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Modeling and simulation is essential for predicting and verifying the behavior of fabricated quan-
tum circuits, but existing simulation methods are either impractically costly or require an unrealistic
simplification of error processes. We present a method of simulating noisy Clifford circuits that is
both accurate and practical in experimentally relevant regimes. In particular, the cost is weakly
exponential in the size and the degree of non-Cliffordness of the circuit. Our approach is based on
the construction of exact representations of quantum channels as quasiprobability distributions over
stabilizer operations, which are then sampled, simulated, and weighted to yield unbiased statisti-
cal estimates of circuit outputs and other observables. As a demonstration of these techniques we
simulate a Steane [[7,1,3]]-encoded logical operation with non-Clifford errors and compute its fault
tolerance error threshold. We expect that the method presented here will enable studies of much
larger and more realistic quantum circuits than was previously possible.

I. INTRODUCTION

Modeling and simulation of quantum circuits is indis-
pensable for evaluating the potential of quantum com-
puting devices and guiding their development. State-of-
the-art approaches to simulation are limited to circuits
involving either a relatively small number of qubits or
a highly restricted set of gates (e.g. error-free Clifford
gates). As the dynamics of a general quantum physi-
cal system are in the complexity class BQP, there is al-
most certainly no scalable method of simulating universal
quantum circuits on conventional computers. This is an
important issue for the ongoing development of quantum
computing technology, as the utility of modeling and sim-
ulation is likely to be severely limited when experimental
systems reach sizes significant for quantum computing.

Although the cost of simulating quantum circuits on
conventional computers is prohibitive in general, there
are important exceptions. In particular, Gottesman and
Knill showed that stabilizer circuits—circuits involving
only Clifford operations and Pauli measurements—can
be simulated efficiently on classical computers via stabi-
lizer propagation [1]. While these circuits are not uni-
versal for quantum computing, they are significant for
having a prominent role in quantum error correction [2].
Very large instances of these circuits can be simulated due
to the efficient scaling of stabilizer propagation in both
memory and run time, respectively, O(n2) and O(kn2)
for n qubits and k gates.

Physical realizations of stabilizer circuits often incur
errors as a result of imperfections in gate operation and
uncontrolled interactions with the environment. Sta-
bilizer propagation can be extended with Monte Carlo
techniques to account for errors modeled as probabilis-
tic mixtures of stabilizer operations. In this approach,
the behavior of the circuit is taken to be the average of
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many realizations of the circuit with random stabilizer er-
rors. However, many common error processes including
amplitude damping, over/under-rotation, and misaligned
rotation cannot be represented exactly as probabilistic
mixtures of stabilizer operations. Several groups have
investigated the honesty and accuracy of approximating
such error processes as probabilistic mixtures of stabi-
lizer operations [3, 4]. In some of the cases studied the
stochastic approximation was found to have little impact
on simulation results [4, 5], while in other cases it led to
predictions of circuit failure rates that were in error by
substantial factors [6].

We address the problem of simulating stabilizer circuits
with non-stabilizer errors by representing non-stabilizer
errors as quasiprobability distributions over stabilizer op-
erations. As we show in the Appendix, relaxing the usual
constraint that probabilities be non-negative permits an
exact representation of any quantum process (including
non-unitary processes, non-unital processes, and general
measurements) as a weighted sum of stabilizer opera-
tions. Our simulation method begins by representing
each gate in the circuit in such a way. The circuit behav-
ior is then estimated by a weighted average over realiza-
tions of the circuit with stabilizer errors randomly drawn
from each gate’s quasiprobability distribution. Thus our
method is a direct generalization of existing stochastic
stabilizer propagation methods to allow simulation of ar-
bitrary gates and errors. The price to be paid for full
generality is that the cost of simulation is generally expo-
nential in the circuit size. But critically, the coefficient of
the exponent depends on the degree of “non-Cliffordness”
of the circuit as measured by the negativity of the gates’
quasiprobability representations. For fault tolerance cir-
cuits in experimentally relevant regimes the exponential
growth is very weak, so that simulations of circuits with
hundreds of qubits are feasible.

Our approach complements the recent work of
Pashayan et al., who formalized the role of quasiprobabil-
ities in simulating quantum circuits [7]. Their work iden-
tified the significance of negativity in a distribution for
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determining the cost of simulation. This can be related
to the fact that interference between probabilities (i.e.
negativity) is a necessary condition for quantum compu-
tational speedup [8]. Others have shown that negativity
plays an important role in determining the complexity of
simulations involving quasiprobability distributions over
circuit input states [9]. While our approach is similar
in spirit to Pashayan et al., we have formulated circuit
simulation specifically in terms of the qubit stabilizer for-
malism and stabilizer circuits.

The paper is organized as follows: Sec. II briefly re-
views the existing theory of stabilizer circuit simulation
before presenting a representation of arbitrary quantum
channels as quasiprobability distributions over stabilizer
channels. In Sec. III, we discuss the scaling of Monte
Carlo simulations using the quasiprobability representa-
tion and describe its implementation in Sec. V. We then
demonstrate our method by simulating a Steane [[7,1,3]]-
encoded logical operation with amplitude damping errors
and computing the logical error probability. We offer fi-
nal remarks in Sec. VII.

II. STABILIZER CHANNEL DECOMPOSITION

Our simulation method is based on the exact repre-
sentation of quantum channels as quasiprobability dis-
tributions over stabilizer channels. Quantum channels
represent a very broad class of physical processes includ-
ing ideal circuit operations and error processes as well
as measurements [10]. Mathematically, a quantum chan-
nel is a linear mapping on the space of quantum states
(the set of positive-semidefinite trace-1 operators). We
denote the action of a quantum channel A on a state ρ
as either A(ρ) or equivalently A~ρ, where ~ρ denotes the
vectorization of ρ. Channels should be contrasted with
operators, which may act on states from the left or right.
The channel corresponding to conjugation by an opera-
tor A (ρ → AρA†) will be denoted by the same symbol
in bold (A).

The stabilizer formalism concerns a particularly use-
ful set of quantum states and operations that originally
arose in studies of error correction in circuits with Pauli
errors [1]. An n-qubit stabilizer state is a fixed point of
n independent n-qubit Pauli operators. Stabilizer states
include the eigenstates of Pauli operators, as well as
many highly entangled states useful for quantum comput-
ing and error correction. We call any quantum channel
that maps stabilizer states to stabilizer states a stabilizer
channel. The set of stabilizer channels includes Clifford
channels (channels corresponding to the unitary opera-
tions known as Clifford operations) as well as non-unitary
channels, i.e. channels that are many-to-one on the space
of stabilizer states.

The great utility of the stabilizer formalism in the con-
text of quantum error correction has prompted a num-
ber of authors to consider how it might be leveraged
in broader contexts. Aaronson and Gottesman showed

how arbitrary pure states and arbitrary unitary operators
could be expressed as complex superpositions of stabilizer
states and Pauli operators, respectively, thereby admit-
ting simulation of arbitrary circuits [11]. They provided
a worst-case analysis in which the cost of simulation in-
creases by a factor of 16m for each non-Clifford m-qubit
gate in the circuit. Garćıa and Markov introduced the
concept of stabilizer frames to represent arbitrary pure
states more compactly and demonstrated their effective-
ness compared to existing simulation methods [12]. Yo-
der developed a similar representation for arbitrary states
(including mixed states), consisting of a density operator
in a stabilizer-defined basis [13]. Most recently, Brayvi
and Gosset developed techniques involving linear combi-
nations of stabilizer states to simulate circuits involving
Clifford gates and limited numbers of T gates [14].

Others have taken the approach of simulating circuits
with gates expressed as probabilistic mixtures (as op-
posed to complex superpositions) of stabilizer opera-
tions [3–5, 15]. Monte Carlo simulation of these circuits
has a cost proportional to the cost of stabilizer propaga-
tion, which is between linear and quadratic in the number
of qubits [11]. However, important quantum operations
such as the T gate, as well as realistic errors such as
amplitude damping and small unitary errors, cannot be
exactly represented as probabilistic mixtures of stabilizer
operations, thereby limiting the applicability of that ap-
proach.

In this work we generalize the stochastic approach by
relaxing the constraint that the weights of the stabi-
lizer operations be non-negative. The following lemma
is proved in Appendix A:

Lemma 1. Any trace-preserving quantum channel on
n qubits can be expressed as a real linear combination
of Clifford channels and Pauli reset channels on those
qubits. If the channel is unital, Clifford channels suffice.

Here a Pauli reset channel refers to the process of measur-
ing a Pauli operator and then conditionally performing
a Clifford operation to place the qubit into a prescribed
eigenstate of the Pauli operator [15]. An example is the
case of initializing a qubit to the |0〉 state by measuring
the Z eigenvalue and performing anX operation if the−1
eigenvalue was obtained. While there are more compli-
cated stabilizer channels that could also be considered—
for instance channels corresponding to multiple rounds of
alternating Pauli measurements and conditional Clifford
operations—they are not considered in this work.

We define a stabilizer channel decomposition of a quan-
tum channel χ as an expression of the form

χ =
∑
i

qiSi (1)

where each Si is a stabilizer channel and each qi is a
real scalar. There are many different ways to decom-
pose a given channel; however, every decomposition of
a trace-preserving channel has the property

∑
i qi = 1,

which is a consequence of the fact that each constituent
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channel Si is also trace-preserving. Our representation
of arbitrary quantum channels as real linear combina-
tions of stabilizer channels (Clifford plus measurements)
should be contrasted with the complex linear combina-
tions of Pauli channels used by Aaronson and Gottesman
to represent unitary channels [11]. Notably, our stabi-
lizer channel decomposition can represent both unitary
and non-unitary channels.

Each term in a stabilizer channel decomposition indi-
vidually describes a physical process. Only when all the
coefficients are non-negative can they be interpreted as
probabilities of a stochastic physical processes. More gen-
erally, the coefficients of the stabilizer decomposition in
Eq. (1) may be viewed as a quasiprobability distribution,
i.e., a distribution in which some of the ‘probabilities’ are
negative. The use of quasiprobability distributions to
describe quantum mechanical phenomena traces back to
the development of the Wigner function [16], wherein the
appearance of a negative value indicates non-classical be-
havior [17]. More recently, quasiprobabilities have been
used to express quantum gates and circuits with the find-
ing that negative coefficients signify quantum behavior
and strongly affect the complexity of simulating such cir-
cuits [7, 18]. Accordingly, an important metric of a stabi-
lizer decomposition is the total magnitude of its negative
coefficients, or negativity :

η ≡
∑

i: qi<0

|qi| . (2)

For a trace-preserving channel the negativity of a de-
composition is directly related to its 1-norm:

∑
i |qi| =

1 + 2η ≥ 1. As will be elaborated in Section IV, the time
complexity of our simulation method is strongly depen-
dent on the 1-norms (and hence the negativities) of the
decompositions of the circuit operations.

As a demonstration of the stabilizer channel decom-
position, we present two examples of quantum channels
that do not admit exact representations as probabilistic
mixtures of stabilizer operations but may be represented
exactly by (quasiprobability) stabilizer channel decompo-
sitions. In these examples, I denotes the identity channel,
Z denotes the channel corresponding to conjugation by
the Pauli operator Z, and S denotes the channel corre-
sponding to conjugation by the phase gate S =

√
Z.

Example 1. The channel Zθ corresponding to the co-

herent rotation ρ → ZθρZ
†
θ , where Zθ =

[
1 0
0 eiθ

]
, can

be decomposed as

Zθ =
1 + cos θ − sin θ

2
I+

1− cos θ − sin θ

2
Z+sin θS. (3)

For 0 ≤ θ ≤ π/4, this decomposition has the least neg-
ativity of any exact decomposition. A prominent special
case is θ = π/4, which corresponds to the T gate:

T =
1

2
I +

(
1

2
− 1√

2

)
Z +

1√
2
S. (4)

Example 2. The amplitude damping channel

Aγ(ρ) = E0ρE
†
0 + E1ρE

†
1 (5)

with E0 =

[
1 0
0
√

1− γ

]
, E1 =

[
0
√
γ

0 0

]
, and damping

parameter 0 ≤ γ ≤ 1 can be decomposed as

Aγ =
(1− γ) +

√
1− γ

2
I +

(1− γ)−
√

1− γ
2

Z + γRZ .

(6)

where the coefficient of Z is negative and approximately
−γ/4 for γ � 1. This decomposition has the least nega-
tivity of any exact decomposition.

As stated, Lemma 1 applies to channels involving a
fixed number of qubits, but the conclusion also applies to
channels acting on any finite-dimensional quantum state
space. This is because a channel that maps states in a d-
dimensional Hilbert space to states in a d′-dimensional
Hilbert space can be embedded in a Hilbert space of
n = dlog2 max(d, d′)e qubits, to which Lemma 1 directly
applies. Furthermore, the lemma can be extended to pro-
cesses with observable outcomes (i.e. measurements). A
well-known result of Neumark is that any quantum pro-
cess with m possible outcomes can be cast as a unitary
operation involving the system in question and an aux-
iliary system with m states, followed by projective mea-
surement on the auxiliary system [19, 20]. It then follows
from Lemma 1 that such a process can be expressed as
a linear combination of Clifford channels acting on the
original system plus dlog2me auxiliary qubits, followed
by Pauli measurements of the auxiliary qubits. These
conclusions are summarized by the following theorem:

Theorem 1. Any quantum process in a d-dimensional
Hilbert space with m possible outcomes can be expressed
exactly as a quasiprobability distribution over stabilizer
channels on dlog2 de+dlog2me qubits, where the stabilizer
channels consist of (1) Clifford operations and (2) Pauli
measurements followed by Clifford operations conditioned
on measurement outcomes.

For any number of qubits n, the number of Clifford
channels substantially outnumbers the dimension of the
channel space. Thus there are many different ways to
decompose a given channel. Which way is best will de-
pend on the application. Decompositions with the fewest
terms may be optimal for analyses that involve a com-
plete enumeration of stabilizer terms. For our simulation
method outlined below, decompositions with the small-
est 1-norm are optimal as they minimize the time cost.
Finding the stabilizer channel decomposition of an arbi-
trary quantum channel χ that minimizes the 1-norm can
be posed as the linear programming problem

min
q

∑
i

|qi| (7a)
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subject to

χ =
∑
i

qiSi (7b)

where i indexes the Pauli reset and Clifford stabilizer
channels, qi ∈ R, and Si is the i-th stabilizer channel.

For the case of n = 1, the linear programming prob-
lem in Eq. (7) involves a system of 16 equations in 30
variables (one for each of 24 Cliffords and one for each
of 6 Pauli resets). For n = 2 there are 256 equations
in 11550 variables (11520 Cliffords and 30 Pauli resets),
where each equation is sparse with exactly 16 nonzeros
when channels are expressed as Pauli transfer matrices
[21]. Many relevant quantum logic gates as well as phys-
ical noise models may be expressed in terms of 1- or 2-
qubit interactions. The 2-qubit channel models may be
composed together to generate models for larger channels
as needed. However, for n > 2, the system of equations
quickly becomes impractically large with almost 93 mil-
lion variables for n = 3. This same difficulty arises for
approaches that use a positive decomposition to repre-
sent the channel.

III. MONTE CARLO SIMULATION OF
STABILIZER CHANNEL DECOMPOSITIONS

We now consider the problem of calculating the ex-
pectation value for an observable φ on the final state of
a quantum circuit. Generalization to the case of multi-
ple observables is straightforward. We model an initial
state ρ acted upon by a sequence of quantum channels
χ(1), . . . ,χ(K) that express the circuit gates and error
processes. The purpose of the simulation is to compute
the expectation value

F = ~φ†χ(K) · · ·χ(1)~ρ. (8)

We assume that each channel χ(k) has been decomposed
into a weighted sum of stabilizer channels as χ(k) =∑
i q

(k)
i Si, cf. Eq. (7). Similarly, we assume that the

initial state ρ and the observable φ have been decom-
posed into weighted sums of stabilizer states σi [12, 13]:

ρ =
∑
i q

(0)
i σi and φ =

∑
i q

(K+1)
i σi.

With respect to these stabilizer decompositions, the
expectation value F may be expressed as

F =
∑
iK+1

· · ·
∑
i0

q
(K+1)
iK+1

· · · q(0)i0
(
~σ†iK+1

SiK · · ·Si1~σi0
)
(9)

=
∑
i

q(i)f(i) (10)

where i = (i0, . . . , iK+1), q(i) = q
(K+1)
iK+1

· · · q(0)i0 , and

f(i) = ~σ†iK+1
SiK · · ·Si1~σi0 . The expression for f(i)

describes a stabilizer circuit, hence each f(i) can be

computed efficiently. However, explicit computation of
Eq. (9) is impractical as the number of terms is generally
exponential in K. Instead, F is estimated by sampling
terms from the sum. Let p be any probability distri-
bution over i such that p(i) > 0 when q(i) > 0, and let
i(1), . . . , i(N) denote values of i drawn independently from
p. Then

F̃N =
1

N

N∑
s=1

q(i(s))f(i(s))

p(i(s))
(11)

is an unbiased estimate of F , i.e. 〈F̃N 〉 = F . Provided

p can be sampled efficiently, F̃N can be computed ef-
ficiently. For reasons discussed in the next section, we

take p(i) = p
(K+1)
iK+1

· · · p(0)i0 where p
(k)
i ≡ |q(k)i |/

∑
j |q

(k)
j |.

The complete simulation procedure is summarized in Al-
gorithm 1.

Algorithm 1 Observable estimation in terms of
stabilizer states and stabilizer channels.

Given: An initial state ρ with stabilizer state decomposition

ρ =
∑

i q
(0)
i σi

Given: A sequence of channels χ(1), . . . ,χ(K) with stabilizer

channel decompositions χ(k) =
∑

i q
(k)
i Si

Given: An observable φ with stabilizer state decomposition

φ =
∑

i q
(K+1)
i σi

Given: The number N of runs to simulate
Let p

(k)
i ≡ |q(k)i |/

∑
j |q

(k)
j | for k = 0, 1, . . . ,K + 1.

F̃ ← 0
for r = 1 to N do

for k = 0 to K + 1 do
Select ik with probability p

(k)
i

end for
ρ∗ ← σi0

for k = 1 to K do
ρ∗ ← Si(ρ∗)

end for
w ← q

(0)
i0
· · · q(K+1)

iK+1
/p

(0)
i0
· · · p(K+1)

iK+1

F̃ ← F̃ + w~σ†iK+1
~ρ∗/N

end for
Return: F̃ ≈ ~φ†χ(K) · · ·χ(1)~ρ

IV. PERFORMANCE AND SCALING

The precision of Monte Carlo simulation can be quan-
tified by the variance of the estimator F̃N :

Var F̃N ≡
〈
|F 2|

〉
− 〈F 〉2 (12)

=
1

N

(〈
|qf/p|2

〉
− |F |2

)
=

1

N
Var F̃1. (13)

(Here the random variable underlying the expectation
values is the argument i common to the functions p, q,
and f .) The number of samples N needed to achieve a

specified variance scales as Var F̃1, which is determined
by the nature of the circuit being simulated as well as the
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choice of the sampling distribution p. The minimal value
of Var F̃1 is obtained by sampling from the distribution
p∗(i) = |q(i)f(i)| /

∑
j |q(j)f(j)|. However, computing

p∗ is typically as difficult as computing F itself. Instead,
we use a distribution that holds to the key principle that
p should be large (small) when |qf | is large (small). Our
choice for p described above is the product of the optimal
sampling distributions for the individual channels, which
simultaneously satisfies this key principle and remains
easy to sample from.

Let gk ≡
∑
i q

(k)
i denote the 1-norm of the kth stabi-

lizer decomposition (k = 0, 1, . . . ,K + 1). Using the fact
that

q(i)

p(i)
= sign

(
q
(K+1)
iK+1

· · · q(0)i0
)
gK+1 · · · g0 (14)

the variance can be expressed as

Var F̃N =
1

N

(
g2K+1 · · · g20

〈
|f |2

〉
− |F |2

)
. (15)

Now, suppose f(i) were replaced everywhere by f(i) −
1
2 . This would shift the expectation value of F̃N by a
constant ∆, but would not alter its variance. Thus

Var F̃N =
1

N

(
g2K+1 · · · g20

〈∣∣f − 1
2

∣∣2〉− |F −∆|2
)

(16)

≤
g2K+1 · · · g20

N

〈∣∣f − 1
2

∣∣2〉 . (17)

Recall that f(i) is the projection of one stabilizer state
onto another. Since such a projection lies in the interval
[0, 1], we have |f(i)− 1

2 | ≤
1
2 for all i. It follows that

Var F̃N ≤
g2K+1 · · · g20

4N
(18)

which is in fact a tight bound. To make the scaling of
N with circuit size more explicit, we define gin ≡ g0,
gobs ≡ gK+1, and gch ≡ maxk=1,··· ,K gk ≥ 1. Then the
number of simulations N needed to estimate F to a given
statistical uncertainty ε is

N ≤ g2ing
2
obsg

2K
ch

4ε2
. (19)

A similar bound can be obtained using Hoeffding’s in-
equality, which for the present problem is

Pr(|F̃N − F | > ε) ≤ exp

(
− 2Nε2

g2ing
2
obsg

2K
ch

)
(20)

Rearranging this expression yields a bound on the num-
ber of simulations N needed to ensure that the proba-
bility of obtaining an estimate with error ≤ ε is at least
1− δ:

N ≤ g2ing
2
obsg

2K
ch

2ε2
ln

2

δ
(21)

Equations (19) and (21) indicate that simulation cost
as measured by the number of runs required is generally
exponential in the circuit size K. However the base gch
is often close to 1. In particular, if each channel happens
to be exactly representable as a positive sum of stabilizer
channels, then gch = 1 and the variance does not increase
with K. In that case our simulation method reduces to
existing methods that simulate circuits as probabilistic
mixtures of stabilizer circuits. For comparison, the 1-
norm for optimal decomposition of the T gate given in
Eq. (4) is

√
2. Each T gate doubles the variance of the

estimator and hence doubles the cost of obtaining an es-
timate of given precision. The reason the variance grows
exponentially when the decompositions involve negative
coefficients is that the expected value is obtained as an
interference between much larger terms of opposite sign.
Any imbalance between the number of sampled positive
terms versus the number of sampled negative terms re-
sults in a relatively large error in the estimated value.
This situation may be seen as a version of the well-known
“sign problem” encountered in calculations of the prop-
erties of fermionic systems [22].

The targeted application is simulation of a circuit of
stabilizer gates with weak (i.e., rare and/or close to iden-
tity) non-stabilizer errors. For the error channels consid-
ered in the examples, the negativity of the stabilizer de-
compositions are within small factors of commonly used
error measures, such as infidelity and trace distance. We
thus have g2ch ∼ 1 + pNC where pNC � 1 may be loosely
interpreted as the per-gate probability of a non-Clifford
error. The number of runs needed to obtain a fixed accu-
racy estimate scales as g2Kch ∼ eKpNC , which does not in-
crease rapidly until KpNC & 1. Thus as a rule-of-thumb,
our simulation method is efficient for KpNC . 1. For ex-
ample, if the per-gate probability of a non-Clifford error
is ∼ 10−3, using our method one can accurately and effi-
ciently simulate circuits of at least ∼ 1000 gates. In con-
trast, simulations using positive-mixture approximations
can be guaranteed accurate only for KpNC � 1. Our
method therefore makes it feasible to accurately simu-
late quantum circuits for which efficient stochastic meth-
ods may be significantly inaccurate. Additionally, our
method supports a continuous trade-off between cost and
model accuracy through the choice of how much negativ-
ity is used to model non-Clifford channels.

We have so far discussed the simulation cost in terms
of the number of runs needed to obtain an estimate of
specified precision The time cost of each run is just that
of stabilizer propagation: proportional to the number of
gates, and between linear and quadratic in the number of
qubits [11]. There is additionally the cost of decompos-
ing the initial state, the channels representing the noisy
gates of the circuit, and the final observable. If there is a
fixed 1- or 2-qubit error model for each type of gate and
there are only a few types of gates, these decompositions
can be performed once up front with negligible amor-
tized cost. Finally, we observe that if there are multiple
observables to be computed, only the last step of each cir-
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cuit simulation needs to be repeated for each observable.
Thus the total time cost for simulating a circuit consist-
ing of n qubits, K quantum channels, and M observables
scales as O(n2(K + M)(1 + pNC)K). The space cost is
also essentially that of stabilizer propagation, O(n2) [1].
In practice this simulation method is time-limited rather
than memory-limited. As with other Monte Carlo meth-
ods, it is embarrassingly parallel and therefore the time
cost can be greatly reduced with parallel computation.

V. IMPLEMENTATION

We demonstrate the accuracy of this stabilizer de-
composition using a numerical implementation of Algo-
rithm 1. Our implementation relies on a heavily modified
version of the CHP stabilizer circuit simulator [11], which
propagates quantum states represented as a tableau of
signed Pauli operators. Our modifications offer support
for non-unital channels by implementing the Pauli Z re-
set gate as well as methods to efficiently compute the
projection of a stabilizer state onto any given stabilizer
subspace. As an added benefit, support for measurement
of multi-qubit Pauli operators has a time cost O(n2) with
the resulting projection function scaling as O(n3). This
is comparable with the state of the art methods from
Cross et al. [23] but with the advantage that an interme-
diate circuit does not need to be synthesized to reduce
the tableau to a canonical form.

The modified stabilizer propagation kernel is embed-
ded in our simulator software responsible for implement-
ing circuit scheduling, fault injection, and error correc-
tion logic. The CHP simulator is repeatedly executed
to collect the statistics needed to estimate system ob-
servables by Monte Carlo sampling. Within the simula-
tor, a parser decomposes quantum circuits into a discrete
schedule of gates acting on addressable qubits. We use
the well-known QASM pseudo-code notation to specify
the input circuit and the internal representations of the
simulator [24]. A gate scheduler modifies this circuit de-
scription to add subcircuit boundaries, i.e., timestamps,
to identify the order in which gates act on qubits. Along
each boundary, we insert noise operators that model the
errors caused by each subcircuit. The stabilizer decom-
position for each gate and noise operator is generated and
stored by the simulator.

When an instance of a circuit is simulated, each gate
is represented by an element from its stabilizer decom-
position. These elements are chosen randomly with re-
spect to the probability distribution determined by the
stabilizer decomposition coefficients. An instance of a
stabilizer circuit is used as a Monte Carlo sample for the
non-stabilizer channel. We translate each stabilizer ele-
ment in the circuit instance into a sequence of C, H, P,
measure, and reset operations. The resulting sequence of
CHP operations is simulated using the stabilizer propa-
gation kernel. In the simulations of the Steane code de-
scribed below, the simulator frequently encounters gates

0 10 20 30 40 50
# rotations

0.5

0.6

0.7

0.8

0.9

1

1.1

hY
+
i

FIG. 1: Monte Carlo simulation of a qubit undergoing re-
peated coherent rotations, as revealed by its projection onto
the +1 eigenstate of the Pauli Y operator. (dashed black
line) The analytical result 〈Y +〉 = (1 + sin θ)/2. (solid red
line) Estimate using an exact stabilizer decomposition of the
rotation channel. (dash-dot blue line) Estimate using an ap-
proximate positive decomposition. Shaded bands cover the
area one standard deviation above and below the estimates.

conditioned upon previous measurement outcomes, i.e.,
syndromes. In our implementation, syndromes are re-
turned by the propagation kernel to the circuit simulator
and decoded using a pre-computed lookup table. The
gate scheduler prepares the subcircuit that implements
the corresponding error correction operation and pushes
this new gate sequence to the propagation kernel.

For the numerical demonstrations reported here, we
focus on estimating the infidelity of a qubit logically en-
coded using a quantum-error correction code and stored
in the presence of physical noise. Therefore, we conclude
each simulation instance by computing the projection of
the final state onto a specified (error-free) code state. For
calculating this fidelity, we project the simulated noisy
state onto the ideal state prepared by the noiseless cir-
cuit. We accumulate a running average of the fidelity
with the i-th result weighted by the factor qi, as deter-
mined by the coefficients of the i-th randomly selected
noisy, circuit instance. A complete simulation repeats
the process of sampling the stabilizer channels, propa-
gating the circuit instance, and calculating the desired
observable N times, where the number of samples N is
specified as input.

We have verified the correctness of our numerical sim-
ulator by comparing its results for several test circuits
with exact results obtained from an independent density
matrix simulator. The results from Monte Carlo simula-
tion were observed to converge to the results of the cor-
responding density matrix simulation for all test cases
provided sufficient samples were collected. As a proof-of-
principle example that also illustrates the advantages of
this approach, we simulated a simple circuit in which a
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qubit initially in the +1 eigenstate of the Pauli X opera-
tor is rotated in 50 equal steps to the +1 eigenstate of the
Pauli Y operator. Each rotation operator Zπ/100 is a non-
stabilizer operation with an exact decomposition given
by Eq. (3). The expected value of Y + was computed at
each time step (i.e. after each rotation) and added to a
running average, yielding a Monte Carlo estimate of the
time dependence of 〈Y +〉. A typical outcome for 10,000
Monte Carlo runs is shown in Fig. 1). In this case the
final value of 〈Y +〉 was estimated as 1.006±0.027, which
is in statistical agreement with correct value (1). While
it might seem conspicuous that the estimated probability
exceeds 1, the fact that the estimator is unbiased means
that if the estimate has any chance of being less than the
mean it must also have a chance of exceeding the mean.

For comparison, we also simulated the circuit using the
approximate decomposition Zπ/100 ≈ (1−sin θ)I+sin θS,
which is the positive decomposition that best reproduces
the initial evolution of 〈Y +〉. In a typical run of 10,000
samples we obtained an estimate with mean 0.602 and
standard deviation 0.003 (Fig. 1. Clearly, the use of an
approximate positive decomposition in this case yields
a strongly biased estimator. In addition, the estima-
tor’s precision is a very misleading indicator of its accu-
racy. We further observed that the estimated state using
the exact channel decomposition remains approximately
pure, whereas the estimated state using the approximate
positive decomposition becomes more mixed with each
step.

VI. SIMULATIONS OF STEANE [[7,1,3]]
CIRCUITS

We used the numerical implementation of Algorithm
1 to investigate the logical error rate for a single-level
encoding of the Steane [[7,1,3]] quantum error correction
code in the presence of either depolarizing or amplitude
damping noise. We used the former noise model as a
baseline test case since the depolarizing noise may be
represented as a non-negative mixture of stabilizer oper-
ators. It is possible to simulate depolarizing noise using
conventional stabilizer propagation and we used this as a
check for our numerical implementation. We used the lat-
ter case of amplitude damping as a test of the applicabil-
ity of our new method for simulating weakly non-Clifford
noise model as given in Eq. (6). To confirm the correct
implementation of these noise models in our algorithm,
we simulated each noise channel on various 1-qubit input
states and found that results matched analytical predic-
tions.

The input to the Steane circuit simulations was a
single-qubit state to be prepared as a logical qubit us-
ing a noiseless encoding circuit. The encoding was fol-
lowed by a noisy logical identity operation during which
noise may occur on any qubit. Error correction was then
performed consisting of syndrome measurement, decod-
ing, and applying the corresponding correction operation.

These correction operations were assumed to be noisy as
well. To calculate the logical fidelity of this operation,
an additional round of noiseless error correction was per-
formed and the fidelity of the resulting output state was
taken with respect to the noiseless, logically encoded in-
put. The specific encoding, syndrome measurement, and
decoding circuits used in this numerical study are pre-
sented in Appendix B.

We calculated the logical error of the Steane encoded
state as the probability that a noisy logical operation
followed by noisy QEC operations would yield an unre-
coverable error in the logical state. Therefore, we did
not include noise within the encoding circuit in order to
ensure the input logical state is error-free. In addition,
following the noisy error correction operation in Fig. 2,
we performed a second round of noiseless error correc-
tion. The purpose of the second round of QEC was to
remove any correctable errors in the logical state. The
logical error was then computed as the infidelity between
the two logical states. The infidelity was calculated for
six different input states, specifically the eigenstates of
the Pauli operators X,Y, Z, and averaged. In the discus-
sion of our results, “infidelity” always refers to the output
state infidelity averaged over the six Pauli input states.

Our first example considers the depolarizing noise
model, in which the channel

D(ρ) = (1− p)I +
p

3
(X + Y + Z) . (22)

is applied to each qubit involved in a noisy operation.
The infidelity Ī = 1− F̄ of a qubit under this channel is
2p/3. Fig. 3 shows the estimated infidelity of the logical
(Steane-encoded) identity operation as a function of the
physical (1-qubit) infidelity. The solid line is the esti-

mate Φ̃; the shaded band marks the region Φ̃ ± ε where
ε is the standard deviation of Φ̃ estimated from the sam-
ple variance. Our simulations indicate that the logical
infidelity is less than the physical infidelity (shown by
a dashed black line) when the physical infidelity is less
than approximately 2.7×10−4 (p . 4×10−4). This result
agrees very well with the average level-1 pseudo-threshold
computed in [4] (row “DC” of Table VII therein).

Our second example considers the amplitude damping
noise model, wherein the channel A defined in eq. (5)
is applied to each qubit involved in a noisy operation.
For our simulations we used the stabilizer decompo-
sition given by Eq. (6), whose negativity is approxi-
mately −γ/4, where γ ranges from 0 to 1. For γ � 1
the infidelity of this channel is Ī ≈ γ/3, which was
obtained the relation F̄ = (2FA,I + 1)/3 [25], where

FA,I = (1 +
√

(1 − γ))2/4 is the fidelity of the pro-
cess matrices for channels A and I. Fig. 3 shows the
estimated logical infidelity as a function of the physi-
cal infidelity under the amplitude damping noise model.
Again, the solid line denotes the estimate, the shaded
band shows the estimated uncertainty, and the dashed
line shows the physical infidelity. The slight bend in the
logical infidelity appears to be an artifact of statistical



8

Prepare 
Encoded 

State 

Noisy 
NOP 

(optional) 
Noisy Error 
Correction 

Ideal Error 
Correction 

Calculate 
| 𝜓 𝜙 |2  

Assessment of Logical Error Noisy Logical Operation Reference 

|𝜙〉 |𝜓〉 

FIG. 2: Block structure of the circuit simulated as demonstration of our simulation method. The circuit prepares a reference
logical state in the Steane [[7,1,3]] encoding. The encoded state is then subjected to errors, and optionally, a round of noisy
error correction. The logical error of the resulting state is obtained by removing correctable errors with a round of error-free
error correction, then projecting the result onto the originally encoded state. Details of the subcircuits, including specific gates
and locations of error insertion, are provided in Appendix B.
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FIG. 3: (sold blue line with shaded uncertainty band) Esti-
mated infidelity of a Steane [[7,1,3]] logical identity operation
as a function of physical qubit depolarization. The circuit
implementing the logical operation is specified by Fig. 2. For
comparison, the physical infidelity is shown by the dashed
black line.

fluctuations. The logical infidelity is less than the phys-
ical infidelity when the latter is less than approximately
2.9× 10−4 (γ . 9× 10−4). This is about a factor of two
greater than the pseudo-threshold estimated by Gutierrez
et al. for a similar circuit [4]. This difference may be at-
tributed to several differences in our approach: Whereas
we use majority vote when three rounds of syndrome ex-
traction are performed, Gutierrez et al. rely on whatever
results arises from the third round. In addition, they use
the trace distance as the basis for threshold calculations
and average over a larger set of input states.

1 2 3
physical infidelity #10-4

10-6

10-5

10-4

10-3

lo
gi

ca
l i

nf
id

el
ity

FIG. 4: (sold blue line with shaded uncertainty band) Esti-
mated infidelity of a Steane [[7,1,3]] logical identity operation
as a function of physical qubit amplitude damping. The cir-
cuit implementing the logical operation is specified by Fig. 2.
For comparison, the physical infidelity is shown by the dashed
black line.

VII. CONCLUSION

Modeling and simulation play an important role in ver-
ifying and validating quantum information technologies.
We have presented a new method for simulating arbitrary
quantum circuits that leverages the efficiency of stabilizer
propagation and Monte Carlo sampling. A key aspect
of this method is that it offers an exact representation
of the circuit described by quasiprobability distributions
over efficiently simulatable operations. The cost of this
simulation method depends smoothly on the negativity
of the quasiprobability distributions, which may serve as
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a measure of their non-Cliffordness. Consequently, this
simulation method is particularly well suited for studying
quantum error correction circuits with weak non-Clifford
noise models. A promising application is the study of co-
herent error models which can be expressed exactly and
simulated using our methods. Coherent errors in quan-
tum error correction have recently shown interesting re-
sults [26–28].

Unbiased Monte Carlo simulation of the stabilizer
channel decomposition offers several convenient features
over existing simulation methods. This includes a mem-
ory scaling that is polynomial in circuit size while main-
taining an exact description of the quantum circuit. The
Monte Carlo sampling method is highly parallelizable
and portable to large-scale distributed computing envi-
ronments. In addition, the time scaling is controllable
via the number of samples requested to achieve a de-
sired estimator variance. Finally, by limiting the amount
of negativity allowed in the quasiprobability representa-
tions of circuit operations, the trade-off between simu-
lation accuracy and efficiency is adjustable. Quantifying
this trade-off is an important direction for future work to
better understanding the relationship between the nature
of a quantum channel and its optimal quasiprobability

representation. Future work will also include an inves-
tigation into efficient methods for obtaining optimal or
near-optimal stabilizer decompositions of quantum chan-
nels involving two or more qubits.
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Appendix A: Clifford Decomposition

We extend the argument made in Ref. [29] to prove
Theorem 1, which states that any trace-preserving quan-
tum channel can be expressed as a real linear combi-
nation of stabilizer channels and, specifically, Clifford
channels and Pauli measure-reset channels. Let Pn de-
note the set of unsigned n-qubit Pauli operators and let

1(P ′,P ) denote the (generally unphysical) channel that
maps P ∈ Pn to P ′ ∈ Pn and maps every other ele-
ment of Pn to 0. Since Pn is a basis for n-qubit states,

{1(P ′,P )} is a basis for the space of n-qubit channels. We
will show that each basis channel can be written as a real
linear combination of stabilizer channels, and thus that
any quantum channel can be expressed as such a linear
combination.

We use the fact that each non-identity operator P ∈ Pn
commutes with exactly half of the elements of Pn and
anticommutes with the remaining elements. Thus

∑
Q∈Pn

JQ,P K =

{
4n P = I⊗n

0 else
(A1)

where JQ,P K ≡ 1 (−1) in the case that Q commutes
(anticommutes) with P . Furthermore, JQ,P KJQ,P ′K =
JQ,PP ′K which gives

∑
Q∈Pn

JQ,P KJQ,P ′K =

{
4n P = P ′

0 else
. (A2)

Consider the linear combination of stabilizer channels

1

4n

∑
Q∈Pn

JP,QKQ (A3)

where Q is the channel corresponding to operator Q. We
have

1

4n

∑
Q∈Pn

JP,QKQ(P ′) =
1

4n

∑
Q∈Pn

JQ,P KQP ′Q†

= P ′
1

4n

∑
Q∈Pn

JQ,P KJQ,P ′K (A4)

=

{
P ′ P ′ = P

0 else
(A5)

= 1(P,P ). (A6)

The expression on the left is thus a stabilizer decompo-
sition of 1(P,P ).

We now obtain a decomposition of 1(P ′,P ) where P ′ 6=
P and P, P ′ 6= I⊗n. Let C be any Clifford channel that
maps P to P ′. Such a channel always exists. Then

C1(P,P )(P ′′) =

{
P ′ P ′′ = P
0 else

}
= 1(P ′,P ). (A7)

To obtain a channel of the form 1(P,I⊗n) where P 6= I⊗n,
let RP denote a channel that sets the qubits to a +1
eigenstate of P . This may be implemented as a measure-
ment of P conditionally followed by a Clifford channel
NP that maps P to −P , where NP is applied only in
the case that measurement yielded the −1 eigenvalue.
Using the fact that (I⊗n±P )/2 is the projector onto the
±1 eigenspace of P , we have

RP (I⊗n) =
I⊗n + P

2
I⊗n

I⊗n + P

2
+

NP
I⊗n − P

2
I⊗n

I⊗n − P
2

(A8)

=
I⊗n + P

2
+ NP

I⊗n − P
2

(A9)

= I⊗n + P. (A10)

Then

RP1
(I⊗n,I⊗n)(P ′) =

{
I⊗n + P P ′ = I⊗n

0 P ′ 6= I⊗n
(A11)

yields the decomposition 1(P,I⊗n) = RP1
(I⊗n,I⊗n) −

1(I⊗n,I⊗n).
Summarizing, we have

1(P ′,P ) =
1

4n

∑
Q∈Pn

JP,QKCQ (A12)

1(P ′,I⊗n) =
1

4n

∑
Q∈Pn

(RP ′ − 1)Q (A13)

where P, P ′ ∈ Pn with P 6= I⊗n, C is any Clifford chan-
nel that maps P to P ′, and RP is any channel that resets
P to a +1 eigenvalue. Each of the expressions above is
clearly a linear combination of stabilizer channels, where
each term is a product of at most one Pauli measurement
and at most two Clifford operations. All that remains

are channels of the form 1(I⊗n,P ), and we do not need to
decompose these since a trace-preserving channel cannot
have such a channel as a component. (If it did, the trace-
1 states (I⊗n+P )/2 and (I⊗n−P )/2 would map to states
of unequal trace.) Thus the space of trace-preserving n-
qubit channels is spanned by the set of n-qubit stabilizer
channels.

Appendix B: Quantum Circuits for Numerical
Simulation

We present the quantum circuits used for the numer-
ical results presented in Sec. VI. This includes the en-
coding and error correction subcircuits for the Steane
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[[7,1,3]] code [30], which corresponds to the functional
blocks shown in Fig. 2. The first two blocks in that fig-
ure correspond to the subcircuits shown in Figs. 5 and
6, respectively. The block “Error Correction” in Fig. 2
consists of the six syndrome extraction circuits, which
correspond to Figs. 7–12 below. Syndrome extraction is
followed by a recovery operation (not shown) prescribed
by the measurement results. In the case of noisy error
correction, the syndrome extraction circuit is repeated

three times; a correction is applied only if at least two of
syndromes are the same. In these diagrams, MR denotes
a measurement in the computational basis followed by a
reset of the qubit to the |0〉 state. Dashed vertical lines
denote the boundaries at which simulated errors occur.
At such times, each qubit is independently subjected to
either amplitude damping or depolarizing error, depend-
ing on the noise model chosen for the simulation.
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FIG. 5: Quantum circuit for encoding Steane [[7,1,3]] quantum error correction codeword.
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FIG. 6: Quantum circuit for logical identity operation, referred to as a no-op.
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FIG. 7: Quantum circuit for extracting syndrome 1.
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FIG. 8: Quantum circuit for extracting syndrome 2.
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FIG. 9: Quantum circuit for extracting syndrome 3.
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FIG. 10: Quantum circuit for extracting syndrome 4.

E

E

E

E

|0〉 • E H E MR

|0〉 H • • • E H E MR

|0〉 • • E H E MR

|0〉 • E H E MR

FIG. 11: Quantum circuit for extracting syndrome 5.



14

E

E

E

E

|0〉 • E H E MR

|0〉 H • • • E H E MR

|0〉 • • E H E MR

|0〉 • E H E MR

FIG. 12: Quantum circuit for extracting syndrome 6.


