van

der Waals (vdW) theory, which models pairwise interac-
tions with single-channel Lennard-Jones potentials [19].
The inclusion of realistic finite-range potentials allows
to quantitatively compare the theoretical results with
the experimentally determined three-body loss spectra of
Cs+Cs+Li recombination, and extract Efimov resonance
positions.

Finally, by comparing experimental three-body loss
rates close to two different Cs-Li Feshbach resonances
(FRs) we find two distinct scaling behaviors, in agree-
ment with previous predictions [21]. Such distinctive
scaling properties can be used, for example, to tune and
significantly increase the three-body lifetime due to Cs-
Cs-Li collisions, which is an important step towards stud-
ies of strongly-interacting Bose-Fermi mixtures.

This paper is structured as follows: In Sec. II we
give an overview of the theoretical models to explain the
measurements of three-body recombination spectra in a
heavy-heavy-light system. The experimental procedure
for the investigation of three-body recombination in the
Cs-Cs-Li system is given in Sec. III B. A comparison be-
tween experiment and theory for negative and positive
intraspecies scattering length is given in Sec. III C and
III D, respectively. The scaling behavior of three-body
recombination near overlapping Feshbach resonances is
analyzed in Sec. III E.

II. THEORETICAL MODELS

The three-body wavefunction for two identical bosons
B with mass mB and one distinguishable particle X with
mass mX is determined by the three-body Schrödinger
equation:

[
− h̄2

mB
∇2

r − h̄
2 2mB +mX

4mBmX
∇2
ρ + VBB(r) + VBX

(∣∣∣ρ+
r

2

∣∣∣)+ VBX

(∣∣∣ρ− r

2

∣∣∣)]Ψ(ρ, r) = EΨ(ρ, r), (1)

where h̄ is the reduced Planck’s constant, r the vector
between the two bosons B and ρ the vector from the
center of mass of atoms B to the X atom. VBB/BX
denote the intra- and interspecies interaction potentials,
respectively. The corresponding scattering lengths are
labeled aBB and aBX .

Here, we employ three methods in order to solve the
Schrödinger equation.

A. Born-Oppenheimer approximation

In order to get an intuitive understanding of the influ-
ence of the intraspecies scattering length and finite-range
effects onto the heteronuclear Efimov effect we solve the
three-body Schrödinger equation (Eq. (1)) within the
Born-Oppenheimer (BO) approximation for a large mass
imbalance mX/mB � 1 [24]. It is assumed, that the

motion of the light particle adapts almost immediately
to the distance between the two heavy particles r and
therefore the total wavefunction Ψ(ρ, r) is considered to
be separable.

Ψ(ρ, r) = ψ(ρ; r)φ(r),

where φ(r) is the wavefunction of the two heavy parti-
cles and ψ(ρ; r) the wavefunction of the light particle,
which parametrically depends on r. Within the BO ap-
proximation the Schrödinger equation can be separated
into two coupled equations. By solving the equation for
the light particle the BO potential is obtained and the
three-body problem is reduced to an effective two-body
problem. The energy spectrum can be found by solving
the equation for the heavy particles[

− h̄2

mB
∇2

r + VBB(r) + Er

]
φ(r) = Eφ(r), (2)
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Figure 1. Born-Oppenheimer energy spectrum for the Cs-Cs-
Li system versus the intraspecies scattering length aCsCs. The
spectrum is obtained for aCsLi → ∞ (black solid lines). For
comparison the energies of the two least bound Cs2 states are
displayed (red dashed lines).

where Er is the BO potential, which is well known to
be Er = −h̄2W (1)2/2mXr

2 for r � |aBX | and con-
tact interaction between B and X. Here W (1) is the
Lambert-W function which is connected to the Efimov
scaling factor s2

0 = mBW (1)2/2mX −1/4. We model the
intraspecies interaction potential with a hard-core van
der Waals potential

VBB(r) =

{
∞, r < r0,

−C6,BB/r
6, r > r0,

where C6,BB is the dispersion coefficient which depends
on the details of the electronic configurations. This al-
lows to introduce characteristic length scale rvdW and en-
ergy scale EvdW [25]. The short-range cut-off r0 is analyt-
ically connected to the scattering length aBB [26, 27]. We
solve equation (2) numerically for the case of aBX →∞
and r > r0 and find the wavefunctions and energies of
the trimer states.

We apply the BO approximation to the case of the
Cs-Cs-Li system with a mass ratio of mB/mX = 22.1.
The Cs-Cs scattering length aCsCs is changed by tun-
ing the short-range cut-off r0 of the intraspecies poten-
tial [26]. The energy of four bound states is shown in
Fig. 1 in dependence of aCsCs. The bound state ener-
gies (black lines in Fig. 1) follow the discrete scaling law
of the Efimov effect, but are strongly influenced by the
intraspecies interaction and develop a step-like behavior
around |aCsCs| ≈ rCsCs

vdw . For comparison we plot the two
least bound states of the pure Cs2 two-body hard-core
vdW potential VBB(r). For a� rCsCs

vdW the binding energy
of the least bound state is given by the universal relation
Eb ∝ −1/a2

CsCs. The binding energy of the second least
bound state develops a gradual step at aCsCs ≈ rCsCs

vdW ,
due to its qualitative change from an vdW-dominated
into a halo-state (red dashed lines in Fig. 1). Our BO
model suggests a stong dependence of the Efimov state’s

energy and therefore also of the Efimov resonance posi-

tions a
(n)
− at the three-body threshold on the intraspecies

scattering length aCsCs, which will be further studied
within the universal zero-range theory and the spinless
van der Waals theory.

B. Zero-range theory

For a qualitative description of the influence of the
intraspecies scattering length between the two heavy
bosons on the Efimov scenario, let us employ the uni-
versal zero-range theory in the hyperspherical adiabatic
approximation, where pairwise contact interactions are
assumed as used in [8]. We introduce the relevant re-
duced mass factors:

µBB =
mB

2
, µBX =

mXmB

mX +mB
, µ =

√
mXm2

B

2mB +mX
.

Relevant factors that relate to mass ratios are:

dBB =

√
mX(2mB)

µ(2mB +mX)
, dBX =

√
mB(mX +mB)

µ(2mB +mX)
,

and

βBB = arctan

[√
mX(2mB +mX)

m2
B

]
,

βBX = arctan

√ (2mB +mX)

mX

 .
The following functions are also required as additional
preliminaries, before we can state the transcendental
equation, that determines the adiabatic hyperspherical
potentials, in a compact form,

f(s, α) ≡
√

2

cosα

Γ( 3
2 )

sinα
Ps−1/2,−1/2(sinα),

where Γ(z) is the gamma function and Pn,m is the asso-
ciated Legendre function of the first kind and

W (s) =
πΓ( 2+s

2 )Γ( 2−s
2 )

2Γ( 3
2 )2Γ( 1+s

2 )Γ( 1−s
2 )

,

X(s) =
Γ( 2+s

2 )Γ( 2−s
2 )

2Γ( 3
2 )2

f(s, βBX),

Y (s) =
Γ( 2+s

2 )Γ( 2−s
2 )

2Γ( 3
2 )2

f(s, βBB).

Then the roots s(R), which determine the hyperradial
potential curves

U(R) =
h̄2

2µ

s(R)2 − 1
4

R2

are solutions of the following transcendental equation:
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(
W (s)

µaBB
µBBd3

BB

−R
)(

µaBX
µBXd3

BX

(W (s)− Y (s))−R
)
− 2X(s)2 µ2aBXaBB

µBXd3
BXµBBd

3
BB

= 0.

Here R is the hyperradius defined by

µR2 = µBBr
2 +

2mBmX

2mB +mX
ρ2.

Note that in general there could be real solutions s(R)
corresponding to hyperspherical potential curve energies

higher than −h̄2

8µR2 , which is the critical coefficient to sup-

port an infinite number of three-body bound states, and
imaginary solutions for s(R) that correspond to potential

curve energies below −h̄2

8µR2 .

The heavy-heavy-light adiabatic hyperspherical poten-
tial curves are shown in Fig. 2 for the case of positive and
negative intraspecies scattering length aBB . Here, a mass
ratio of mB/mX = 22.1 and different values of aBX < 0
are assumed. If both scattering lengths are negative, the
original Efimov scenario with an ∝ −1/R2 hyperspheri-
cal potential is recovered for aBX → ∞, supporting an
infinite number of bound states (Fig. 2, left panel). For
finite interspecies scattering lengths a potential barrier
at R ≈ 2|aBX | leads to quasi-bound states, generating
three-body recombination resonances, when passing the
dissociation threshold. In this case a three-body param-
eter is indispensable to regularize the energy spectrum.

For positive intraspecies scattering lengths (aBB > 0)
the situation is considerably altered by the existence of
a dimer BB with binding energy EBB (Fig. 2, right
panel). The channel BB +X, splits the potential curves
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Figure 2. Adiabatic hyperspherical potentials U for a BBX
system with a mass ratio of mB/mX = 22.1 and aBB < 0
(left panel) and aBB > 0 (right panel) in the universal zero-
range model. The curves correspond to interspecies scattering
lengths aBX with respective values ∞, −10, −5, −3 in units
of |aBB |. Figure taken from [8].

into two Efimov branches. The lower branch, which is
asymptotically connected to the BB+X channel, recov-
ers the original Efimov scenario with a potential that is
proportional to −1/R2. In this case regularization with
a three-body parameter is required to avoid a diverging
binding energy of the ground state. Note, that there is
no potential barrier arising for finite values of aBX . How-
ever, the upper Efimov branch with energies E > EBB
shows a different behavior. It exhibits a potential bar-
rier at R ≈ 2aBB , roughly independent of aBX . There-
fore, even for resonant interactions (aBX → ∞), where
the ∝ −1/R2 potential is restored for large interpati-
cle separations, the energy spectrum is well defined and
no regularization with a three-body parameter is neces-
sary. For finite aBX an effective potential barrier forms
at R ≈ 2|aBX |, leading to recombination resonances.

C. Spinless van der Waals theory

Additionally we solve the three-body problem within
the spinless vdW theory [19]. The approach consists of
numerically solving the three-body Schrödinger equation
in the full hyperspherical formalism, where the two-body
interaction potentials VBB/BX between equal bosons and
the third particle separated by distance rBB/BX are
modeled by single-channel Lennard-Jones potentials with
vdW tails.

VBB/BX(rBB/BX) = −
C6,BB/BX

r6
BB/BX

[
1−

(
rc,BB/BX

rBB/BX

)6
]
,

where C6,BB/BX are the dispersion coefficients. The
scattering lengths aBX and aBB are reproduced by tun-
ing the short-range cut-offs rc,BB/BX . We assume that
the hyperradial and hyperangular motions are approxi-
mately separable [28] and treat the hyperradius as adi-
abatic parameter. The Schrödinger equation is reduced
to a set of coupled 1D equations [29]. We include the
non-adiabatic couplings between the hyperspherical po-
tentials and assume a JΠ = 0+ symmetry [30] (the domi-
nant contribution at ultracold temperatures), where J is
the total angular momentum and Π the total parity.

This formalism is applied to the Cs-Cs-Li system and
allows us to compare the theoretical predictions directly
to our experimental observations. The interaction po-
tentials are tuned such that the scattering lengths aCsLi,
aCsCs and their functional dependence aCsCs(aCsLi) are
reproduced for the experimentally employed field ranges
(see Fig. 4). The adiabatic hyperspherical potentials
are plotted in Fig. 3 for intraspecies scattering lengths
of aCsCs = −1500 a0 and aCsCs = +200 a0 resembling
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Figure 3. Cs-Cs-Li Adiabatic hyperspherical potentials U
within the spinless vdW theory for intraspecies scattering
lenths aCsCs = −1500 a0 (left panel) and aCsCs = +200 a0
(right panel) in units of the Cs-Li vdW energy ECsLi

vdW. In both
cases the interspecies scattering length is aCsLi = −400 a0.

the two cases of the 843 G and 889 G Cs-Li FRs. The
interspecies scattering length aCsLi = −400 a0 is tuned
close to the value, where the ground state Efimov reso-
nance is expected [6]. For positive intraspecies interac-
tions an avoided crossing originating from the coupling
between the attractive three-body potential and a repul-
sive atom-dimer channel leads to an effectively repulsive
Efimov potential. This prevents the scattering wavefunc-
tion from probing short-range parts of the potential and,
consequently, recombination. Such an avoided crossing is
not present for the case of aCsCs = −1500 a0, where the
original Efimov effect is recovered.

The adiabatic potentials calculated by the spinless
vdW theory closely resemble those by zero-range theory
when R, |aBB |, and |aBX | are all significantly greater
than rCsCs

vdW and rCsLi
vdW. The universal condition |aBB |,

|aBX | � rCsCs
vdW , rCsLi

vdW is satisfied or approximately satis-
fied in both cases of the 843G and 889G Feshbach res-
onances, therefore the zero-range theory is still helpful
for understanding the scaling behavior of the three-body
losses observed in our experiment, as discussed above.
The quantitative determination of the observables, espe-
cially of the 3BP, requires the knowledge of the three-
body dynamics when R is smaller than or comparable
with the van der Waals lengths, which needs the spinless
van der Waals theory to resolve.

We calculate the energy dependent three-body recom-
bination rate from the S-matrix [29, 31] and perform
thermal averaging [32], assuming Boltzmann distribu-
tions with the experimentally determined temperatures.
The width of the experimentally observed recombination
features is reproduced by adding a heuristic hyperradial
loss channel that assumes near unity loss at short dis-
tances, without modifying the resonance positions [17].
The obtained three-body recombination rates are plotted
in Fig. 5(a) and (c) together with the energy spectrum

of the three energetically lowest Efimov states (see Fig.
5(b) and (d)). For the case of the 843 G Cs-Li FR, where
aCsCs ≈ −1500 a0, the classical Efimov scenario is recov-
ered (Fig. 5(b)). By lowering aCsLi the Efimov states
successively disappear by crossing the three-body scatter-
ing threshold. For positive intraspecies scattering length
aCsCs ≈ +190 a0, as it is the case for the 889 G Cs-Li
FR, the Efimov sates split into two branches (Fig. 5(d)).
While the lowest state predissociates into a Cs2+Li state
(blue dashed line) before reaching the three-body thresh-
old and consequently does not lead to a recombination
resonance at the three-body threshold, the higher-lying
states recover the original Efimov scenario [8].

III. COMPARISON WITH EXPERIMENT

A. Cs-Li Feshbach resonances

The Cs-Cs-Li system offers the unique possibility to
study the influence of the intraspecies scattering length
onto the heteronuclear Efimov scenario. The experimen-
tally adjustable interspecies and intraspecies scattering
lengths aCsLi and aCsCs are shown in Fig. 4. Two in-
termediately broad (sres ≈ 0.7 [33]) Cs-Li Feshbach res-
onances (FRs), located at approx. 843 G and 889 G,
are well suited for the study of the heteronuclear Efi-
mov scenario [33–36]. They are characterized by different
sign and magnitude of the Cs-Cs scattering length aCsCs:
while close to the 843 G resonance the intraspecies scat-
tering length is large and negative aCsCs ≈ −1500 a0,
the 889 G resonance is characterized by a small and pos-
itive aCsCs ≈ +190 a0 [37]. By investigating the narrow
resonances located at approximately 816 G, 889 G and
943 G characterized by sres ≤ 0.03 [33], the Cs-Cs-Li

 L i | 1 / 2 , + 1 / 2 〉  ⊕  C s | 3 , 3 〉
 L i | 1 / 2 , - 1 / 2 〉  ⊕  C s | 3 , 3 〉
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Figure 4. Interspecies scattering lengths aCsLi for the
channels Li|1/2,+1/2〉⊕ Cs|3, 3〉 (upper panel, black line),
Li|1/2,−1/2〉⊕ Cs|3, 3〉 (upper panel, blue dash dotted line)
and intraspecies scattering length aCsCs for Cs atoms in the
ground state Cs|3, 3〉⊕ Cs|3, 3〉 (lower panel, red dashed line).
Scattering lengths taken from [36, 37].
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system offers the possibility to investigate the influence
of the multichannel nature of Feshbach resonances onto
the universal Efimov scenario [16] which has been studied
recently [38].

B. Experimental determination of L3

Our experimental procedure is described in detail in
Refs. [6, 20]. In brief we prepare an ultracold mixture
of fermionic 6Li atoms in one of the two energetically
lowest spin states |f,mf 〉 = |1/2, 1/2〉 or |1/2,−1/2〉 and
bosonic 133Cs in the absolute ground state |3, 3〉. Here f
and mf refer to the total angular momentum and its pro-
jection. By usage of a bichromatic trapping scheme [20]
we prepare samples of 1 × 104 (7 × 103) Cs (Li) atoms
at temperatures as low as 120 nK. The spatial overlap
of the two atomic clouds is approximately 45% and as-
sumed to be constant within the investigated magnetic
field range. The measured trapping frequencies are ωCs =
2π × (5.7, 115, 85) Hz and ωLi = 2π × (25, 160, 180) Hz.

The three-body recombination rates are measured in
dependence of the external magnetic field analogously to
our previous work [8, 20]. We prepare the atomic mixture
approximately 4 G away from the pole of the two broad
interspecies Feshbach resonances at 843 G and 889 G.
Within 150 ms we increase the dipole trap potential by
10% in order to stop residual plain evaporation and to let
the magnetic field stabilize. This leads to a temperature
increase on the order of 10%. The final magnetic field
value is set by a fast ramp. After a variable hold time,
both atomic species are imaged by high-field absorption
imaging from which atom numbers and cloud sizes are
deduced.

The three-body loss coefficient L3 for the loss of one
Li and two Cs atoms is retrieved by numerically fitting
the coupled rate equations

ṄLi = −LLi
1 NLi − L3NLiN

2
Cs, (3)

ṄCs = −LCs
1 NCs − 2L3NLiN

2
Cs − LCs

3 N3
Cs, (4)

where LLi
1 and LCs

1 are the one-body loss rates for each
species in the trap and LCs

3 the Cs three-body loss
rate, which are determined in independent single species
measurements under the same experimental conditions.
Hence, L3 and the initial atom numbers N0,Li and N0,Cs

are the only fitting parameters. The three-body loss rate
coefficient L3 is obtained from L3 via modeled atomic
density distributions. The error bars are obtained by
bootstrapping and resemble one standard deviation of
the resampled distribution. The systematic error for the
determination of the absolute value of L3 is estimated
to be a factor of 3 (120 nK data [20]) and 0.8 (450 nK
data [6]), respectively, and are mainly caused by uncer-
tainties in the determination of atom cloud temperatures,
densities, overlap and trapping frequencies. Since no sig-
nificant increase in temperature during the hold time is
observed [20], we neglect recombinational heating [39]
in our analysis. The magnetic field stability is around

16 mG (one standard deviation) resulting from long-term
drifts, residual field curvature along the long axis of the
cigar-shaped trap and calibration uncertainties. Due to
intraspecies losses, the extraction of L3 is limited to scat-
tering lengths of |aCsLi| >∼ 1000 a0 for our data at 120 nK
[20] and |aCsLi| >∼ 400 a0 for the data at the 889 G FR
and temperature of 320 nK. The given loss rates in this
region represent an upper bound of the actual L3.

C. Negative intraspecies scattering length

The observed Cs-Cs-Li three-body recombination rates
L3 versus the scattering length aCsLi for the broad Cs-Li
FR at 843 G at temperatures of 450 nK and 120 nK are
shown in Fig. 5(a) together with the theoretical recom-
bination rate from the spinless vdW theory. Here the
intraspecies scattering length is in the range −1560 a0

<∼
aCsCs

<∼ −1000 a0. The measured rates of different data
sets have been scaled by numerical constants, which are
extracted from the universal zero-range theory, but lie
well within the experimental uncertainties [20]. Three
Cs-Cs-Li recombination resonances are evident, while the
two excited ones are located in the universal regime (inset
of Fig. 5(a)). The spinless vdW theory [19] is in excellent
agreement with the experimental data. The theoretically
calculated loss rate spectrum recovers not only the loca-
tion of the two excited state resonances, but also the
position of the ground state resonance. This is in stark
contrast to the analysis with the universal zero-range the-
ory [40], where no agreement between theory and exper-
iment was observed for the ground state resonance [20].
Since the essential difference from the zero-range theory
is the inclusion of the vdW length scales that determine
the short-range behavior of realistic pairwise potentials,
we conclude that the previously observed deviation of
the CsCsLi ground state resonance from the universal
zero-range theory [20] predominantly originates from the
vdW interaction. A excellent agreement is also found
with the calculated energy spectrum (Fig. 5(b)), where
the positions at which the three-body states become un-
bound (grayed areas in Fig. 5(a+b)) perfectly align with
the maxima of the measured recombination rates.

An important question is the extent of the influence
of van der Waals forces on the scaling between con-
secutive Efimov resonances. Therefore, we extract Efi-

mov resonance positions a
(n)
− and scaling factors λ(n) =

a
(n)
− /a

(n−1)
− by three different methods: first, the exper-

imental resonance positions B
(n)
exp are obtained by fitting

a Gaussian profile with linear background to the three-
body loss rate L3(B) and conversion to scattering length

a
(n)
−,exp via the parametrization given in [36], where the

uncertainty consists of statistical, systematic and conver-
sion errors. Second, the whole L3(B) spectrum is fitted
with the universal zero-range theory [40] and the three-
body parameter as well as the inelasitcity parameter are

extracted. The resonance positions a
(n)
−,zr are obtained
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Figure 5. (a) and (c): Cs-Cs-Li three-body recombination rate spectra at temperatures of (a) 120 nK (blue diamonds and
squares, blue solid line) and 450 nK (red circles, red dash-dotted line) close to the 843 G Cs-Li Feshbach resonance and Cs-Cs
scattering length aCsCs ≈ −1500 a0 and (c) 120 nK (blue squares, blue solid line) and 320 nK (red circles, red dash-dotted line)
close to the 889 G Cs-Li Feshbach resonance and Cs-Cs scattering length aCsCs ≈ +190 a0. The experimental data are taken
from [6, 8, 20]. The insets show a zoom into the region of the two excited Efimov resonances. The error bars represent statistical
errors from bootstrapping, magnetic field uncertainties, and the technical limit due to Cs-Cs-Cs three-body losses. The blue
solid lines and red dash-dotted lines show the calculated three-body loss rates from the spinless vdW theory for the lower and
higher temperature, respectively. Experimental data have been scaled by a numerical constant, well within the absolute error,
to fit the theory (see Ref. [20]). (b) and (d): calculated CsCsLi energy spectra for the three deepest bound Efimov states for
experimental scattering lengths that correspond to the (b) 843 G and (d) 889 G Cs-Li Feshbach resonances, respectively. The
atom-dimer scattering threshold CsCs+Li for the latter case is shown as a dashed blue line. The error bars represent the width
of the corresponding Efimov state. Missing error bars indicate a width that is smaller than the symbol size. The grayed areas
correspond to the positions at which the Efimov states cross the Cs+Cs+Li scattering threshold and their widths represent
their uncertainty.

by setting the temperature and inelasticity parameter in
the theory equal to zero [20]. By this, finite temper-
ature effects can be eliminated. Third, the calculated
trimer energy spectrum from the spinless vdW theory is

employed to extract a
(n)
−,vdW as the average value of the

two numerical grid points, between which the three-body
state merges with the scattering continuum (see grayed
areas in Fig. 5(b)). The uncertainty is given by one-
half of the step size of the local grid. In this way the
influence of finite temperature can be safely neglected,
since it modifies the three-body recombination rates, but
not the energy spectrum below the scattering continuum.

For comparison, the resonance positions a
(n)
− and scaling

factors λ(n) obtained from all three methods are listed in

Tab. I.

Remarkably, the experimental and vdW value of a
(0)
−

agree very well, while the zero-range theory deviates and
predicts a much larger value. This deviation can be at-
tributed to short-range effects and was observed as a
deviation between the zero-range theory and the mea-
sured recombination rates for the ground state resonance
[20]. Therefore, the scaling factor from the spinless vdW
model is larger by about 4%, if compared to the zero-
range theory with actual scattering lengths [40], and
larger by about 7%, if compared to the zero-range theory
for noninteracting bosons [2, 41]. The experiment gives
an even larger value for λ(1) due to the larger value of

a
(1)
−,exp in comparison to the zero-range and vdW models.
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Table I. Cs-Cs-Li Efimov resonance positions a
(n)
− and scaling factors λ(n) = a

(n)
− /a

(n−1)
− for the 843 G Cs-Li FR (upper lines)

and the 889 G FR (lower lines) obtained by three different methods. The experimental positions B
(n)
exp are extracted by fitting

a Gaussian profile with linear background to the three-body loss rate L3(B) and conversion to scattering length a
(n)
−,exp via the

parametrization given in [36]. The values in brackets represent the statistical, systematic and conversion error. The theoretical
values are extracted from the universal zero-range theory [40] (843 G FR), the zero-range theory described in Sec. II B (889 G
FR) and the spinless vdW model. The values for the vdW model are extracted from trimer energy spectra (see Fig. 5(b) and
(d)) and the quantities in the parentheses represent their uncertainty. Details are given in the text.

n B
(n)
exp (G) a

(n)
−,exp (a0) λ

(n)
exp a

(n)
−,zr (a0) λ

(n)
zr a

(n)
−,vdW (a0) λ

(n)
vdW

8
4
3

G 0 848.90(6)(3)a -311(3)(1)(1)b - -350c - -317(3) -

1 843.772(10)(16)c -1840(20)(30)(40) 5.9(1)(1)(1) -1777c 5.08c -1680(20) 5.3(1)

2 843.040(10)(16)c -8140(380)(620)(880) 4.4(2)(3)(4) -9210c 5.18c -8570(250) 5.1(2)

8
8
9

G 1 889.389(4)(16)d -2130(10)(40)(70)d - -1670 - -2150(50)e -

2 888.787(4)(16)d -8170(160)(620)(890)d 3.8(1)(3)(3)d -8200 4.91 -8500(500)e 4.0(3)e

a From [6] at a temperature of 450 nK.
b From [36].
c From [20].
d From supplemental material of [8].
e From [8].

On the other hand, the vdW and zero-range theory
predict a similar scaling factor between the first and sec-
ond excited Efimov states, highlighting a behavior of the
CsCsLi system that is independent of short-range effects.

D. Positive intraspecies scattering length

The measured three-body recombination rate spectra
close to the 889 G Cs-Li FR (+180 a0

<∼ aCsCs
<∼

+360 a0) at temperatures of 320 nK and 120 nK to-
gether with calculated recombination rates from the spin-
less vdW model are shown in Fig. 5(c). Here, only two
Cs-Cs-Li Efimov resonances are observed, while the first
recombination resonance is located at aCsLi ≈ −2000 a0.
This is about a factor of seven larger than in the case of
negative aCsCs (see Fig. 5(a)), which is consistent with
the energy spectrum of the Efimov states (see Fig. 5(d)),
where the most deeply bound state predissociates into
a universal atom-dimer state before reaching the three-
body continuum [8] and hence does not generate a reso-
nance at the scattering threshold. This is consistent with
the findings of Sec. II B, where the existence of a Fesh-
bach dimer BB at positive intraspecies scattering lengths
aBB > 0 lead to a splitting into two Efimov branches
asymptotically connecting to the three-atom and atom-
dimer channels. Therefore, we assign the first recombi-
nation feature to the first excited Efimov resonance.

The calculated recombination spectra from the vdW
model show qualitative agreement with the experimental
observations. However, a shift between the experimen-
tal and theoretical resonance positions will require more
detailed analysis and may be due to the multichannel na-
ture of the employed FR [16, 42] for tuning aCsLi. It is
shown that significant deviation of the Efimov resonance
positions from the spinless vdW theory has been observed

near a FR with sres about 35 times smaller than those in
our current cases [38]. However, the resonance positions
obtained from the energy spectra (grayed areas) coincide
very well with the experimental observations. Within the
framework of an effective-field-theory corrections due to
finite effective range and intraspecies scattering length
on three-body recombination rates and Efimov resonance
positions have been studied recently [43].

Similarly to Sec. III C we extract resonance positions
and scaling factors by three different methods. The ex-
perimental and vdW parameters are extracted as de-

scribed previously. Here, a
(n)
−,zr are calculated within the

zero range model described in Sec. II B. We find the en-
ergy levels of the upper branch adiabatic hyperspherical
potential curves (see Fig. 2) and search for the values of
aCsLi where their energy intersects zero. As opposed to
the negative intraspecies scattering length case, there is
no three-body parameter necessary. The positions and
scaling factors are listed in Tab. I.

The experimentally determined position of the first

excited Efimov resonance a
(1)
− close to the 889 G FR

is shifted by ≈ 300 a0 with respect to the 843 G FR,

while the position of the second excited resonance a
(2)
−

is nearly unchanged. The resonance position a
(2)
− ex-

tracted by all three methods agree very well with each
other, while for the first excited state the zero-range the-
ory clearly deviates from the two other models. This
deviation may be explained by neglect of nonadiabatic
couplings in our single-channel zero-range theory. Ad-
ditionally, the binding energy of the Cs2 dimer is not
reproduced in this model by disregard of effective range
corrections. However, the quantitative influence of these
limitations requires further detailed analysis. The scal-
ing factor obtained from the zero-range theory agrees
very well with the theoretically predicted scaling fac-
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tor of 4.9 between consecutive CsCsLi Efimov resonances
[2, 41, 44]. The obtained scaling factors from experiment
and vdW theory of 3.8(1)(3)(3) and 4.0(3) between the
two excited Efimov resonances clearly deviate from the
universal zero-range theory.

E. Scaling laws of three-body recombination rates

The scaling behavior of three-body recombination in
a heteronuclear system is expected to drastically depend
on the sign and magnitude of the intra- and interspecies
scattering lengths [21]. We study this behavior by com-
paring the three-body recombination spectra close to the
843 G and 889 G Cs-Li FRs for temperatures of 450 nK
and 320 nK in Fig. 6. They feature power law scaling
behavior with the scattering lengths aCsLi and aCsCs,
which qualitatively agree with the expected scaling laws
near overlapping Feshbach resonances [21]. In certain
ranges of aCsLi each of the loss rate spectra corresponds
to one of two distinctive cases of three-body scatter-
ing: the one near the 889 G FR can be characterized
by |aCsLi| � aCsCs ≈ 190 a0 for which L3 ∝ a4

CsLi
is expected, whereas the one near the 843 G FR for
small aCsLi approximately corresponds to the case of
|aCsLi| � |aCs| ≈ 1500 a0 with an expected scaling of
L3 ∝ a2

CsLia
2
CsCs [21]. The scaling laws can be explained

by tunneling trough effective three-body potential bar-
riers within a simple WKB model. The power laws are
displayed in the respective range in Fig. 6 as a guide
to the eye. Since the experimentally employed scatter-
ing lengths only approximately capture the inequalities
imposed by the theory, especially in the latter case, the
power laws can only approximately recover the behavior
of the actual Cs-Li system. Close to the pole of the FR
the theoretical scaling does not apply anymore due to the
unitarity limit.

The shown power law for the 843 G FR does not ac-
count for varying aCsCs, which is tuned simultaneously
with the magnetic field and changes by approximately
a factor of 1.5 for the experimentally employed Fesh-
bach resonance (see Fig. 4). For example, in the case
of the 843 G Cs-Li Feshbach resonance, far away from
the resonance the inequality |aCsLi| � |aCsCs| is fulfilled,
whereas close to the pole of the resonance, the opposite is
true, i.e. |aCsLi| � |aCsCs|. If aCsCs was a constant, this
would lead to a qualitative change in the power law from
L3 ∝ a2

CsLia
2
CsCs to L3 ∝ a4

CsLi for small to large scatter-
ing lengths, respectively. Such a transition in the present
data is masked by finite-temperature and short-range ef-
fects. However, it might become observable in samples
with further reduced temperature. Similar behavior can
be found in the universal zero-range theory with finite
intraspecies scattering length [40] and formalisms based
on optical potentials [45].

The different observed power laws enable us to ma-
nipulate the three-body loss in a heteronuclear system.
By choosing an appropriate FR, we can control the in-

0 1 0 2 0 3 0 4 0

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

� a 2
C s L i
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Figure 6. Cs-Cs-Li three-body recombination rate spectra
with positive (squares) and negative (circles) intraspecies in-
teraction. The power laws ∝ a4CsLi (dotted line) and ∝ a2CsLi

(dashed line) are drawn as guides to the eye. The error bars
represent the statistical errors from bootstrapping, magnetic
field uncertainties, and technical limit due to Cs-Cs-Cs three-
body losses. The data were taken close to the 889 G Cs-
Li Feshbach resonance at a temperature of 320 nK, where
aCsCs ≈ +190 a0, and close to the 843 G Cs-Li Feshbach res-
onance at a temperature of 450 nK, where aCsCs ≈ −1500 a0.

traspecies scattering length between the heavy bosons
and by this drastically influence the three-body loss rate.
For scattering lengths aCsLi

<∼ 500 a0 the Cs-Cs-Li losses
are reduced by approximately two orders of magnitude
when changing from large and negative to small and pos-
tive intraspecies scattering lengths, paving the way to
produce long-lived strongly-interacting Bose-Fermi mix-
tures.

IV. CONCLUSION

In summary, we have presented three theoretical meth-
ods at different levels of complexity to solve the three-
body Schrödinger equation for two heavy identical bosons
and one distinguishable particle and compared them to
measurements of three-body recombination rates in a sys-
tem of ultracold Cs and Li atoms. By detailed analysis
we confirm the decisive influence of the intraspecies scat-
tering length on the heteronuclear Efimov effect.

The minimalistic hybrid Born-Oppenheimer model
gives an intuitive understanding of the strong dependence
of the energies on the intraspecies scattering length.
Within this framework the binding energies of the three-
body states for aCsLi → ∞ in dependence of the in-
traspecies scattering length aCsCs were calculated and
a step-like behavior close to the Cs-Cs vdW length
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|aCsCs| ≈ rCsCs
vdW was predicted, analogously to calcula-

tions in the hyperspherical vdW model [19], qualitatively
explaining the experimentally observed change in the res-

onance position of the first excited Efimov state a
(1)
− be-

tween the two Cs-Li FRs.
Within the hyperspherical adiabatic zero-range theory

two qualitatively distinct cases of the heteronuclear Efi-
mov scenario were shown. While for aBB < 0 the original
Efimov scenario is observed, with an infinite number of
log-periodically spaced three-body states, the existence
of a weakly bound dimer for aBB > 0 splits the adiabatic
hyperspherical potentials into two Efimov branches. Efi-
mov states situated in the lower potential branch may
not lead to Efimov resonances in the B+B+X channel
as observed in our measured three-body recombination
rate spectra. For the upper branch a universal potential
barrier at R ≈ 2aBB makes the introduction of an artifi-
cial three-body parameter superfluous and allows for the
determination of Efimov resonance positions. However,
the applied adiabatic approximation and the neglect of
effective range corrections may effect the observed de-
viations from the experimentally determined resonance
positions.

An encouraging level of understanding of the heteronu-
clear Efimov effect is provided by the spinless van der
Waals theory in the adiabatic hyperspherical approxima-
tion, for both positive and negative intraspecies scatter-
ing lengths. This theory is compared to our measure-
ments of three-body recombination rate spectra in an
ultracold mixture of Cs and Li atoms at temperatures as
low as 120 nK for two Cs-Li FRs, characterized by dif-
ferent sign and magnitude of the intraspecies scattering
length aCsCs. We find excellent agreement between ex-
periment and theory on the negative side of aCsCs. For
positive intraspecies interactions a good agreement be-
tween the observed resonances and the energy spectrum
is observed. However, a shift between experimental and

theoretical three-body recombination rates demands fur-
ther analysis and may be due to the multichannel char-
acter of the Feshbach resonance. No Efimov resonance
which can be assigned to the ground Efimov state is ob-
served at the Cs+Cs+Li threshold for positive aCsCs. Be-
fore reaching the three-body continuum the most deeply
bound state dissociates at the atom-dimer threshold.

Away from the two Cs-Li FRs we observe power law
scalings of the three-body recombination rates, which can
be attributed to two distinct cases of overlapping Fesh-
bach resonances. We are able to suppress the three-body
loss by up to two orders of magnitude via choosing a
different Cs-Li Feshbach resonance and drastically in-
crease the lifetime of the Bose-Fermi mixture. A pre-
dicted qualitative change in the scaling behavior of the
three-body recombination rate close to the 843 G FR
from L3 ∝ a2

CsLia
2
CsCs to L3 ∝ a4

CsLi might be observable
in mixtures with further reduced temperature.
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[20] J. Ulmanis, S. Häfner, R. Pires, F. Werner, D. S. Petrov,
E. D. Kuhnle, and M. Weidemüller, Phys. Rev. A 93,
022707 (2016).

[21] J. P. D’Incao and B. D. Esry, Phys. Rev. Lett. 103,
083202 (2009).

[22] M.-G. Hu, R. S. Bloom, D. S. Jin, and J. M. Gold-
win, Phys. Rev. A 90, 013619 (2014); R. S. Bloom, M.-
G. Hu, T. D. Cumby, and D. S. Jin, Phys. Rev. Lett.
111, 105301 (2013); G. Barontini, C. Weber, F. Rabatti,
J. Catani, G. Thalhammer, M. Inguscio, and F. Minardi,
103, 043201 (2009); 104, 059901(E) (2010).

[23] R. A. W. Maier, M. Eisele, E. Tiemann, and C. Zim-
mermann, Phys. Rev. Lett. 115, 043201 (2015).

[24] J. Ulmanis, Universality and non-universality in the het-
eronuclear Efimov scenario with large mass imbalance,
Ph.D. thesis, Ruperto-Carola-University of Heidelberg
(2015).

[25] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev.
Mod. Phys. 82, 1225 (2010).

[26] G. F. Gribakin and V. V. Flambaum, Phys. Rev. A 48,
546 (1993).

[27] V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys.
Rev. A 59, 1998 (1999).

[28] J. Macek, J. Phys. B: At. Mol. Phys. 1, 831 (1968).
[29] Y. Wang, Universal Efimov Physics in Three- and Four-

Body Collisions, Ph.D. thesis, Kansas State University

(2010).
[30] The absence of the Efimov effect in higher partial waves

for our mass ratio of mB/mX = 22.1 [46], leads to a
substantial suppression of J > 0 contributions to the
recombination rate in the ultracold regime with kBT �
EvdW. The suppression is estimated to be (krvdW)2p0 �
1 for aCsCs < 0 and (kaCsCs)

2p0 � 1 for the aCsCs ≈
+190a0 case [47], where p0 > 1 is a universal constant for
the given mass ratio [46] and k the thermal wavevector.

[31] N. P. Mehta, S. T. Rittenhouse, J. P. D’Incao, J. von
Stecher, and C. H. Greene, Phys. Rev. Lett. 103, 153201
(2009).

[32] H. Suno, B. D. Esry, and C. H. Greene, Phys. Rev. Lett.
90, 053202 (2003).

[33] S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang,
and P. S. Julienne, Phys. Rev. A 87, 010702 (2013).

[34] M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle,
M. Weidemüller, and E. Tiemann, Phys. Rev. A 87,
010701 (2013).

[35] R. Pires, M. Repp, J. Ulmanis, E. D. Kuhnle, M. Wei-
demüller, T. G. Tiecke, C. H. Greene, B. P. Ruzic, J. L.
Bohn, and E. Tiemann, Phys. Rev. A 90, 012710 (2014).
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