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Abstract

We report on the five-body repulsive and attractive van der Waals interactions between the

strongly dipole-dipole coupled Rydberg states. Compared to four-body van der Waals interactions,

five-body van der Waals interactions show more energy levels and more potential wells caused by

avoided crossings. This research bridges the few-body physics and many-body physics. Other dis-

ciplines, such as chemistry, biology, and medical fields, will also benefit from better understanding

van der Waals interactions.

PACS numbers: 33.20.Bx, 36.40.Mr, 32.70.Jz

∗ Email address: jhan@southalabama.edu

1



Van der Waals interactions, discovered in 1870s, are dipole-dipole interactions, which can

be calculated from the second order perturbation theory. Here dipoles can be electric dipoles

or magnetic dipoles. In this article, we will focus on electric dipole-dipole interactions.

Specifically, one-electron Rydberg atoms [1, 2] will be used as dipoles, because a one-electron

Rydberg atom has an excited electron and an ion core, which are the two poles of an electric

dipole. Therefore, the dipole-dipole interactions discussed in this article, specifically van der

Waals interactions, refer to the interactions between Rydberg atoms.

Rydberg atoms are ideal candidates for studying van der Waals interactions for the fol-

lowing reasons. First, Rydberg atoms’ radii are proportional to n2, where n is the principal

quantum number. Therefore, the dipole size can be adjusted by adjusting the principal

quantum number. Second, as shown in this article, the van der Waals interaction strength

depends on the energy difference, which is determined by the energy levels of Rydberg atoms.

The energy levels of Rydberg atoms can be adjusted in two ways. First, those energy levels

can be adjusted by adjusting the principal quantum number. Second, the energy levels of

different angular momentum states of an atom with the same principal quantum number are

different caused by the orbital polarization and orbital penetration of an atom with more

than one electron. All of these features enable Rydberg atoms to be ideal candidates for

studying van der Waals interactions.

The Rydberg-Rydberg molecules, bounded by dipole-dipole interactions, were first pro-

posed by Christophe Boisseau et. al. [3]. The first experiment on Rydberg-Rydberg

molecules was done by Farooqi et. al. [4] and then by Overstreet et. al. [5]. Recently,

experiments were done on nearly resonant dipole-dipole coupled states, and a frequency

shift, which was explained by a linear four-body model, has been observed [6]. The first

repulsive van der Waals interaction measurement was done by Han et. al. [7]. In this article,

we will continue to use the nearly degenerate and strongly dipole-dipole coupled states to

study the five-body van der Waals interactions.

There are many applications about this research. In chemistry and chemical engineering,

van der Waals interactions can be used to engineer molecules. In biology, van der Waals

interactions can be used to modify cells or DNA. In medical fields, the van der Waals

interactions can be used to synthesize medicine. Most importantly, the van der Waals

interactions can be used in physics. For example, this research can also be applied to

coherent radiation, such as superradiance, which is caused by phase locked dipole-dipole
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FIG. 1: The energy levels of the 4 × 38s + 39s and 3 × 38s + 2 × 28p3/2. Here we again use the

convention used in Ref. [19]. For instance, 4 × 38s + 39s means all five atoms are far apart and

they are not interacting with each other, while 38s38s38s38s39s means five atoms interact with

each other through pairwise dipole-dipole interactions.

interactions [8–13]. Moreover, this study can be used to examine the ultracold plasma

formation, especially the plasma formation of higher n states, which is led by the dipole-

dipole collisions [14–17].

This paper is arranged in the following way: the five-body interaction theory is presented

in the next section, which is followed by the discussions about the energy levels for different

configurations.

In this article, 1D, 2D, and 3D five-body strongly dipole-dipole coupled Rydberg states

will be investigated, and we will focus on 4×38s+39s and 3×38s+2×28p3/2 states in
85Rb.

This approach can be generalized to solve other states and other elements. We continue to

use the notation used in previous literatures [6, 18, 19]. Specifically, 4×38s+39s means that

when those five atoms are far apart or the interaction strength between atoms is negligible,

four of the five atoms are in the 38s state and one of them is in the 39s state. We include all

M states, where M is the projection of the total angular momentum of all five atoms along

the z axis. In this article, we assume the probability in 4×ns+(n+1)s states at R → ∞ is

one, where R is the internuclear spacing between two atoms. The energy difference between

4 × 38s + 39s states and 3 × 38s + 2 × 28p3/2 states at R = ∞ is 4.46 MHz. as shown in

Fig. 1 [6]. By the end of this article, the 4 × 37s + 38s and 3 × 37s + 2 × 37p pair as well

as 3× 40s+ 2× 40p and 4× 40s+ 41s pair are briefly discussed.

The way to accurately solve the five-body Rydberg problem is to solve the schrodinger

equation of five electrons around five ion cores. If the density is low, the separation between

3



neighboring atoms, R, is large, the lowest order correction to the five-atom potential energy

is the sum of all the pairwise dipole-dipole potential energies. The pairwise dipole-dipole

interaction is shown in Eq. (1).

V12 =
~µ1 · ~µ2 − 3(~µ1 · R̂12)(~µ2 · R̂12)

R3

12

, (1)

where µ1 and µ2 are the dipole moments of atom 1 and atom 2 respectively. R12 is the

internuclear spacing between atom 1 and 2. If there are five Rydberg atoms, the lowest

order correction is the sum of ten pairs of dipole-dipole interactions as shown in Eq. (2)

[20].

V12345 = V12 + V13 + V14 + V15 + V23 + V24 + V25 + V34 + V35 + V45, (2)

Let’s start with the 3D configuration, and the 2D and 1D configurations can be derived by

setting the angles to particular values. The 3D pairwise dipole-dipole interaction potential

energy can be again expressed in terms of the spherical tensors. For instance, the pairwise

dipole-dipole interaction between the atom located at position O and the atom located at

position A as shown in Fig. 2 can be written as [21]:
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(3)

where Ck,q is the normalized spherical tensor in Edmonds [22]. For instance, in the case of

k = 1, or the first-order spherical tensor,

C1,0 =
z

r
, (4)

C1,1 =
−(x+ iy)√

2r
, (5)

and

C1,−1 =
x− iy√

2r
. (6)

θOA is the angle between OA and the xy plane, and φOA is the angle between the projection

of OA on the xy plane and the x axis as shown in Fig. 2. If we set θOA = π
2
, and
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FIG. 2: Two dipoles, two Rydberg atoms in this case, are located at the two ends of a vector ~OA,

O and A.

φOA = 0, the simplified potential is the 1D potential along the z axis, which is consistent

with the equations given in other literatures [6]. From this equation, it can be proved that

by switching the atom at the position O and the atom at the position A, the potential energy

does not change, or

VOA = VAO. (7)

All the calculations are done by directly diagonalizing the matrix, and no diabatization

scheme has been used throughout the calculation.

If we set θOA = 0, the potential is a potential in the xy plane. For example, if we set

θOA = 0, and φOA = 0, the simplified potential is the 1D potential along the x axis. Here

is another example: if we calculate the pairwise dipole-dipole potential for a pentagon in a

plane as shown in Fig. 3(b), θ = 0 for any one of the ten pairwise dipole-dipole potential

energies.

We now discuss the calculated results. Fig. 4 shows the results for 1D, 2D, and 3D

configurations plotted in Fig. 3. The right column of Fig. 4 is the corresponding magnified

figure of the left column. For example, Fig. 4(a2) is the magnified figure of Fig. 4(a1).

Figs. 4(a1) and (a2) are the energy levels of five atoms aligned along a straight line as

shown in Fig. 3(a), or the 1D configuration. Figs. 4(b1) and (b2) are the energy levels of

five atoms at the five corners of a pentagon on a plane or a 2D surface as shown in Fig.

3(b). Figs. 4(c1) and (c2) are the energy levels of five atoms at the five sites as shown in

Fig. 3(c): four atoms are at the four vertices of a tetrahedron, and the fifth atom is at the

center of this tetrahedron. This is a 3D configuration. From the energy levels of these three

configurations in Fig. 3, the energy levels are more spread out as the dimension increases,
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FIG. 3: (a) Five atoms aligned along a line (one-dimension or 1D configuration). (b) Five atoms

are at the five vertices of a pentagon (2D configuration). (c) Three-dimension or 3D configuration.

Four atoms are at the four corners of a tetrahedron, and the fifth atom is at the center of the

tetrahedron.

which is caused by the fact that the atoms are closer to each other as the dimension increases.

For example, the maximum distance in the 1D case is 4R, while the maximum distance in

the 2D configuration is approximately 1.618R, where R is the distance between two closest

neighboring atoms. The maximum distance in the 3D case is R. In addition, the maximum

energy span increases due to the same reason.

Potential wells are formed in all three configurations. Fig. 5 shows the comparison of the

potential wells formed in the 1D and 3D configurations. From Fig. 5(a), it is shown that

potential wells can be formed through 1D five-body configurations. This has not been seen

in the previous 1D calculations including two-body, three-body, and four-body calculations

[18]. In addition, the 3D configuration clearly shows a much deeper potential well. From Fig.

5(b), it is shown that the 3D five-body van der Waals interactions can produce a potential

well as deep as more than 1 MHz, which is about 20 times deeper than the deepest 1D

five-body potential well. In addition, one can see that there are adiabatic avoided crossings

and nonadiabatic crossings, or diabatic crossings. The size of the avoided crossing, or the

energy difference between the states involved at the crossing point, shows the strength of

the interaction between the coupled states. Specifically, greater energy spacing indicates

greater interaction strength. To form a stable molecule, greater adiabatic avoided crossings

are required. However, if we want greater forces, attractive van der Waals or repulsive van

der Waals forces, diabatic crossings are preferred.

We now consider another pair of states, and we again consider the dipole-blockade case.

Fig. 6 shows the five-body calculation for the following state, 4×37s+38s, which is strongly

coupled with 3 × 37s + 2 × 37p. The energy difference between those two states is about
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FIG. 4: (a1) and (a2) are the energy levels for the 1D five-body configuration as a function of the

internuclear spacing R as shown in Fig. 3(a). (a2) is a portion of (a1). (b1) and (b2) are the

energy levels for five atoms at the corners of a pentagon as shown in Fig. 3(b), and the length for

each side of the pentagon is R. (b2) is a portion of (b1). (c1) and (c2) are the energy levels for

five atoms: four atoms are on the four vertices of a tetrahedron and the fifth atom is at the center

of the tetrahedron, and the length for each side of the tetrahedron is R as shown in Fig. 3(c). (c2)

is a small portion of (c1).

103 MHz. In other words, the energy level of 3× 37s+2× 37p is 103 MHz greater than the

energy of 4× 37s+38s. Fig. 6(b) shows that the depth of the deepest potential is about 26

MHz, about a quarter of the energy spacing 103 MHz between the two coupled states, which

is more than 20 times deeper than deepest potential well calculated for the 4 × 38s + 39s
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FIG. 5: (a) The deepest potential well in the 1D five-body configuration. (b) The deepest potential

well in the 3D five-body configuration.

and 3 × 38s + 2 × 28p3/2 case. Compared the Fig. 4(c2) and Fig. 6(a), it is shown that

both figures have similar structures, which is caused by the fact that the dipole moments

in both cases are similar to each other, the only difference is the energy difference between

the two coupled states. Previous discussions show that by increasing the dimension, the

depth of the potential well will increase. This figure indicates that another way to form

a deeper potential well is to increase the energy spacing between the coupled states. In

addition, both Figs. 6 and 4 show that the potential wells are formed if the 3× ns+2× np

states are above the 4× ns + (n + 1)s. If both levels are reversed, the 4 × ns + (n + 1)s is

above the 3× ns+ 2× np, a potential peak is expected, and this has been proved through

numerical calculations. The interactions between 3× 40s+ 2× 40p and 4× 40s+ 41s have

been calculated. The energy difference between that pair of states is -137 MHz. In other

words, 4× 40s+41s is 137 MHz above the 3× 40s+2× 40p state. Fig. 7 shows the energy

level with the highest peak among all energy levels. A potential peak can be used to stop

atoms or investigate atom repulsion. In addition, a potential peak may be used to study

quantum tunnelling.

In conclusion, it has been shown that 1D, 2D, and 3D five-body van der Waals interactions

have been calculated. More than one MHz potential wells in certain configurations are

observed for the 3D 4 × 38s + 39s and 3 × 38s + 2 × 28p3/2 configuration. The potentials

shown in Figs. 5 and 6(b) can be tested in ultracold atoms. We are also trying to generalize

these models to room temperature atoms. Moreover, potential wells are observed for the 1D

five-body calculation, which has not been seen in fewer-body 1D calculations. In addition, as
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FIG. 6: (a) The energy levels calculated for the 3× 37s+ 2× 37p coupled with 4× 37s+ 38s. (b)

The deepest potential well in (a).
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FIG. 7: One of the energy levels calculated for the 3× 40s + 2× 40p coupled with 4× 40s + 41s.

the energy detuning increases, the depth of the potential wells increases. Moreover, potential

peaks are observed for some energy levels.
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