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In our previous work (Chem.Phys.Lett. 647, 122 (2016)) it was established that complex explicitly
correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for
very accurate non-relativistic molecular non-Born-Oppenheimer (non-BO) calculations. In this work
we advance the molecular CECGs approach further by deriving and implementing algorithms for
calculating the leading relativistic corrections within this approach. The algorithms are tested in the
calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.

I. INTRODUCTION

Accurate quantum-mechanical calculations of bound states of molecular systems without assuming the Born-
Oppenheimer (BO) approximation provide a unique way of describing these systems without any approximations
concerning the separability of the motions of the nuclei and electrons. Besides the conceptual aspect of non-BO
calculations, which provides an interesting view on molecular properties, these types of calculations are also capable
of generating very accurate results concerning the molecular spectra. Examples of such calculations can be found in
the works of Bhatia [1], Bhatia and Drachman [2, 3], and Cassar and Drake [4], where Hylleraas functions were used
to determine energies and other properties (polarizabilities, Stark effect, relativistic corrections, etc.) of the hydrogen
molecular ion and its isotopologues.

There are significant differences between BO and non-BO calculations for a molecular system. The former involve
separate calculations of the electronic wave function and the corresponding energy performed at some selected
configurations of the nuclei placed in different fixed positions in space. These calculations provide the so-called
potential energy surface (PES) which is used in the subsequent calculation of bound states corresponding to the
rovibrational motion of the molecule. In non-BO calculations the nuclei and the electrons forming the molecule are
treated on equal footing. The calculations provide total energies and the corresponding total wave functions which
explicitly depend on the coordinates of both the nuclei and the electrons. As the electrons, particularly the core
electrons, follow the nuclei in their motion in space, they have to be described using basis functions which explicitly
depend on the electron-nucleus distances. The use of an orbital expansion approach in representing this motion, as
well as the relative motion of the nuclei, is usually very ineffective. In our works [5, 6] on the development of non-BO
molecular methods, the major issue has been the selection of an appropriate basis set which is capable of describing
the highly correlated motion of the electron and the nuclei in ground and excited bound states. A number of different
basis sets have been implemented. All of them are different forms of explicitly correlated Gaussian (ECG) functions.

The starting point of an approach for calculating molecular bound states without assuming the BO approximation
in the non-relativistic Hamiltonian dependent on laboratory-frame coordinates of all particles forming the system.
In our approach it is a laboratory Cartesian coordinate system. As the Hamiltonian includes the internal relative
motion of the particles around the center of mass of the system, as well the the motion of the center of mass in
space, the two motions have to be separated so the calculation only focuses on the ”internal” bound states of the
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system. These bound states are eigenstates of the Hamiltonian (called the internal Hamiltonian) which is obtained by
separating the operator representing the motion of the center of mass from the laboratory Hamiltonian. The internal
Hamiltonian used in our non-BO approach is described in the next section. As there is no preferred direction for
the system to orient itself in the laboratory coordinate space, the internal Hamiltonian is isotropic (i.e. rotationally
invariant). It resembles an atomic BO Hamiltonian. However, as in the atomic Hamiltonian all moving particles
are electrons with -1 charges and unit masses (in atomic units), in the internal Hamiltonian some moving particles
can be heavier and have positive charges. Like for an atom the internal Hamiltonian commutes with the operator
representing the square of the total angular momentum and its z coordinate, N2 and Nz. In order to calculate excited
molecular states, it is desirable to use in the calculation basis functions which are eigenfunctions of the two operators.
Thus, besides having to be explicitly dependent on the interparticle distances, the basis function have to possess the
right symmetry associated with the total rotational motion of the system.

One of the central issues in the electronic BO calculation is how well it describes the electron-electron (e-e)
correlation effects. The electron correlation can be separated into the dynamic and non-dynamic correlations. The
dynamic correlation is directly related to the Coulombic repulsion between the electrons, which keeps them apart.
The non-dynamic correlation is due to the electron staying apart due to an electronic excitation of the system or a
chemical bond (e.g. a single covalent bond formed by two electrons) between two atoms in the system dissociating
and each of the two electrons forming the bond following a different atom. If nuclei and electrons in the calculation
are treated on equal footing, nucleus-nucleus (n-n) correlation and nucleus-electron (n-e) correlation need to be
represented in the wave function. The e-e, n-e, and n-n correlations are different despite all of them resulting
from electrostatic interactions. Due to significantly larger masses of the nuclei these particles ”avoid” each other
more than the much lighter electrons. Thus, while the e-e correlations is quite adequately described by ECGs only
dependent on the e-e distances is the Gaussian exponent, the n-n correlations, as we have demonstrated with the
non-BO calculations of bound states of some small diatomic molecules [6], requires pre-exponential multipliers in
the form of non-negative powers of the internuclear distance (the intermolecular distances for molecules with more
than two nuclei). We call ECGs with such multipliers ”power Gaussians” in this work. The larger the power the
more the nuclei are separated from each other. Inclusion of the zero power assures that the probability of finding the
nuclei in a single point in space may not be exactly zero. The multipliers also enable to describe radial nodes in the
wave functions of vibrationally excited states. It is important to note that ECGs used in molecular calculations are
single-center Gaussians as only such functions transform according to the irreducible representations of the SO(3)
rotation group and can be used to expand wave functions of bound states of the atom-like internal Hamiltonian.

In order to use power ECGs in non-BO calculations of triatomic molecules the preexponential factor needs to
include all three internuclear distances raised to some non-negative powers. Formulas for the Hamiltonian matrix
elements for such functions were derived [7], but their computational implementation failed due to the oscillatory
nature of these algorithms that caused numerical instabilities in the calculation. After not being able to resolve the
problem with the oscillations we continued searching for an alternative basis which can be used for high-accuracy
non-BO calculations of molecules with more than two nuclei. Two such bases have been recently tested in our
laboratory. First one consists of ECGs multiplied by products of sin/cos functions dependent of squares of the
interparticle distances [8]. Such functions can correctly describe the decreasing probability of finding two nuclei
close to each other. They are also capable of representing radial oscillations of wave functions of vibrationally excited
states. The second basis consists of ECGs with complex exponential parameters [9, 10]. Based on the initial tests the
latter basis seems to be the most promising.

Before embarking on large scale non-BO calculations of some triatomic systems - the most interesting being H+
3

,
H3, and HeH+2 due to their astrophysical relevance - algorithms for the leading relativistic corrections need to be
developed and implemented. Only when these corrections are included in the energy, high-accuracy results can be
generated for the rovibrational spectra of the mentioned systems. In this work we derive and test algorithms for
calculating the mass-velocity (MV), Darwin (D), and orbit-orbit (OO) interaction corrections to the energy of pure (i.e.,
rotationless) vibrational states whose wave functions are expanded in terms of complex all-particle ECGs (CECG).
Testing of the algorithms is performed by calculating the relativistic corrections of all 23 bound pure vibrational
states of the HD+ ion and comparing the results with the values obtained before using power ECGs [11]. HD+

has been used as a model system for comparing high-resolution spectral measurements with high-level theoretical
calculations [12, 13]. The relativistic corrections taken from ref. [11] and used in the present testing agree very well
with the corrections obtained in the calculations using other methods [12, 13].

The algorithms derived in this work are applicable to systems with an arbitrary number of particles. They can be
used in non-BO calculations for diatomics, triatomics, as well as systems with more than three nuclei.
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II. HAMILTONIAN

We consider an N particle isolated system with masses {Mi} and charges {Qi} in a laboratory Cartesian coordinate
system. The laboratory coordinates and the linear momenta of the particles are:
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(1)

The nonrelativistic laboratory-frame Hamiltonian of the system is:

Hnr(R) =

N
∑

i=1

P2
i

2Mi
+

N
∑

i=1

N
∑

j>i

QiQ j
∥

∥

∥Ri − R j

∥

∥

∥

. (2)

Next, the 3N-dimensional problem represented by the above Hamiltonian is reduced to an (3N − 3)-dimensional
problem by elimination from the laboratory-frame Hamiltonian the operator representing the center-of-mass motion.
This elimination is rigorous and achieved by transforming Hamiltonian (2) to a new coordinate system, whose first
three coordinates, r0, are the coordinates of the center of mass in the laboratory coordinate frame and the remaining
3N−3 coordinates are internal coordinates. The internal coordinates, ri, i = 1, . . . ,N−1, are coordinates in a Cartesian
coordinate system whose center is placed at a selected reference particle (usually the heaviest one). Let n = N − 1. In
the new coordinate system (2) is:

Htot
nr (r0, r) =
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∇2
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n
∑
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n
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, (3)

where T denotes the transpose, qi = Qi+1, µi =
m0mi

m0+mi
are the reduced masses, Mtot is the total mass of the system,

m0 is the mass of the reference particle, mi = Mi+1, ∇ri
is the gradient vector expressed in terms of the xi, yi, and zi

coordinates of vector ri, ri j =
∥

∥

∥ri − r j

∥

∥

∥ =
∥

∥

∥Ri+1 − R j+1

∥

∥

∥ , and r0i ≡ ri = ‖ri‖ = ‖Ri+1 − R1‖. One can call the particles
described by the above Hamiltonian ”pseudoparticles” because, even though they have the same charges as the
original particles, their masses are not the original masses but the reduced masses. As one can see from (3), the
separation of the total nonrelativistic lab-frame Hamiltonian into the operator representing the kinetic energy of the
center-of-mass motion, Hcm

nr (r0), and the internal Hamiltonian, Hint
nr (r), is rigorous:

Htot
nr (r0, r) = Hcm

nr (r0) +Hint
nr (r). (4)

The sum of Hcm
nr (r0) and Hint

nr (r) provides a complete nonrelativistic description of the system. As in this work we
are only concerned with the internal bound states of the system, the eigenvalues and eigenfunctions of the internal
Hamiltonian are calculated. The internal Hamiltonian can be viewed as describing a system of n pseudoparticles
with the masses equal to reduced masses µi and charges qi (i = 1, . . . , n) moving in the central field of the charge of
the reference particle, q0. The pseudoparticles interact with each other by the Coulombic potential and additionally

their motions are coupled through the mass-polarization terms, − 1
2

∑n
i, j

1
m0
∇T

ri
∇r j

. As mentioned in the introduction,

the internal Hamiltonian, (3), is a generalized atomic Hamiltonian due to its spherical symmetry.

III. COMPLEX EXPLICITLY CORRELATED GAUSSIAN FUNCTIONS

The basis functions used in this work are explicitly correlated Gaussian functions with complex parameters. The
general form of such functions is:

φk(r) = exp
[

−rT C̄k r
]

= exp
[

−rT (

Āk + iB̄k
)

r
]

, (5)

where Āk and B̄k are real symmetric matrices of the variational exponential parameters. Āk and B̄k can be written as:
Āk = Ak ⊗ I3, B̄k = Bk ⊗ I3, where I3 is the 3 × 3 unit matrix and ⊗ denotes the Kronecker product. To ensure square
integrability of φk(r), matrix Ak must be positive definite. To achive this Ak is represented in the Cholesky factored
form as: Ak = LkLT

k
, where Lk is an n× n, rank n, lower triangular matrix. φk(r) is square-integrabile for the Lk matrix

elements being any real numbers.
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A. Relativistic operators

We consider relativistic corrections of the order of α2. The operators representing the mass-velocity (MV), Darwin
(D), and orbit-orbit (OO) interactions in HD+ are [11, 14]:

1. Mass-velocity term

〈φk| ĤMV |φ̃l〉 = −
1

8
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2

∑
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1

m3
i

〈φk| ∇4
ri
|φ̃l〉

















, (6)

2. Darwin term

There are three pair interactions in HD+, deuteron-proton, deuteron-electron, and proton-electron. In the Dirac-
Breit-Pauli relativistic Hamiltonian, which is used in the present work, the Darwin correction describing the inter-
action of the particle with charge Q, spin I, and mass M with a particle with charge q, spin S and mass m has the
following form [15], [16]:

π
3

2

Qq

M2
(g − 1) (I + ξ) δ3(r), (7)

where g−factor is the gyromagnetic ratio and parameter ξ is equal to zero for an integer spin and 1/4 for a half-
integer spin. HD+ consists of a deuteron (m0, q0, I0 = 1), a proton (m1, q1, I1 = 1/2), and an electron (m2, q2, I2 = 1/2).
Neglecting the g−factor (as it was done by Korobov [17]), the Darwin operator for HD+ is:

ĤD(r) =
π

2

2
∑

i=1
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1

m2
0

+
1

m2
i













q0qi δ
3(ri) +

π

2

2
∑

i=1

2
∑

j,i

1

m2
i

qiq j δ
3(ri j). (8)

3. Orbit-orbit term

The kl matrix element for the orbit-orbit interaction operator, ĤOO is:

〈φk| ĤOO(r) |φ̃l〉 = −
1
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2
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m0m j
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1

r j
∇T
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j
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j · ∇ri

)∇r j
|φ̃l〉
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1
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∑
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mim j















〈φk|
1

ri j
∇T

ri
· ∇r j
|φ̃l〉 + 〈φk|

1

r3
i j

rT
ij · (r

T
ij · ∇ri

)∇r j
|φ̃l〉















. (9)

IV. MATRIX ELEMENTS

In general, the system considered in the calculations may include some groups of identical particles. In the cal-
culation of the wave function expanded in terms of ECGs (5) each Gaussian is transformed with the appropriate
permutational symmetry operator. This operator is a product of the permutational symmetry operators each corre-
sponding to a different group of identical particles. For example, for H2 the permutational symmetry operator is a
product of the symmetry operator for the electrons and the symmetry operators for other types of identical particles.
Each permutational symmetry operator is a sum of operators permuting the labels of identical particles multiplied by
appropriate linear coefficients. The procedure for generating the permutational symmetry operator was described
earlier [18]. Each labels-permuting operator is represented by a 3n × 3n permutation matrix. Let us denote by P the
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permutation matrix representing a particular P̂ permutation operator. Then, acting with P̂ on φl we get:

P̂ exp
[

− (r − sl)
T Cl (r − sl)

]

= exp
[

−
(

Pr − sl

)T
Cl

(

Pr − sl

)

]

= exp
[

−
(

Pr − PP−1sl

)T
Cl

(

Pr − PP−1sl

)

]

= exp
[

−
(

r − P−1sl

)T
PTClP

(

r − P−1sl

)

]

= exp
[

− (r − s̃l)
T C̃l

(r − s̃l)
]

, (10)

where C̃l = PTClP and s̃l = P−1sl. The following notation will help keep expressions more compact:

|φ̃l〉 = P̂|φl〉. (11)

L̃k = PTLk,
˜
Al = PTAlP,

˜
Bl = PTBlP, (12)

Akl = Ak +Al,
˜
Akl = Ak +

˜
Al, (13)

Bkl = −Bk + Bl,
˜
Bkl = −Bk +

˜
Bl, (14)

and

˜
Ckl = C

∗
k +

˜
Cl =

˜
Akl + i

˜
Bkl. (15)

Here P represents the permutation matrix corresponding to some permutation operator, P̂. As for HD+ there are no
identical particles and the permutational operator is equal to unity.

A. The MV operator

The matrix elements that need to be calculated are:

〈φk|ĤMV|φ̃l〉 = −
1

8















1

m3
0

〈∇T
r J∇rφk|∇T

r J∇rφ̃l〉 +
n

∑

i=1

1

m3
i+1

〈∇T
r Jii∇rφk|∇T

r Jii∇rφ̃l〉














, (16)

where we use matrix J (with no indices), whose all elements are equal to one. Matrix Ji j is defined as:

Ji j =

{

Eii, if i = j
Eii + E j j − Ei j − E ji, if i , j

, (17)

where Ei j is a matrix with one in the i, j-th position and zeros elsewhere.

Only one type of integral appears in the expression for the ĤMV matrix elements: 〈∇r
TD∇rφk|∇r

TD∇rφ̃l〉, where D

is either J or Jii. To compute it we express it using the following elementary integrals:

〈∇r
TD∇rφk|∇r

TD∇rφ̃l〉 =

36 Tr [C†kD] Tr [C̃lD] 〈φk|φ̃l〉

−24 Tr [C̃
†
kD] 〈φk|rT ˜

ClD
˜
Clr|φ̃l〉

−24 Tr [C̃lD] 〈φk|rTC
†
kD C

†
kr|φ̃l〉

+16 〈φk|rTC
†
kD C

†
kr rT ˜

ClD
˜
Clr|φ̃l〉. (18)
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B. The orbit-orbit interaction operator

The matrix notation of the orbit-orbit interaction operator is (for details see [19]):

〈φk | Ĥoo(r) | φ̃l〉 =

−1

2

n
∑

i=1

q0qi

m0mi+1
〈φk |

1

ri
∇TEii∇ −

(

rTEii

)α
(

∇TEii
1

ri

)β
(

Eii∇
)

β

(

Eii∇
)

α
| φ̃l〉 + (19)

−1

2

n
∑

i=1

n
∑

j,i

q0qi

m0mi+1
〈φk |

1

ri
∇TEi j∇ −

(

rTEii

)α
(

∇TEii
1

ri

)β
(

Eii∇
)

β

(

Ei j∇
)

α
| φ̃l〉 + (20)

+
1

2

n−1
∑

i=1

n
∑

j>i

qiq j

mi+1m j+1
〈φk |

1

ri j
∇TEi j∇ +

(

rT(Ei j − E j j)
)α

(

∇TE ji
1

ri j

)β
(

Eii∇
)

β

(

E j j∇
)

α
| φ̃l〉. (21)

To simplify the expression for the Ĥoo(r) expectation value we use the following general integrals for the three terms
that appear in it:

〈φk|
1

rg
∇T B ∇| φ̃l〉 − 〈φk|

(

rT K
)α

(

∇TD
1

rg

)β
(

F ∇
)

β

(

G ∇
)

α
|φ̃l〉

for term (19): g = i B = Eii K = Eii D = Eii F = Eii G = Eii,

for term (20): g = i B = Ei j K = Eii D = Eii F = Eii G = Ei j,

for the term (21): g = i j B = Ei j K = ( Ei j − E j j) D = E ji F = Eii G = E j j,
(22)

where

〈φk|
1

rg
∇T B ∇ |φ̃l〉 = +4 〈φk|

1

rg

(

rT ˜
Cl B

˜
Cl r

)

|φ̃l〉 − 6 Tr [ C̃l B ]〈φk|
1

rg
|φ̃l〉.

〈φk|
(

rT K
)α

(

∇T D
1

rg

)β
(

F ∇
)

β

(

G ∇
)

α
|φ̃l〉 =

= +8 〈φk|
1

rg

(

rT K G
˜
Cl r

) (

rTC
†
k D F

˜
Cl r

)

|φ̃l〉 +

−4 〈φk|
1

rg

(

rTC
†
k D F

˜
Cl G

T
K

T
r

)

|φ̃l〉

−4 〈φk|
1

rg

(

rT ˜
Cl G

T
K

T
D F

˜
Cl r

)

|φ̃l〉 + 6 Tr [ C̃l GT KT D F ] 〈φk|
1

rg
|φ̃l〉

−4 〈φk|
1

rg

[(

rT K G
˜
Cl D F

˜
Clr

)

+

(

rT K G
˜
Cl F

T
D

T ˜
Cl r

)]

|φ̃l〉 +

−12 Tr [D F C̃l] 〈φk|
1

rg

(

rT K G
˜
Clr

)

|φ̃l〉 +

+8 〈φk|
1

rg

(

rT K G
˜
Clr

) (

rT ˜
Cl D F

˜
Clr

)

|φ̃l〉.

C. The integral

The following well-known Gaussian integral is used in the derivation:

+∞
∫

−∞

dn x exp
[−x′Cx + y′x

]

=
πn/2

|C|1/2 exp
[

1

4
y′C−1y

]

. (23)
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The integration in (23) is over n variables and x is an n-component vector of these variables. y is a constant vector,
n× n matrix C is assumed to be symmetric, and its real part is positive definite. Also, here and everywhere below, by
the square root one should understand its principal value (i.e. the root whose real part is greater than zero).

1. Overlap integral

For the derivation of this integral see [9]. The integral is:

〈φk|φ̃l〉 ≡ 〈φk|P̂|φl〉 = π3n/2|C̃kl|−3/2. (24)

Skl =
〈φk|φ̃l〉

(

〈φk|φk〉〈φl|φl〉
)1/2
=

(

|Ckk|3/2|Cll|3/2
)1/2

|C̃kl|3/2
= 23n/2













∣

∣

∣|Lk|
∣

∣

∣

∣

∣

∣|Ll|
∣

∣

∣

|C̃kl|













3/2

. (25)

2. Elementary Integrals

Now we present formulas for the elementary integrals used in the equations for the above-described matrix
elements. For more details concerning the derivation of the integrals see [20, 21].

〈φk|
(

rTX r
)

|φ̃l〉 = Skl
3

2
Tr

[

C̃−1
kl X

]

(26)

〈φk|
(

rTX r
) (

rTY r
)

|φ̃l〉 = Skl

{

9

4
Tr

[

C̃−1
kl X

]

Tr
[

C̃−1
kl Y

]

+
3

2
Tr

[

C̃−1
kl X C̃−1

kl Y
]

}

(27)

Using the following designation: g = ii (or more precisely g = i when it appears in rg and g = ii when it appears
in Jg) or i j we get:

〈φk|
1

rg
|φ̃l〉 = Skl

2√
π

Tr [C̃
−1
kl Jg]−1/2 (28)

〈φk|
(

rTXr
) 1

rg
|φ̃l〉 = 〈φk|

1

rg
|φ̃l〉

1

2















3 Tr [XC̃
−1
kl ] −

Tr [JgC̃
−1
kl X C̃

−1
kl ]

Tr [JgC̃
−1
kl ]















.

(29)

〈φk |
1

rg

(

rTXr
) (

rTYr
)

| φ̃l〉 =

= 〈φk|
1

rg
|φ̃l〉

1

4

{

9 Tr [XC̃
−1
kl ] Tr [YC̃

−1
kl ] + 6 Tr [XC̃

−1
kl YC̃

−1
kl ]+ (30)

− 1

Tr [JgC̃
−1
kl ]

(

3 Tr [XC̃
−1
kl ] Tr [JgC̃

−1
kl Y C̃

−1
kl ] + 3 Tr [YC̃

−1
kl ] Tr [JgC̃

−1
kl X C̃

−1
kl ] + 4 Tr [JgC̃

−1
kl XC̃

−1
kl YC̃

−1
kl ]

)

+ (31)

+
1

Tr [JgC̃
−1
kl ]2

3 Tr [JgC̃
−1
kl X C̃

−1
kl ] Tr [JgC̃

−1
kl Y C̃

−1
kl ].















(32)
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3. Dirac delta function

In calculating the matrix element of the 3-dimensional Dirac delta function, we use the formula:

δ(aTr − ξ) = δ(a1r1 + a2r2 + . . . + anrn − ξ),

where a is a real n-component vector, and ξ is some real 3-dimensional parameter [9]. Using the following represen-
tation of the delta function:

δ(aTr − ξ) = lim
β→∞

(

β

π

)3/2

exp
[

−β(aTr − ξ)2
]

(33)

and formula (23) we get:

〈φk|δ(aTr − ξ)|φ̃l〉 = lim
β→∞

(

β

π

)3/2

〈φk| exp
[

− βrT(aaT)r + 2βaTrξ − βξTξ
]

|φ̃l〉 (34)

=
Skl

π3/2 Tr [C̃
−1
kl aaT]3/2

exp













− ξTξ

Tr [C̃
−1
kl aaT]













. (35)

The above matrix elements are obtained by setting a as a = ji or a = j j − ji, where ji is an n-component vector whose
i-th component is equal to one while all others are equal to zero. One should note that ri j = (j j − ji)Tr, ri = (ji)Tr, and

also (j j − ji)(j j − ji)T = Ji j for i , j and ji(ji)T = Jii for i = j. With that we have:

〈φk|δ(ri j − ξ)|φ̃l〉 =
Skl

π3/2 Tr [C̃
−1
kl Ji j]3/2

exp















− ξTξ

Tr [C̃
−1
kl Ji j]















, (36)

〈φk|δ(ri − ξ)|φ̃l〉 =
Skl

π3/2 Tr [C̃
−1
kl Jii]3/2

exp













− ξTξ

Tr [C̃
−1
kl Jii]













. (37)

V. NUMERICAL TEST

The algorithms for the relativistic corrections derived in this work are implemented on a parallel computer
platform using Frotran90 and MPI (message passing interface). The implementation is general and can be applied to
an arbitrary number of particles. The computational costs for calculation the matrix elements with CECGs and with
the power ECGs are similar. The solving of the secular equation for CECGs takes somewhat more time than the for
power ECGs, as it involves diagonalization of complex Hamiltonian and overlap matrices.

The test calculations are performed for all 23 bound rotation-less vibrational states of the HD+ ion. HD+ has been
chosen because very accurate results concerning the leading relativistic calculations for this system were calculated
in our recent work [11] using real ECGs with preexponential multipliers being even non-negative powers, 2mk of the
internuclear distance, r1:

φk(r) = r2mk

1
exp

[

−rTĀkr
]

. (38)

The CECG basis set for each state is generated by growing process involving adding new functions in subsets
of 20, variationally optimizing their non-linear parameters (i.e the elements of the Lk and Bk matrices), and then
reoptimizing the parameters of all CECGs in the basis set. In the optimization and reoptimization steps, one basis
function at a time is optimized and the procedure cycles over all functions several times to achieve the desired level
of the energy convergence. The analytical energy gradient determined with respect to the optimization parameters
is used to accelerate the optimization process.

The maximum number of the basis functions generated for each state is 1300 (this is by 300 more for states with
v = 8 − 22 than presented in our previous CECG for on HD+ [10]). The total energies obtained with this number
of CECGs, as well as the energies obtained with 1100 and 900 CECGs obtained in the present calculation for all 23
bound vibrational states corresponding to the zero total angular momentum quantum number are show in Table 1.
The energies are compared with the energies obtained with real ECGs (Eq.(38)). The number of the real ECGs used
for each state is also shown in the table. As one can see, this number increases from 4000 for the lowest state to 7000
for the top state. As expected, the CECG energies are slightly higher than the corresponding ECG energies and, as
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only 1300 CECGs are used for all states, the energy gap between the CECG and ECG energies increases with the
vibrational excitation. For the v = 0 state the difference between the two energies appear at the eleventh significant
figure, but for the highest v = 22 state the two energies already differ at the eight significant figure.

The wave functions obtained with 900, 1100, and 1300 basis functions for each state are used to calculate the MV,
D, and OO relativistic corrections as the first-order perturbation-theory energy corrections. The results are shown in
Table II. The results are compared with the results obtained with ECGs (38). As for the total energies, the agreement
between the CECG and ECG results becomes progressively worse, but, even in the worse case, it is less than one in
the third significant digit. It is remarkable that for the OO correction the CECG calculations reproduces virtually all
four significant figures of the results obtained in the ECG calculations. In conclusion, we can say that the derived
algorithms and their computational implementation are correct.

VI. SUMMARY

In our view the development of methods employing complex explicitly correlated n-particle Gaussian functions for
molecular non-BO calculations is a promising approach for extending the calculations of bound rovibrational states
to molecular systems with more than two nuclei. These functions are very efficient in describing the highly correlated
motion of particles with widely different masses and charges interacting with Coulombic potentials. The focus of the
present work is the development of algorithms for calculating the leading relativistic corrections using the first-order
perturbation theory. The tests performed of all 23 bound vibrational states of the HD+ ion corresponding to the
zero total rotational quantum number show excellent agreement with the previous high-accuracy results obtained
with the real ECGs involving non-negative even powers of the internuclear distance (i.e. in the case of HD+ the p-d
distance) as preexponential multipliers. The relativistic correction is indispensable in high-accuracy calculations of
rovibrational transition energies. The algorithms developed in this work and their computation implementation are
general and can be applied to an arbitrary number of particles. Applications of the algorithms in non-BO calculations
of such systems as H+

3
, HeH+

2
, etc. are forthcoming.

VII. ACKNOWLEDGEMENTS

This work was supported by the Polish National Science Centre, grant no. DEC-2013/10/E/ST4/00033, and by the
National Science Foundation, grant no. IIA-1444127.



10

[1] A. K. Bhatia, Phys. Rev. A 58, 2787 (1998).
[2] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 59, 205 (1999).
[3] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 61, 032502 (2000).
[4] M. M. Cassar and G. W. F. Drake, J. Phys. B 37, 2485 (2004).
[5] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz,, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga,

Rev. Mod. Phys. 85, 693 (2013).
[6] S. Bubin, M. Pavanello, W-C Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013).
[7] E. Bednarz, S. Bubin, and L. Adamowicz, Mol. Phys. 103, 1169 (2005).
[8] M. Formanek, K. L. Sharkey, N. Kirnosov, and L. Adamowicz, J. Chem. Phys. 141, 154103 (2014).
[9] S.Bubin and L.Adamowicz, J. Chem. Phys. 124, 224317 (2006)

[10] S. Bubin, M. Formanek, and L. Adamowicz, Chem. Phys. Lett. 647, 122 (2016).
[11] M.Stanke and L.Adamowicz, Phys. Rev. A 89, 032503 (2014).
[12] J. Biesheuvel, J.-Ph. Karr, L. Hilico, K. S. E. Eikema, W. Ubachs, and J. C. J. Koelemeij, Nature Comm. 7, 10385 (2016).
[13] S. Schiller, D. Bakalov, and V. I. Korobov, Phys. Rev. Lett. 113, 023004 (2014).
[14] M. Stanke and L. Adamowicz, J. Phys. Chem. A 117, 10129 (2013).
[15] I. B. Khriplovich, A. I. Milstein, and R. A. Senkov, Phys. Lett. A 221, 370 (1996).
[16] R. N. Lee, A. I. Milstein, and M.Schumacher, Phys. Rev. A, 64, 032507.
[17] V. I. Korobov, Phys. Rev. A 74, 052506 (2006).
[18] S. Bubin, M. Cafiero, and L. Adamowicz, Adv. Chem. Phys. 131, 377 (2005).
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TABLE I: The convergence of the total nonrelativistic non-BO energies of the pure vibrational states of HD+. The result marked with ∗ are taken from Ref. [11]. All energy
values are given in a.u. (hartrees).

v basis Energy v basis Energy v basis Energy v basis Energy
0 900 -0.5978979683912 1 900 -0.5891818289282 2 900 -0.5809036983037 3 900 -0.5730505414248

1100 -0.5978979685138 1100 -0.5891818293204 1100 -0.5809036995907 1100 -0.5730505449747
1300 -0.5978979685585 1300 -0.5891818294385 1300 -0.5809036999147 1300 -0.5730505458830

*4000 -0.5978979685771 *5000 -0.5891818295415 *4000 -0.5809037002014 *4000 -0.5730505464509

4 900 -0.5656110283385 5 900 -0.5585754944135 6 900 -0.5519358963488 7 900 -0.5456858304071
1100 -0.5656110377595 1100 -0.5585755123631 1100 -0.5519359315109 1100 -0.5456858832782
1300 -0.5656110404136 1300 -0.5585755179626 1300 -0.5519359435920 1300 -0.5456859064213

*4000 -0.5656110420151 *4000 -0.5585755206666 *4000 -0.5519359486245 *4000 -0.5456859149958

8 900 -0.5398204968565 9 900 -0.5343367888427 10 900 -0.5292332938131 11 900 -0.5245104708403
1100 -0.5398205841104 1100 -0.5343369274054 1100 -0.5292335367206 1100 -0.5245107785210
1300 -0.5398206258429 1300 -0.5343369896236 1300 -0.5292335976010 1300 -0.5245108605721

*4000 -0.5398206405530 *4000 -0.5343370131078 *4000 -0.5292336347464 *4000 -0.5245109096420

12 900 -0.5201704915092 13 900 -0.5162177565392 14 900 -0.5126589689627 15 900 -0.5095030544577
1100 -0.5201709540191 1100 -0.5162184418657 1100 -0.5126598249150 1100 -0.5095042075422
1300 -0.5201710800433 1300 -0.5162186121525 1300 -0.5126600498905 1300 -0.5095044653161

*4000 -0.5201711438355 *4000 -0.5162187088779 *5000 -0.5126601912543 *5000 -0.5095046474123

16 900 -0.5067619132317 17 900 -0.5044503592932 18 900 -0.5025865108464 19 900 -0.5011923477510
1100 -0.5067632927475 1100 -0.5044519869695 1100 -0.5025884884742 1100 -0.5011940209047
1300 -0.5067636279441 1300 -0.5044524069436 1300 -0.5025888978524 1300 -0.5011944645923

*6000 -0.5067638738368 *6000 -0.5044526917472 *6000 -0.5025892273423 *7000 -0.5011947942236

20 900 -0.5002900763374 21 900 -0.4999094630930 22 900 -0.4998654605144
1100 -0.5002916950979 1100 -0.4999100692534 1100 -0.4998656818779
1300 -0.5002921103721 1300 -0.4999102425427 1300 -0.4998657400793

*7000 -0.500292453636 *7000 -0.4999103594832 *7000 -0.4998657783078
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TABLE II: Expectation values of the operators representing the leading relativistic corrections: mass-velocity (MV), Darwin (D), and orbit-orbit (OO). The result marked
with ∗ are taken from Ref. [11]. All energy values are given in a.u. (hartrees).

v basis MV D OO v basis MV D OO v basis MV D OO
0 900 -0.7874 0.6508 -4.784E-04 1 900 -0.7696 0.6388 -4.669E-04 2 900 -0.7531 0.6217 -4.564E-04

1100 -0.7874 0.6508 -4.784E-04 1100 -0.7698 0.6359 -4.669E-04 1100 -0.7532 0.6218 -4.564E-04
1300 -0.7875 0.6508 -4.784E-04 1300 -0.7698 0.6359 -4.669E-04 1300 -0.7533 0.6219 -4.564E-04
*4000 -0.7873 0.6507 -4.784E-04 *5000 -0.7697 0.6358 -4.669E-04 *4000 -0.7533 0.6219 -4.564E-04

3 900 -0.7378 0.6086 -4.468E-04 4 900 -0.7234 0.5962 -4.380E-04 5 900 -0.7101 0.5847 -4.300E-04
1100 -0.7379 0.6087 -4.468E-04 1100 -0.7236 0.5964 -4.380E-04 1100 -0.7105 0.5851 -4.300E-04
1300 -0.7380 0.6088 -4.468E-04 1300 -0.7237 0.5966 -4.380E-04 1300 -0.7106 0.5852 -4.300E-04
*4000 -0.7378 0.6087 -4.468E-04 *4000 -0.7237 0.5966 -4.380E-04 *4000 -0.7105 0.5852 -4.300E-04

6 900 -0.6977 0.5739 -4.227E-04 7 900 -0.6863 0.5638 -4.163E-04 8 900 -0.6758 0.5545 -4.105E-04
1100 -0.6982 0.5744 -4.227E-04 1100 -0.6867 0.5643 -4.163E-04 1100 -0.6763 0.5552 -4.105E-04
1300 -0.6983 0.5746 -4.227E-04 1300 -0.6871 0.5647 -4.163E-04 1300 -0.6766 0.5555 -4.105E-04
*4000 -0.6983 0.5746 -4.227E-04 *4000 -0.6872 0.5649 -4.163E-04 *4000 -0.6768 0.5557 -4.105E-04

9 900 -0.6666 0.5461 -4.055E-04 10 900 -0.6573 0.5377 -4.013E-04 11 900 -0.6500 0.5309 -3.977E-04
1100 -0.6671 0.5468 -4.055E-04 1100 -0.6584 0.5389 -4.013E-04 1100 -0.6510 0.5319 -3.977E-04
1300 -0.6674 0.5472 -4.055E-04 1300 -0.6589 0.5395 -4.013E-04 1300 -0.6512 0.5324 -3.977E-04
*4000 -0.6676 0.5475 -4.055E-04 *4000 -0.6590 0.5397 -4.013E-04 *4000 -0.6516 0.5329 -3.977E-04

12 900 -0.6429 0.5242 -3.948E-04 13 900 -0.6365 0.5180 -3.927E-04 14 900 -0.6313 0.5128 -3.913E-04
1100 -0.6435 0.5250 -4.948E-04 1100 -0.6374 0.5191 -3.927E-04 1100 -0.6323 0.5139 -3.913E-04
1300 -0.6442 0.5258 -4.948E-04 1300 -0.6384 0.5201 -3.927E-04 1300 -0.6332 0.5149 -3.913E-04
*4000 -0.6442 0.5260 -3.949E-04 *4000 -0.6389 0.5209 -3.927E-04 *5000 -0.6338 0.5158 -3.913E-04

15 900 -0.6267 0.5080 -3.906E-04 16 900 -0.6232 0.5041 -3.907E-04 17 900 -0.6199 0.5002 -3.914E-04
1100 -0.6281 0.5095 -3.906E-04 1100 -0.6240 0.5050 -3.907E-04 1100 -0.6207 0.5012 -3.914E-04
1300 -0.6287 0.5103 -3.907E-04 1300 -0.6250 0.5060 -3.907E-04 1300 -0.6225 0.5029 -3.914E-04
*5000 -0.6295 0.5112 -3.907E-04 *6000 -0.6260 0.5073 -3.907E-04 *6000 -0.6235 0.5042 -3.915E-04

18 900 -0.6171 0.4966 -3.926E-04 19 900 -0.6185 0.4968 -3.932E-04 20 900 -0.6187 0.4953 -3.863E-04
1100 -0.6195 0.4991 -3.926E-04 1100 -0.6195 0.4977 -3.933E-04 1100 -0.6204 0.4972 -3.864E-04
1300 -0.6210 0.5005 -3.926E-04 1300 -0.6204 0.4988 -3.933E-04 1300 -0.6211 0.4981 -3.864E-04
*6000 -0.6218 0.5017 -3.927E-04 *7000 -0.6213 0.5000 -3.933E-04 *7000 -0.6218 0.4992 -3.865E-04

21 900 -0.6220 0.4974 -2.966E-04 22 900 -0.6234 0.4987 -2.747E-04
1100 -0.6223 0.4980 -2.972E-04 1100 -0.6238 0.4990 -2.751E-04
1300 -0.6229 0.4986 -2.974E-04 1300 -0.6239 0.4992 -2.752E-04
*7000 -0.6235 0.4992 -2.975E-04 *7000 -0.6242 0.4995 -2.752E-04

D +H+ -0.62432 0.49959 -2.722 10−4

D+ + H -1.2483 0.49918 -5.437 10−4


