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Performing qubit gate operations as quickly as possible can be important to minimize the effects
of decoherence. For resonant gates, this requires applying a strong ac drive. However, strong driving
can present control challenges by causing leakage to levels that lie outside the qubit subspace. Strong
driving can also present theoretical challenges because preferred tools such as the rotating wave
approximation can break down, resulting in complex dynamics that are difficult to control. Here
we analyze resonant X rotations of a silicon quantum double dot hybrid qubit within a dressed-
state formalism, obtaining results beyond the rotating wave approximation. We obtain analytic
formulas for the optimum driving frequency and the Rabi frequency, which both are affected by
strong driving. While the qubit states exhibit fast oscillations due to counter-rotating terms and
leakage, we show that they can be suppressed to the point that gate fidelities above 99.99% are
possible, in the absence of decoherence. Hence decoherence mechanisms, rather than strong-driving
effects, should represent the limiting factor for resonant-gate fidelities in quantum dot hybrid qubits.

I. INTRODUCTION

Microwaves have emerged as a key tool for manipulat-
ing quantum dot qubits via electron spin resonance [1-
3], electric-dipole spin resonance [4-7], or resonantly
driven gates in charge qubits [8], singlet-triplet qubits [9],
exchange-only qubits [10], and quantum dot hybrid
qubits [11, 12]. By adapting techniques used on atomic
and superconducting qubits [13], such gates provide flexi-
bility, for example, via phase control of the rotation axes.
Microwave driving can also protect against low-frequency
charge noise [14, 15], which is a dominant source of de-
phasing in quantum dot qubits [16]. Moreover, ac driving
allows us to continually center the tuning at an optimal
working point or sweet spot [17], which provides addi-
tional noise protection [8, 10, 11, 18].

To improve gate fidelities further, we must perform
the gates quickly and accurately, suggesting that we em-
ploy large ac driving amplitudes. Since quantum dots
are highly tunable, it is typically easy to enter the strong
driving regime, where the Rabi frequency approaches the
resonant frequency. Under such conditions, it has long
been known that complicated dynamics can occur (e.g.,
fast beating), and that the resonant frequency can be-
come a function of the driving amplitude (the Bloch-
Siegert shift [19, 20]). Both effects arise from the counter-
rotating term that is present in a harmonic, oscillatory
driving field, but which is ignored in the rotating wave
approximation (RWA) [21]. Additionally, if nonqubit
leakage states are present, they may be excited through
strong driving [22]. While such fast beating and leakage
effects are coherent, they can present challenges for qubit
control and ultimately reduce the quantum gate fidelity.
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Here, we theoretically study strong driving effects in
quantum dot hybrid qubits [23-27], and we propose
methods for improving the gate fidelity while maintaining
high gate speeds. In this system, there is a nearby leakage
state, and we show that both fast oscillations and leak-
age can be suppressed by employing simple, shaped mi-
crowave pulse envelopes [22, 28, 29]. Moreover, we show
that the requirements for pulse shaping are not strict,
and that the resulting gate fidelities can be greater than
99.99% for gate times shorter than 1 ns. Although we
do not consider decoherence effects in this work, our re-
sults suggest that decoherence, not control errors, should
remain the leading challenge for gate fidelities in the fore-
seeable future.

Several methods have been developed for moving be-
yond the RWA and characterizing the Bloch-Siegert shift.
For a system like a double dot coherently coupled to a mi-
crowave resonator [30-33], it is essential to use a dressed-
state model [34] in which the qubit electron(s) and the
resonator photon(s) are both treated quantum mechan-
ically [35-39]. If, instead, the quantum dot is driven
via a classical field, one may employ either a semiclassi-
cal [40,41,42] or a fully quantum model. Both approaches
are capable of describing corrections to the RWA, and
have been used to describe strong driving in supercon-
ducting qubit systems [43-46]. When the qubit is driven
through an energy level anticrossing, it is common to an-
alyze the dynamics [47] using Landau-Zener-Stiicklberg
(LZS) theory [48-50]; this is also a preferred method for
investigating other strong-driving effects such as multi-
photon resonances [51-54]. For the quantum dot hybrid
qubit, it is common to perform gate operations away from
the level anticrossing [11], suggesting that LZS theory
may not be optimal for describing these dynamics. More-
over, LZS theory does not typically incorporate leakage
states. Here, we therefore develop a dressed-state model
of a strongly driven quantum dot hybrid qubit. Our ap-
proach allows us to treat strong driving effects pertur-
batively, up to arbitrary order in the driving strength,



and it allows us to derive simple analytical formulas for
the qubit dynamics. The formalism naturally describes
the oscillations caused by counter-rotating terms as well
as leakage. Our analytical results indicate that the am-
plitude of the fast oscillations in the qubit dynamics is
proportional to the driving amplitude, to leading order,
suggesting a direct trade-off between fast operations and
gate errors. We go on to show that pulse shaping greatly
ameliorates these trade-offs. Our numerical simulations
of qubit dynamics allow us to validate our analytical for-
mulas, and enable us to compare the fidelities of several
different gating methods, including pulse shaping.

The paper is organized as follows. We first introduce
our system, the microwave-driven silicon double quan-
tum dot hybrid qubit, in Sec. II. We also outline our
calculation method based on a dressed-state formalism.
In Sec. III, we apply this method to the quantum dot
hybrid qubit and describe the results. In Sec. IV, we con-
sider several pulse-shaping protocols, and describe their
effect on the gate fidelity. Our main conclusions are pre-
sented in Sec. V. Several appendices contain the tech-
nical details of our analysis. Appendix A provides de-
tails about the transformation from a three-state model
of the quantum dot hybrid qubit to an effective two-state
model. Appendix B provides details of our dressed-state
formalism. As an example, we apply the method to a
two-level system, obtaining simple analytical corrections
going beyond the RWA. Appendix C provides details of
the dressed-state theory of the three-level quantum dot
hybrid qubit. In Appendix D we describe our results
when the drive is applied to the detuning parameter. (In
the main text, we mainly consider the case of tunnel cou-
pling driving.) Finally, Appendix E describes our results
for ac-driven X /o gates, in contrast to the X gates con-
sidered in the main text.

II. QUANTUM DOT HYBRID QUBIT

Here, we review our theoretical model for the quantum
dot hybrid qubit in the absence of decoherence from the
environment. The qubit is comprised of three electrons
in a double quantum dot with total spin quantum num-
bers S = 1/2 and S, = —1/2. For the operating regime
of interest, we consider the three-dimensional (3D) ba-
sis [-S) = |I9), |'T) = /1/34To) — /2/3[1T-), and
|S-) = |S]), where |-) denotes a dot with one electron,
and |S) = ([11) — 41)/V2, [To) = (|1)) + I1))/v2, and
|T_) = |{{) denote the spin states of dots with two elec-
trons [23, 24]. In this basis, the Hamiltonian is given
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where ¢ is the detuning between the dots, Egr is the
singlet-triplet energy splitting of the doubly occupied

dot, and A; (Az) are the tunnel couplings between the
states |S-) and |-S) (|-T)) [55]. The two lowest energy
states |0) and |1) comprise the qubit, while the high-
energy state |L) is a leakage state..

In the absence of driving, a Schrieffer-Wolf transforma-
tion can be used to write an effective two-state Hamilto-
nian for the system, as described in Appendix A. Some
typical energy level diagrams obtained using this method
are plotted with white dashed lines in Fig. 1(c). For ex-
perimental applications, we are often interested in the
“far-detuned” regime, € > Egr, A1, Ay, where the quan-
tum dot hybrid qubit has a spin-like character. In that
case, we make use of the small parameters Egr/e, Ay /e,
and As/e to obtain simpler expressions for the trans-
formation that diagonalizes H, as described in the Ap-
pendix C.

For large detunings, the charge configuration of the
double dot is approximately given by (1,2), which refers
to the occupations of the left and right dots respectively,
and the energy splitting between |[0) and |1) is nearly
independent of the detuning over an extended detuning
range. Such “sweet spots” are protected from energy
fluctuations and dephasing caused by charge noise, thus
enabling long coherence times [11, 25]. The width of the
sweet spot is maximized when A ~ As ~ 0.7EgT, since
then the energy level anticrossings are closely spaced and
the level repulsions induced by the tunnel couplings are
nearly equal [18]. Here, we focus on this optimal regime
for the control parameters.

A. Time-Dependent Hamiltonian: The
Semiclassical Approach

We consider two different schemes for ac driving [55],
as indicated in Figs. 1(a) and (b). In the first scheme,
we modulate the tunnel couplings, A; = Ay + r;Axc(2),
where ¢ = 1,2. The ac drive, A,, is achieved by applying
a microwave voltage signal to one of the top gates [11]. It
is reasonable to assume that the ac signal drives both A;
and As, although they may be affected differently, which
we take into account through the variable r;. In the sec-
ond scheme, we modulate the detuning, € = ¢ + £ac(¢).
To simplify the discussion later, it is convenient to ex-
press all the driving functions as u(t) = A-cos(27ft)
where u = A,c or €,c, A is the respective driving am-
plitude, and f is the driving frequency.

Up to this point, our qubit Hamiltonian can be viewed
as semiclassical, since the driving occurs through a time-
dependent control parameter. The resulting Hamiltonian
is given by

Hsemi = Ho + V cos(27 ft), (2)

where H is obtained from Eq. (1) when A =0, and V
represents a driving term, which is proportional to A.
Note here that Ho and V are both 3 x 3 matrices, Hg
is constant, and the form of V' depends on which control
parameter is driven.
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FIG. 1. Control of a quantum dot hybrid qubit. (a),(b) Double quantum dots with three electrons, depicted here in their (1,2)
charge configurations. In this arrangement, the low-lying energy levels, depicted in the right-hand dots, correspond to singlet-
like (|-S)) and triplet-like (|-T')) spin states, where S and T refer to the two-electron dots [23, 24]. The (2, 1) charge configuration
has only one low-lying energy level (|S-)), as depicted in the left-hand dots. (a) illustrates control of the tunnel couplings A,
and Ag, between |S-), and |-S) or |-T), respectively. (b) illustrates control of the detuning parameter ¢, corresponding to the
energy difference between the left and right quantum dots. The parameters A1, Ag, and ¢ are all controlled by voltages applied
to the double-dot top gates [11]. Resonant gates are implemented by adding an ac drive to either the tunnel couplings or the
detuning. (c¢) A typical energy level diagram for the quantum dot hybrid qubit, as a function of ¢, obtained by diagonalizing
Eq. (1), using parameter values Est/h = 12 GHz and A; = Ay = 0.7 Est [25]. Here, the lowest two levels (red and blue)
correspond to the qubit subspace, while the highest level (green) corresponds to a leakage state. The effective two-level system

of the qubit, derived in Eq. (A6), is indicated by white dashed lines that overlay the qubit levels.

At this point, it is tempting to apply the analytical
block-diagonalization procedure to Hy described in Ap-
pendix A to construct an effective, time-dependent 2D
Hamiltonian for the qubit subspace, and then study the
dynamical evolution within this subspace. This proce-
dure is useful in the limit of small driving (for example,
Fig. 1(c) shows the energy levels of the undriven system
are well-described by the result of this analysis), but in
the presence of strong driving it is flawed, because the
unitary transformation that block-diagonalizes Ho does
not block-diagonalize V. Indeed, the leakage state, which
lies outside the qubit subspace, plays an essential role in
the dynamical evolution which cannot be modeled as a
simple effective exchange interaction between the qubit
levels. Such leakage dynamics can be ignored in the weak-
driving regime, but not the strong-driving regime.

B. Dressed-State Hamiltonian: The Quantum
Approach

While it is possible to analyze the semiclassical Hamil-
toniann (2) with time-periodic driving using Floquet the-
ory [20, 56-59], here we take the alternate approach of
describing the electromagnetic field quantum mechani-
cally. Such methods were originally developed to describe
the resonant interactions between atoms and photons,
for example, in the form of laser or microwave driving
fields [21, 34, 60, 61].

We now develop a dressed-state formalism to describe
the microwave driving of the quantum dot hybrid qubit.
The first step is to note that our semiclassical expression
for the Hamiltonian in Eq. (2) does not explicitly include

a photonic driving field. We now introduce such a photon
field in its second quantized form: Hpn = Iqor ® (hfa'a).
Here, 140t is the identity matrix acting on the double dot,
f is the microwave driving frequency, and a' and a are
photon creation and annihilation operators. Note that
Iq0t has the same dimensionality as the dot Hamiltonian
Ho, and is 3D for the quantum dot hybrid qubit. The dot
Hamiltonian can similarly be written as Haot = Ho® Ipn

where we express Ho = diag[FEy, E1, F1] in the quantum
dot hybrid qubit eigenbasis {|i)} (i = 0,1, L). It is conve-
nient to expand the uncoupled Hamiltonians in terms of
the “bare-state” basis {|i,n) = |i) ® |n)}, where |n) rep-
resents a single-mode photon number state of occupation
n=0,1,2,.... (Here, we assume that all photons have
the same frequency f, and only one photon polarization
couples to the detuning parameter.)

In Eq. (2), the V matrix describes the coupling be-
tween the semiclassical driving field and the quantum
dot. For a quantum Hamiltonian, the ac coupling oc-
curs through a single mode of the electric field, whose
quantum field operator is given by [21, 62]

E, x (aT +a). (3)

The V matrix should therefore be replaced by the cou-
pling term Viye = Vaor ® (al + a), where Vg is a 3 x 3
matrix acting on the quantum dot hybrid qubit. It is
important to note that the characteristic photon state of
a semiclassical driving field is not the number state |n),
but rather the coherent state |a), defined as the eigen-
state of the annihilation operator, ala) = e~ fag|a),



yielding [21]

la(t)) = e~ 1ol /QZ iz O Tl (4)

The average photon occupation of the coherent state, IV,
is given by the expectation value

N = (a|N|a) = (ala’ala) = |ao|*, ()
Similarly, we can determine Vg, from the semiclassical
correspondence principle [21],

V cos(2m ft) = (a|Ving|ar). (6)

As discussed in Appendix B, this correspondence reduces
to Vaor = V/2V/N.

The full quantum Hamiltonian is now given by
Haom = Haot + Hph + Vint- (7)

A typical energy spectrum for Hqot + Hpn is shown in
Fig. 2. For the case of a quantum dot hybrid qubit, we
see that the energy levels divide into manifolds comprised
of three levels, which are separated from other manifolds
by the energy hf. When the qubit is driven near its reso-
nance condition, hf ~ E; — Fy, the bare states [0,n + 1)
and |1,n) are nearly degenerate and comprise two of the
three levels in the manifold labeled g,. If k is the value
for which |Ep — E1 — khf| < hf/2, then the leakage
state |L,n — k) is the third member of g,,. The manifold
structure is periodic, and in the absence of interactions
(Vint = 0), the 3D Hamiltonian for manifold g,, takes the
form

Hn = Hblock + nhfv (8)

where Hplock = Ho + hf (]0)(0] — k|L)(L]) is independent
of n. The interaction term couples bare states that differ
by one photon,

J(Jn,m+1 + 5n,m—1)a (9)

<i7n|‘/int|ja m> = 2

yielding hybridized states known as “dressed” states,
where V;; are elements of the matrix V, as defined in
Appendix C1.

We exploit the manifold structure in Fig. 2 by diago-
nalizing Hqwm into 3D blocks via a Schrieffer-Wolff uni-
tary transformation [63]. The full, transformed Hamilto-
nian, described in Appendix B, then reduces to a tensor
product of the form

Haom = @n(Hblock + nhf), (10)

where 7:lb100k is also independent of n. At lowest or-
der in this perturbation theory, we find that Hpjock =
Hilock + (Vo1]0)(1| 4+ h.c.) as expected; the leading cor-
rections to Hplock occur at order O[(A/hf)?]. However,
the block structure of Eq. (10) extends to all orders, al-
lowing us to obtain simple analytical estimates for the
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FIG. 2. A cartoon depiction of the manifold structure of bare
states of a quantum dot hybrid qubit coupled to a photon field
with frequency f. The 3D manifold labeled g, contains two
qubit levels, |0,n + 1) and |1, n), which are nearly degenerate
near the resonance condition hf ~ E; — Ep, and a leakage
level |L,n — k). Here, n and k indicate photon numbers. If
Fintra = hf — Einter represents the energy width of a given
manifold, as indicated in the diagram, then k is defined such
that Fintra < hf/2.

time-evolution operator UQM (t). Finally, we project the
solution back onto the 3D qubit subspace via the semi-
classical correspondence,

Usemi = ((t)|Uqu|(0)). (11)

We note here that UQM evolves the full system, including
both dot and photon states.

There are several benefits to using a fully quantum
Hamiltonian, as we have done here. First, the time-
varying driving term in the semiclassical Hamiltonian is
replaced by a constant coupling to a photon field, allow-
ing us to solve an effectively static Hamiltonian in the
bare-state basis set. The price we pay for this conve-
nience is a greatly expanded Hilbert space. The second
advantage of using quantized fields is the intuition pro-
vided: the elementary processes of absorption and emis-
sion of photons can be readily identified.

C. Strong Driving

The textbook description of spin resonance is obtained
in the weak-driving limit [62], where frapi < f, and
fRabi < A is the Rabi frequency. In that case, Heemi can
be solved by transforming to the rotating frame and ap-
plying the RWA in which we drop the “counter-rotating”
term. The RWA is equivalent to the lowest-order term of
the dressed-state perturbation theory, and its dynamics
correspond to smooth circular trajectories on the Bloch
sphere. For quantum dot qubits however, it is often de-
sirable to work in the strong driving regime frap; ~ f to
minimize the effects of decoherence. In this regime, the
qubit dynamics are not smooth; they exhibit additional
fast oscillations and other complicated behavior, as dis-
cussed below. The RWA therefore breaks down and the
semiclassical approach becomes cumbersome.



Corrections to the RWA can be obtained straight-
fowardly within the dressed-state formalism by retaining
higher-order terms in the perturbation expansion. These
corrections are manifested as renormalizations of (i) the
resonance frequency (i.e., the Bloch-Siegert shift [19]),
and (ii) the Rabi frequency and gate period. Such effects
are are well known for the case of a simple two-level sys-
tem with a transverse drive [21, 34]; in Appendix B 2, we
reproduce those results using the dressed state methods
outlined above. For a quantum dot hybrid qubit, which
is the main focus of this paper, strong driving can also
cause additional strong-driving effects, such as occupa-
tion of the leakage state, as discussed below.

III. EVOLUTION OF A QUANTUM DOT
HYBRID QUBIT UNDER STRONG DRIVING

We now explore the dynamics of the quantum dot hy-
brid qubit using two different methods. First, we per-
form numerical simulations of the full Hamiltonian given
in Eq. (2). Next, we obtain analytical estimates based
on the dressed-state theory, which are derived in Ap-
pendix C and summarized below. In both cases, the ac
drive is applied to the tunnel coupling A,.. We then
obtain solutions of the form

[9(8)) = co()[0) + er(D)[1) +cr(B)IL),  (12)

and compare the results in Figs. 3(a) and (b). Detun-
ing driving is also considered in Appendix D, with some
results shown in Fig. 3(c).

A. Numerical Simulations

In Figs. 3(a) and (b) we plot typical oscillations re-
sults obtained numerically under strong driving, with a
ratio of Rabi to qubit frequencies of about 0.08, for the
initial state co(0) = 1. The dominant feature observed
in Fig. 3(a) is a slow sinusoidal envelope reflecting the
expected Rabi oscillations. Modulating this smooth be-
havior, we also observe fast oscillations, which are typical
of strong driving. The fast oscillations have two sources.
The first is the counter-rotating term in the drive, that
are neglected within the RWA. The second source of os-
cillations is leakage. Fig. 3(b) shows the time-varying oc-
cupation of the leakage state, which is directly reflected
as reduced occupation of the qubit states.

Strong driving also has other significant effects on the
dynamical evolution. As shown in Fig. 3(c), these include
corrections to the RWA for both the resonant and Rabi
frequencies. In the simulations, we determine the res-
onant frequency fros by minimizing the Rabi frequency
fRabi for a fixed driving amplitude A. The resonant and
Rabi frequencies are related by the standard relation

frabi = V (f — fres)2 + (Vo1 /h)2, (13)

which is also derived in Eq. (B20). (As noted in Ap-
pendix C1, holding A constant is equivalent to holding
Vo1 constant here.) One could alternatively try to iden-
tify fires by maximizing the oscillation visibility. Strong
driving causes errors in this procedure, however, because
the fast oscillating terms also contribute to the visibility
at frequencies away from fqs.

B. Analytical Estimates

In Appendix C, we derive the time-evolution operator
for the quantum dot hybrid qubit using the dressed state
method, up to order O[(A/hf)?] in the perturbation ex-
pansion. We demonstrate the accuracy of this approach
in Fig. 3(a) by plotting the analytical results directly on
top of the numerical results. The analytical derivations
appear to capture all the fast-oscillating features associ-
ated with strong driving. Even higher accuracy can be
achieved by retaining higher orders in the expansion.

The dressed-state theory provides insight into the ori-
gins of the fast oscillations, which are caused by couplings
between bare states, due to the interaction term, Viy.
For example, leakage is caused by the hybridization of
qubit and leakage states, with mixing coefficients of order
O[A/hf]. Fast oscillations also arise from the counter-
rotating terms in Vi, which hybridize bare states in
different g,, manifolds. The effects of the leakage and
counter-rotating terms become prominent in the strong-
driving regime, as observed in Figs. 3(a) and (b), and
discussed in Appendix C. To reduce control errors in
quantum dot hybrid qubits, it is necessary to suppress
the fast oscillations via pulse shaping, as described in
Sec. IV.

A secondary effect of the counter-rotating terms has
already been noted in Fig. 3(c), where the resonant fre-
quency differs from the bare qubit energy splitting and
becomes a function of the driving amplitude. This Bloch-
Siegert shift arises at order O[(A/hf)?] in the perturba-
tion expansion. In Appendix C we derive its form as

- V2 V2 V2
oow = hfo + 01 n oL B L
d fo 4(E1 — Ey)  4(ErL—E1) 4(Ep — Ey)
Vor Vi,

- (14)

+ .
A(EL + E1 — 2Ey) A(EL + Eo — 2E)

Here, fo = (E1 — Ep)/h is the bare resonant frequency,
consistent with the RWA, and fres is the renormalized
frequency, including the Bloch-Siegert shift. Written in
terms of the V;;, the couplings between states |0), |1),
and |L) induced by the driving, Eq. (14) is valid for either
detuning or tunnel coupling driving. Explicit forms for
the Vj; for detuning and tunnel coupling driving are given
in Appendix C1. In Fig. 3(c), we plot our analytical
estimates for fyes for the case of detuning driving, keeping
terms up to order O[(A/hf)*]. The dressed-state theory
describes the resonant frequency shifts with very high
accuracy.
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FIG. 3. Dynamics of a strongly driven quantum dot hybrid qubit. (a), (b) Numerical solutions of Eq. (2) are plotted as solid lines.
Here, the simulation parameters are given by Esr/h = 12 GHz, {e, A10, A2, A} = {6,0.7,0.7,0.33} X Esr, and r1 =12 = 1,
and the ac drive is applied to the tunnel coupling. The corresponding analytical solutions of the dressed-state theory with
terms included up to O[(A/hf)?] are plotted as dashed white lines. (a) The probabilities Py(t) = |co(t)|? and Pi(t) = |c1(t)|?
of the logical qubit states are plotted for the initial state given by |0). The sinusoidal envelopes correspond to the conventional
Rabi oscillations that would occur under weak driving (i.e., the RWA), while the fast modulations are caused by strong driving.
The analytical results shown here include corrections to the RWA up to O[(A/hf)?] and reproduce all observable features
in the fast oscillations. (b) The corresponding evolution of the leakage probability Pr(t) = |cr(t)|?. Again, the analytical
solutions reproduce all observable features of the numerical simulations, and the square of the difference between the analytical
and numerical results is less than 1077 over the entire range. (c) Numerical and analytical calculations of the resonance
frequency (analytical results are plotted with solid lines) and Rabi frequency (dashed lines) as a function of driving amplitude,
for microwave driving of the detuning, with simulation parameters Egr/h = 12 GHz and {g, A1, A2} = {6,0.7,0.7} X Esr. The
simulation results (4 markers for the resonance frequency and o markers for the Rabi frequency) are obtained by performing a
sweep of the driving frequency f; fres is identified as the driving frequency that minimizes the Rabi frequency, as in Eq. (13),
while frabi is identified as the dominant peak in the Fourier spectrum. Analytical results are shown for the RWA (blue),
corresponding to fo = (E1 — Eo)/h, and corrections to the RWA up to O[(A/hf)*] (red). The difference between the actual
resonance frequency and the RWA is called the Bloch-Siegert shift. Any remaining deviation of the numerical results from the

analytical calculations comes from higher-order terms in the perturbation expansion.

It is interesting to compare the Bloch-Siegert shift of
the quantum dot hybrid qubit, in Eq. (14), with that of a
simple, transversely driven two-level system. The latter
is derived in Appendix B and Ref. [21], giving

2
VOI

hfres = th + m

(15)
In this case, the only correction to the RWA comes
from the counter-rotating term. The additional terms
in Eq. (14) are therefore caused by leakage, as apparent
from their functional forms. For both types of correc-
tions, the energy shift amounts to a dynamical repulsion
between the qubit energy levels, which grows with the
driving amplitude.

The Rabi frequency is also renormalized under strong
driving. The leading-order expression for the Rabi fre-
quency, Eq. (13), is consistent with the RWA, and re-
duces to hfgani = Vp1 at resonance. We can go beyond
this level of approximation to obtain corrections to frabi
at O[(A/Rhf)3], which are plotted in Fig. 3(c), and which
account for the small splitting between our numerical re-
sults and the RWA prediction. The derivation of these
higher order corrections is tedious but straightforward,
and is not reported here.

Fast oscillations due to strong driving are typically not
taken into account when implementing gate operations,
resulting in potential control errors. In principle, these
errors could be suppressed to arbitrary order by includ-

ing appropriate corrections to the resonant frequency and
accounting for the more complicated dynamics shown in
Fig. 3. In practice this is impractical, particularly since
the fast oscillation frequency is rather high (= 10 GHz).
We can estimate the control errors that would occur if
the Rabi oscillations were assumed to be smooth and si-
nusoidal, as in the RWA. If we explicitly consider an X
gate acting on the initial state ¢o(0) = 1, with gate pe-
riod tg4, then the ideal final state (without control errors)
would be ¢y(t,) = 0. Any deviation of ¢y(t,) from zero
therefore characterizes the control error. (Note that this
represents a state fidelity calculation; in Sec. IV B, we
compute the full process fidelity for such an X, gate.)
For simplicity here, we consider the far-detuned regime,
€ > FEgr, as is typical for experiments. Using the re-
sult of Eq. (C23), we find that the control error for this
process therefore scales as |co(ty)|> ~ (AA/eEgt)? for
tunnel coupling driving, or (AA?/e?Egr)? for detuning
driving, where A = A, » represents a typical tunnel cou-
pling.

These scaling estimates suggest that control errors due
to strong driving could potentially be suppressed by re-
ducing the driving amplitude A. Unfortunately, this is
not possible when gate times ¢, are held constant to avoid
errors caused by decoherence. To see this, we note from
Appendix C that ¢, x ¢/A for tunnel coupling driving,
or 2/A for detuning driving, so |co(ty)|* o t;2 in both
cases. Hence, if ¢, is held constant, it is impossible to



independently suppress |co(tg)]?.

To summarize this section, a dressed-state formalism
may be used to enhance quantum gate fidelities by pro-
viding corrections to the resonant and Rabi frequencies.
However, fast oscillations cannot be avoided by the gating
schemes discussed so far, causing potential control errors.
In the following section, we show that pulse shaping can
ameliorate this problem.

IV. SUPPRESSING FAST OSCILLATIONS VIA
PULSE SHAPING

In Sec. III, we showed that strong driving induces fast
oscillations, making it difficult to control qubit gate oper-
ations. We also showed that it is impossible to suppress
fast oscillations by simply reducing the driving amplitude
while holding ¢, fixed. Here, we show that simple pulse
shapes can improve the gate fidelity significantly. In par-
ticular, we consider a scheme where ¢, is held fixed, but
the driving amplitude is turned on and off smoothly, at
the beginning and end of the gate pulse.

The benefits of using continuous, nonsingular pulse
shapes are twofold. First, as shown in Fig. 4, singu-
lar pulses generate Fourier spectra with broad peaks and
increased weight at high frequencies, causing unwanted
leakage. [For simplicity, no ac drive was included in
Fig. 4(b); when driven, the central peak splits into two
peaks, centered at the frequencies +f.] The specific
shape of the pulse determines the spectral density at high
frequencies, but both of the continuous pulses in the fig-
ure exhibit significantly lower density at high frequencies
than the rectangular pulse, which was implicitly assumed
in Sec. ITII. The second benefit of a continuous pulse is
that it suppresses fast oscillations at the beginning and
end of a gate (near t = 0 and ¢,), where the control errors
occur. This is because the amplitude of the fast oscilla-
tions is proportional to the pulse envelope A(t). As A(t)
goes to zero near the end points of the pulse, the am-
plitude of the fast oscillations also vanishes. Below, we
show that these simple modifications of the pulse shape
yield significant improvements in the gate fidelity.

A. Pulse Shapes

In our simulations, we consider several different
pulse envelopes A(t). Here, A(t) corresponds to one
of the experimentally tunable parameters, such that
A(t)cos(2mft) = {e(t) or A;(t)}. Because the Rabi
frequency is determined by Vp1, as specified in Ap-
pendix C1, and since V1 o< A, it is convenient to treat
Vo1(t) as the tunable parameter in the following discus-
sion. When performed on resonance, each of the pulse
shapes yields a rotation about the Z axis. The total
angle of rotation 6 is approximately given by the rela-
tion § = fotg(Vm/h)dt. Here, we specifically consider
X, rotations, with pulses normalized to have the same

(a) b) 1
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0 0.5 1 = -100 0 100
Time, t (ns) Frequency, f (GHz)

FIG. 4. Pulse envelopes and their Fourier spectra. (a) The
three pulse shapes considered in this work are rectangular
(black), truncated Gaussian (blue), and smoothed rectangu-
lar (red), as defined in Egs. (16)-(18). The parameters used
to generate the pulses shown here are {¢4,0,¢,.} = {1,1,0.1}
ns, where ¢4 is the gate time, o sets the width of the Gaus-
sian pulse, and ¢, is the rise time of the smoothed rectangular
pulse. (b) The Fourier spectra of the same three envelopes,
using the same color scheme. Here, the frequencies f ~
(ELon)/h:t(Eleo)/h, and f ~ (ELfEl)/h:l:(Eleo)/h
are associate with leakage; in our simulation, these are given
by 48, 60, 72, and 84 GHz. At such high frequencies, the
smoothed rectangular pulse has the lowest spectral density,
and should therefore be the most effective at suppressing leak-
age.

gate time t,. (We also consider X/, rotations in Ap-
pendix E; obtaining qualitatively similar results.) We
then compare the pulse shapes by computing their gate
fidelities as a function of ¢;. Note that for continuous
pulse envelopes, the Hamiltonian at different times does
not commute with itself, so the relation between ¢, and
0 given above is inexact. In our simulations, however, it
is a very good approximation, yielding gates with high
fidelities. The three pulse shapes shown in Fig. 4 are
defined as follows.
1. The rectangular pulse is defined as

Vo1 = h/2tg, (16)

when 0 < t < t4, and zero otherwise. Since Vpi(t) is
piecewise constant here, we are able to apply the dressed-
state formalism to obtain analytic corrections to the res-
onant and Rabi frequencies, as discussed in Sec. 111 B.
2. A truncated Gaussian pulse has recently been em-
ployed for leakage suppression [28]. Its form is given by

_ ﬁexp[—(t —ty/2)?/20°] — exp[—t2 /857
2 V2ro?erf(t, /8] — t, exp[—t2/80?] ’

when 0 < t < ¢4, and zero otherwise. The pulse has a
characteristic width of 20 when o < t4, and it has no
discontinuities. An example is shown in Fig. 4. Since
Vo1 is continuous in time, its high-frequency spectrum
has a lower density than the rectangular pulse. However,
since dVp1/dt is discontinuous at the endpoints of the
pulse, we expect to observe more spectral weight at high
frequencies than for a pulse with a continuous second
derivative. (This discontinuity is suppressed when o <«

ty-)
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FIG. 5. Improving the fidelity of X, rotations using pulse shaping in the strong-driving regime. Simulations are performed by
driving the tunnel coupling with the control parameters Est/h = 12 GHz, {e, A10,A20} = {6,0.7,0.7} EsT, and r1 = r2 = 1.
Here, Egr is the singlet-triplet energy splitting of the doubly occupied dot, € is the detuning between the dots, Ao (Ag20) are
the time-independent part of the tunnel couplings between the states |S-) and |-S) (]-T)), and 71 (r2) are the coefficients for
the responses of the tunnel couplings to the AC signal. (a) and (b) show typical dynamical evolutions for an X, gate with
gate time t; = 1 ns, for the initial state with state amplitudes (see Eq. (12)) of ¢co = 1, ¢1 = ¢, = 0. Two results are shown,
corresponding to a sharp rectangular pulse (black) or a smoothed rectangular pulse (red). The upper inset of (a) shows a blow
up of times near ¢t = t4, where the smoothed pulse suppresses the fast oscillations. The lower inset shows estimates of 1 — F,
where I is the fidelity, for simulations including quasistatic charge noise of uniform distribution with zero mean and standard
deviation o.. In (b), we see that the leakage state occupation is suppressed over the whole gate evolution for the smoothed
pulse, particularly near t = 0,t,. This is because leakage probability depends quadratically on the pulse envelope, |cr.|? ~ A%(t),
and therefore vanishes when A(t) — 0 near the endpoints of the pulse. (c) shows the process infidelity, 1 — F, [64] computed
for several different scenarios: rectangular (black), truncated Gaussian (blue), and smoothed rectangular (red) pulse shapes
with no dynamical corrections (RWA, solid lines), and dynamical corrections for fres up to order O[(A/hf)?] (dashed lines).
Using these smooth pulse shapes and strong-driving corrections, we can achieve gate fidelities > 99.9% for several different
scenarios, with gate times as short as 1 ns (black oval). For the smoothed rectangular pulse, the fidelity is > 99.99%. (Note
that these results, except the lower inset of (a), do not include noise.)

3. A “smoothed” rectangular pulse is obtained by re-
placing the singular steps with sinusoids [65, 66]. In this

and X /o rotations are reported in Appendices D and E,
respectively.

case, We first perform dynamical gate simulations by solv-
h1—cos(rt /)] ing the time-dependent Schrédinger equation p(t) =
ﬁ (0<t<t,), —(i/h)[Hsemi, p]. Here p is a 3 x 3 density matrix de-

Voi = W}im) (b <t <ty—t.), (18) scribing both the logical and leakage states. Following

Ref. [64], if po represents the initial density matrix be-
fore a gate operation, and £ represents the final density
matrix after the gate operation, then the initial and final

and zero otherwise. Here, ¢, is the ramp time, and we  density matrices can be related by the process matrix
assume that 2¢, < t;. An example is shown in Fig. 4. via

Since this pulse is completely smooth, it has less spectral
weight at high frequencies than either of the previous
shapes. Moreover, since the pulse is nearly rectangular,
the renormalized resonant and Rabi frequencies obtained
from the dressed-state theory should be accurate over
most of the gate duration.

h[l4cos(m[t—tg+t,]/t,)]
A(tg—tr)

(tg —t- <t <ty),

£= EmnpoEf Xmn, (19)

m,n

where {E,,} is a basis for the vector space of 3 x 3
matrices. The process fidelity is then defined as F =
TrXsimXideal], Where xsim is the actual process matrix
for the simulations, including strong-driving effects, and
Xideal describes the ideal rotation. Since Yigea does
not involve the leakage channel, it is easy to show

B. Simulations of Gate Fidelities

In this section, we compute the process fidelity for
quantum gates obtained using the pulse shapes shown
in Fig. 4. We consider scenarios with or without the
dressed-state corrections for strong driving. Our results
for X, rotations based on tunnel coupling driving are
plotted in Fig. 5. Additional results for detuning driving

that Tr[XsimXideal] also does not contain any informa-
tion about leakage processes in sim; to compute F, it is
therefore sufficient to project pg and £ onto the 2D logical
subspace and solve for y matrices that are 4 x 4. In this
case, we choose E,, from the Pauli basis {I, 0, —ioy, 0.}
and follow the standard procedure for computing F' [64].



Typical simulation results for an X, gate are shown
in Figs. 5(a) and (b) as a function of time ¢, between
t = 0 and the final gate time, given by ¢, = 1 ns in these
simulations. The initial state is given by Eq. (12) with
¢o(0) =1, ¢1(0) = ¢, (0) = 0. Two simulation results are
shown. The first (black curve) uses a conventional rectan-
gular pulse shape, while the second (red curve) assumes
identical parameters for a smoothed rectangular pulse.
The key difference between the two evolutions can be
seen in the upper inset of Fig. 5(a), where the fast oscil-
lations of the smoothed pulse are strongly suppressed at
times ¢t = 0 and ¢4, compared to the rectangular pulse. In
Fig. 5(b), we see that the smooth pulse suppresses leak-
age oscillations over the entire gate period, but especially
near the endpoints. As explained in Appendix C, this is
because the leakage probability depends quadratically on
the pulse envelope, |cz|? ~ A%(t). As A(t) approaches
zero near its endpoints, the amplitude of the leakage os-
cillations also vanishes. This perfect cancellation is a
consequence of noise-free evolution, since leakage is then
fully coherent. When noise is present, the cancellation
effect is imperfect, and the leakage state becomes slowly
occupied over time, even when using a continuous pulse
shape; such behavior is outside the scope of the present
analysis, however.

To compute the fidelity F', the process matrices Xsim
and Xidea1 should both be expressed in the same refer-
ence frame. Here, xgm is computed in the lab frame,
while Xiqeal is defined in the frame rotating at the driv-
ing frequency. The latter must therefore be transformed
back to the lab frame. However, the driving frequency f
is not necessarily resonant, depending on the approxima-
tions used to calculate fros, and this must be incorporated
into our definition of Xjqeal. For example, if we consider
the ideal rotation X, = —io, in the rotating frame, the
corresponding transformation in the lab frame is given
by

0 _,L'e—iE‘Otg/h
Uideal - <_ieiE1tg/h 0 (20)

where Ey and E; are dynamically renormalized qubit
energies in some approximation scheme. In our simula-
tions, we adopt two different approximations for Ey and
Ey. First, we consider the RWA, for which Ey = Ejy,
E, = Ey, and fies = E1 — Ep. Alternatively, we include
the dressed-state corrections, defined as FEy = Ey + fo,
E\ = E1+ /1, and fres = E1— Eo+ 81— fo, where 5y and
[1 represent the Bloch-Siegert shifts (see Appendix C).
The resulting process infidelities for X, gates are
shown in Fig. 5(c) as a function of the gate time. (Note
that infidelity = 1 — fidelity.) Here we compare the
effectiveness of the various scenarios considered in this
work. First, note that the downward trend of the curves
is explained by the fact that shorter gate times require
stronger driving, which results in worse fidelities. Sec-
ond, by comparing the results for rectangular pulses (the
two black curves), we see that those fidelities are not par-

ticularly improved by including Bloch-Siegert corrections
to the resonance frequency, despite the fact that the cor-
rections were derived specifically for rectangular pulses.
This indicates that control errors caused by fast oscilla-
tions and leakage are the dominant sources of error for
this pulse shape. This is confirmed by comparing the
two other pulse shapes, which generally exhibit higher
fidelities, even without including dynamical corrections.

Comparing the truncated Gaussian and smoothed rect-
angular pulse shapes, we see that the latter yields slightly
better fidelities in the absence of strong-driving correc-
tions. When Bloch-Siegert corrections are included, how-
ever, the smoothed rectangular pulse yields significantly
better results, reflecting the fact that the dynamical cor-
rections were derived specifically for rectangular pulses.
The Gaussian pulse fidelity also improves when we in-
clude frequency corrections. Comparing all these results,
we find that the smoothed rectangular pulse with the
renormalized driving frequency yields the best fidelity,
with 1 — F < 1074 for a 1 ns gate.

The simulations in Fig. 5 correspond to X, rotations
with the ac drive applied to the tunnel coupling. To
show that similar results hold for other gate conditions,
we have performed additional simulations, which we now
summarize. First, we consider gates with the ac drive
applied to the detuning parameter, as described in Ap-
pendix D and Fig. 3(c). In this case, we find that the fi-
delities are generally worse than for tunnel coupling driv-
ing. To understand this, we recall our previous estimate
that gate times should scale as t; o /A for tunnel cou-
pling driving, or €2/A for detuning driving. In the latter
case, holding ¢, fixed in the large-detuning limit requires
a much larger driving amplitude A, yielding lower gate
fidelities due to strong driving effects. Second, we con-
sider X /5 rotations for both tunnel coupling and detun-
ing driving, as described in Appendix E. The resulting
fidelities are slightly better than for X, rotations. This
is also easy to understand, because for fixed gate times,
an X /5 gate requires approximately half the driving am-
plitude of an X gate, yielding a higher gate fidelity.

In practice, gate errors depend on an interplay be-
tween fast oscillations and environmental noise. As noted
in Sec. III B, in the absence of noise, strong driving ef-
fects could potentially be ameliorated through a detailed
knowledge of the evolution, but detuning shifts from en-
vironmental noise will change the gate speed and posi-
tions of oscillation peaks, so high fidelity can be achieved
reliably only if the amplitude of the fast oscillations is
suppressed. To characterize this effect and the ability
of shaped pulses to suppress it, we have performed sim-
ulations that include quasistatic noise in the detuning
parameter. The lower inset of Fig. 5(a) shows the results
of such simulations for the same parameters as the main
panel. Here we plot the gate infidelity as a function of the
standard deviation o, of a uniformly distributed detuning
noise with zero mean. For low noise levels, the smoothed
rectangular pulse suppresses leakage errors, as consistent
with our previous discussion. As the noise increases, the



smooth pulse shape is still able to suppress errors caused
by fast oscillations. Interestingly, the gate fidelity for
sharp rectangular pulses seems to improve with noise.
We attribute this to a beating effect caused by the fast
oscillations. We note that high-frequency noise can also
harm qubit coherence under ac driving [14]; however, we
do not explore this problem here.

V. CONCLUSIONS

The need for fast gates in quantum dot qubits, includ-
ing quantum dot hybrid qubits, necessitates the use of
strong driving. We have shown here that the fast os-
cillations can be fully understood using a dressed-state
theoretical formulism. In principle, these fast oscillations
could present a challenge for accurate control, resulting
in gating errors. However, we have shown that fast os-
cillations, as well as leakage, can be largely suppressed
by shaping the pulse envelopes. To lowest order, the key
to successful pulse shaping is not the precise shapes of
the envelopes, but rather their smooth features, which
suggests that they could be very simple to implement
experimentally.

The most important effect of strong driving on gate fi-
delities is the dynamical shift of the resonance frequency
caused by the counter-rotating term. In experiments, this
Bloch-Siegert shift can be characterized empirically by
sweeping the driving frequency at fixed microwave power
and identifying the minimum Rabi frequency. Here, we
have used the same empirical method to analyze our sim-
ulations. We have also predicted the Bloch-Siegert shift
analytically by applying a dressed-state perturbation the-
ory. We have used the latter approach here to analyze
the unitary evolution of a quantum dot hybrid qubit and
estimate the upper bound on the gate fidelity for X ro-
tations. By performing simulations that include pulse
shaping but no decoherence, we predict that fast, high-
fidelity gates should be attainable under strong driving,
with gate times less than 1 ns, and gate errors below
0.01%. Moreoever, we predict that applying the mi-
crowave drive to the tunnel coupling rather than the de-
tuning should improve the gate fidelity, since the latter
requires a larger driving amplitude to achieve the same
gate speed in the large-detuning regime. For the decoher-
ence rates observed in recent experiments [11], we there-
fore expect that environmental noise, not gating errors,
should remain the dominant challenge for quantum dot
hybrid qubits in the foreseeable future.

Finally, we point out that the dressed-state theory was
developed here in the context of quantum dot hybrid
qubits. However, we have also presented the formalism
in a more general form in Appendix B, so that it may be
applied to other physical systems [67-70]. For example,
in Appendix B 2 we obtain results for the case of a simple
two-level system.
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Appendix A: Effective Two-level Hamiltonian

In this Appendix, we derive an effective 2D Hamilto-
nian to describe the logical states of the quantum dot
hybrid qubit, starting from the full 3D Hamiltonian in
Eq. (1). The approximations are accurate over the en-
tire range of detuning values and provide a useful start-
ing point for analyzing adiabatic energy splittings and
dc pulsed gates. However, the reduced Hamiltonian can-
not be used to describe ac resonant gates in the strong
driving regime, as discussed below.

We begin with the 3D quantum dot hybrid qubit
Hamiltonian expressed in the basis set {|-S),|-T),|S )},
as given in Eq. (1). The transformation proceeds in two
steps. First, we consider the limit A; — 0, with no re-
strictions on Ay. Hamiltonian (1) then diagonalizes into
two blocks. It can be further diagonalized into eigen-
states {|a),|b), |c)} via the unitary transformation

1 0 0
VErL—Est+e Ep+Est—=¢
Ua= |V a0 N ) (A1)
0 Ep+FEst—e¢ _\/EL—EST+5
V2EL V2EL
where
By = \J4A3 + (st - <)? (A2)
is the energy splitting between |b) and |c). Expressing

the full Hamiltonian, with Ay # 0, in the {]a),|b),|c)}
basis yields

_£ Alx/ELﬁ’EsT*E 7A1\/EL*EST+E
2 V2EL V2EL
H=| A1vErtBsr—c Esr—FEL 0
V2EL 2
_ A1VEp—EgT+¢ 0 Est+Ep
V2ET7, 2

(A3)

In the second step, we apply a Schrieffer-Wolff transfor-

mation Usw to approximately block-diagonalize Eq. (A3)

into its logical and leakage subspaces [63]. Here the logi-

cal space corresponds to the lowest two states in Fig. 1(c).
To leading order, the new logical basis is given by
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PYANPAY A (Er — Egr +¢)

) = (1 B A%(EL — Est +¢)

EL(EL + Esr +5)2> |-8) + Er(

B = <\/EL “Esr+e

2Er Ei/Q(EL + Esr +¢)

and the effective 2D Hamiltonian in this basis is given by

V2E7,

AiVEL+EsTt—¢ Est—EL
2

e A2(EL—Est+¢)
Heosr ~ 2 Er(EL+Est+e)
V2EL

AMVEL+Est—¢
> (A6)

Equation (A6) can be diagonalized to provide a faith-
ful representation of the static energy levels of the logical
states, as shown in Fig. 1(c). Moreover, the Schrieffer-
Wolff transformation can be performed to higher orders
to achieve even better accuracy. It is therefore tempt-
ing to replace Eq. (1) by (A6) in the remainder of our
analysis. However, this procedure is only appropriate for
a time-independent Hamiltonian. In contrast, the trans-
formation matrices Uy and Usw used to the derive Heg
are themselves functions of the driving parameters ¢, Ay,
and A, and are therefore time-dependent. In this case,
the full transformation is given by U = UswUy, and the
time-dependent Hamiltonian in the transformed frame is
given by

Hot = UTHU — ihUT%U. (A7)

The final term in this equation is directly proportional
to the driving amplitude, and cannot be neglected in the
strong-driving regime. Moreover, this driving term in-
clude coupling between the logical and leakage states.
As a result, the 2D description of the dynamics of Heg is
necessarily incomplete, and applicable only in the weak-
driving regime. To move beyond this approach, we de-
velop a dressed-state theory in Appendix B, extending
the full 3D Hilbert space to include microwave photons.
The formalism provides a means for including strong-
driving effects perturbatively and consistently, as dis-
cussed in the main text.

Appendix B: Dressed-State Formalism

In this Appendix, we provide details on our dressed-
state approach for solving the time evolution of a driven
qubit. We first outline the formalism. We then apply
the formalism to a simple example: a transversely driven
two-level system. We note that similar calculation can
also be performed using Floquet theory [20, 57-59].

Er + Egr +¢)
V2A2A5\/EL + Egr —5> 1T + (\/EL +Esr—¢ V2A2A5/Er — Est +E> 94

|- T)

15), (A4)

~ EL(ELp+ Esr +¢)

2Er, Ei/z (ErL + Est +¢)

(A5)

1. Solution Procedure

The dressed-state method is described briefly in the
main text. For completeness, we summarize the solution
procedure here.

a. Diagonalize the semiclassical Hamiltonian with no
driving term, yielding the adiabatic eigenbasis
{I9)} = {]0),]1),|L), ...}, comprised of the two log-
ical states, and all other accessible leakage states.
The resulting diagonal Hamiltonian is defined as
Ho. Evaluate the ac driving matrix V in the same
basis. Extend the semiclassical Hamiltonian to in-
clude photons, as in Eq. (7). Evaluate this fully
quantum Hamiltonian Hqu in the basis {|i,n)},
where n refers to the number of single-mode pho-
tons of energy hf.

b. Identify the nearly degenerate manifolds g, of di-
mension d = dim(Hg) within the fully quantum
Hamiltonian, as sketched in Fig. 2. Block diag-
onalize Hqm by applying a Schrieffer-Wolff trans-
formation to desired order [63], as in Eq. (10). This
yields a d-dimensional Hamiltonian Hy = Hitook +
nhf corresponding to the perturbed manifold g,
formed within the perturbed basis set {|¢,n)}. Here
ﬂblock is independent of the photon number.

c. Construct the d-dimensional time-evolution oper-
ator U,(t) for manifold g,. Since Hplock is inde-
pendent of n, the time-evolution operators are also
identical for each manifold, except for the phase
factors e~ 2 ft,

d. Transform the time-evolution operator back to the
original basis {|¢,n)}, yielding Ugm(t). The corre-
spondence between the quantum and semiclassical
evolution operators is finally given by

Usemi(t) = (a(t)|[Uqule(0)), (B1)

where « is the coherent state defined in Eq. (4).
Usemi describes the full dynamics of the gate oper-
ation in the basis {|0),]1),|L),...}.



2. Example: Two-level System With Transverse
Drive

In this section, we demonstrate the dressed-state for-
malism by applying it to a simple two-level system. To
take an example, we consider a charge qubit with con-
stant tunnel coupling A and detuning parameter €. The
ac drive g, = —2Acos(2r ft) is applied to the detun-
ing parameter. (Here, the prefactor —2 is adopted for
notational convenience.) We assume that ¢ has average
value of &€ = 0, similar to Ref. [8], corresponding to the
“sweet spot” of the charge qubit. In the left-right basis
{|L),|R)}, the double-dot Hamiltonian is given by

Hip = (‘52‘3/ 2 eﬁ/?) : (B2)

Note that there are no leakage states in this example.
We now discuss each step of the dressed-state formalism,
following the labelling scheme given above.

a. Quantum Hamiltonian

We first diagonalize the undriven (A = 0) Hamiltonian
by transforming to the basis {|0) = (|L) —|R))/v/2,[1) =
(|L)+|R))/v/2}. The resulting semiclassical Hamiltonian
is given by

Hsemi = Ho + Veos(2r ft), (B3)

where Hg = —Aoc,. Here, the driving term V = Ao,
is transverse, and we identify the qubit energy levels as
EO = —A and E1 = +A

Next, we extend the quantum dot Hamiltonian to
include photons, writing Hqom = Hdot + Hph + Vint-
Here, the uncoupled dot Hamiltonian is given by Hqot =
> ico.1 Eili) (1] ® Iy, the uncoupled photon Hamiltonian
is given by Hpn = Iqot ® hfa'a, and the interaction term
is defined as Vine = Vot ® (a' 4+ a). We determine the
relation between Vit and V' through the semiclassical
correspondance principle of Eq. (6):

(| Vit @) =Viaor (™™ + ape™ 27 )
=2|avo|Vaos cos(2m ft + ¢),

where we use the definitions a|a) = e~ fagla) and
ao = |agle™ ™. Note here that the phase ¢ determines the
phase of the driving term in Eq. (B3), which in turn de-
termines the rotation axis of the resonant gate operation
in the z-y plane. In experimental settings, by conven-
tion, we define ¢ = 0 at the first application of a resonant
gate, which corresponds to an X-rotation. In subsequent
applications of the resonant gate, the phase ¢ can be
modified to provide other rotation axes in the z-y plane.
Henceforth in this work, we will set ¢ = 0 for simplicity,
so that cg = |ap|. Finally then, using Eq. (6), we make
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the identification Vaoy = V/2V/N. Since N = (ala’ala),
we then have

<a|HQM|a> = Hgemi + Nhf. (B4)

Finally, we evaluate Hqu in the {]i,n)} basis. To
simplify the calculation, we note that coherent states
involve a superposition of many photon number states,
|n); however the predominant modes occur in the range
n € [N — AN,N + AN], where AN/N <« 1. We can
show that this range is indeed very narrow by noting
from Egs. (4) and (5) that the probability of being in a
state |n) is given by

_

P(n) =|(nfo)]* = ™" —, (B5)

corresponding to a Poisson distribution with a peak at
n = N, and a width AN defined by

(AN)? = (a|(N = N)*|a) = N. (B6)

The limit N > 1 is appropriate for gate-driven fields,
yielding AN/N = 1/v/N < 1. We may therefore sim-
plify the following calculations by replacing n — N.

In this way, we obtain

(i,m|Vaora'|j,n) = (j, m|VaosVn + 1]i,n + 1)

{
(

= i|Vdot|j>|o‘0‘6m,n+1 (B7)
2 n+1,
and similarly,
. . Vij
(i, m|Vaotalj, n) ~ 7(5m,n,1. (B8)

The individual terms in Hqm can then be expressed as

(i,n|Haotld, m) = Ei 8 j0n,m, (B9)
<i7 n‘prhba m> = ’I’th 6i,j5n,ma (BIO)

. . Vij
(Zv n“/intba m> = J(én,erl + 5n,m71)- (Bll)

2

Equations (B9)-(B11) describe a band matrix with “tri-
block-diagonal” form. These general results apply to any
driven two-level system, and do not depend specifically
on the control parameter being driven. For the case of a
transversely driven Hamiltonian, as described above, we
have V01 = V10 = A and V()() = V11 =0.

To summarize this subsection, we have extended the
semiclassical Hamiltonian of Eq. (2) to a full quantum
model given by Eq. (7) for the two-level system spanned
by i = 0,1. Although Hqu is infinite-dimensional, it
is instructive to write out a small portion of the full
matrix. For the basis states S = {|0,n — 1),|1,n —
1),10,n),|1,n),|0,n+1),|1,n + 1)}, we have



Eo+ (n— )if 0 0
0 Ert (n—Dhf  A)2
0 A2 Ey+nkf
Hs A/2 0 0
0 0 0
0 0 AJ2

Here we see that the Hamiltonian is sparse, since
the Vin¢ only changes the photon number by one:
(i,n|Haqm|j,m) = 0 when |n —m| > 2. As noted above,
we are mainly interested in the portion of Hqwm with
n~N.

b. Block Diagonalization of the Dressed-State Hamiltonian

In this step, we first identify the nearly degenerate g,
manifolds of Hqwm, as illustrated in Fig. 2, whose widths
and separations are defined as Fintra and Fipger. We as-
sume the system is driven near its single-photon reso-
nance condition, defined as hf ~ E; — Ey. The appropri-
ate choice is g, = {|0,n + 1),|1,n)}, where

|(E1 + nhf) — (E() + (TL + 1)hf)| = Finira < hf, (B].?))

while
(Bvnhf) = (Eg+(m+Dhf)| > Buuger, (n # m). (B14)

with Einter - hf - Eintra~

The term Vi, provides the coupling between differ-
ent g, manifolds, as indicated in Eq. (B12). We now
block diagonalize Hqnm into the perturbed manifolds
Gn = {|0,n + 1), |1,n)} using the Schrieffer-Wolff decom-
position method [63, 71]. To second order in the small
parameter A/hf, we obtain Eq. (10), with

%n = ﬁblock + nhf

_ (Eo+ (n+1)hf -5 A/2
—< P E1+nhf+6)’ (B15)
and
0,74+ 1) = [0,n+ 1) —v[1,n +2), (B16)
IT,n) = [1,n) +~[0,n — 1). (B17)

At this level of approximation, the the energy level
shifts due to strong driving are given by +3, where
B = (A/2)%(E;— Eo+hf)~!, and the manifold hybridiza-
tion factor is given by v = (A4/2)(E; — Eo+hf)~!. These
represent leading order corrections to the RWA; addi-
tional corrections can be obtained, if desired, by apply-
ing the Schrieffer-Wolff approximation to higher orders.
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AJ2 0 0
0 0 0
0 0 A/2
Ey +nhf A)2 0 (B12)
A/2  Eo+ (n+1)hf 0
0 0 Ey + (n+ 1)hf

(

Resonance occurs when the diagonal elements of H,, are
equal: (H,)oo = (Hn)11. Hence,

hfres = E1 — Eg + 20, (B18)
where hfy = E; — Ey is the bare resonant frequency,
and we identify 2/ as the Bloch-Siegert shift. As is well
known [19, 21], the energy denominator in 3 is given ap-
proximately by 2hf. Here, the factor of 2 occurs because
the term arises from the counter-rotating term in the
drive.

c. Time Evolution of Manifold gn
Since Hplock is time-independent and the manifolds are
decoupled, the evolution operator for manifold g, is sim-
ply given by
i
U, (t) = exp [h(Hblock =+ nhf)t}

— exp [_i <Eo+hf+El n nhf> t}

h 2
X [cos(7 fRabit) — ¢ SIn(T fRabit) (T 2n €08 0 + 04y sin 6)],
(B19)
where
2 2
fRabi = i\/{(EOHg)El - ﬁ} + [/21} ,  (B20)
cosf = [(Eo + hf) — E1 —20], (B21)
hfRabi
. A
sinf = T (B22)

and the Pauli operators o, and o, refer specifically
to the g, manifold, whose basis states are given by
Egs. (B16) and (B17). Note that when the qubit is
driven resonantly at f = fies, the Rabi frequency re-
duces to hfrani = A, representing the standard Rabi re-
sult. Hence, the Rabi frequency does not acquire any
strong-driving corrections at this level of approximation.

d. Semi-classical Fvolution Operator

We now evaluate the evolution operator in the bare-
state basis, {|i,n)}. We proceed by inverting Eqs. (B16)
and (B17) and assuming resonant driving, yielding
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Uqmil0,n 4+ 1) = Ui (10, + 1) + |1, n +2)) = U, [0, + 1) + 70U, 12|, + 2)

i ( Eq+hfres+E 7
I L

+76,% (E0+hf§es+E1 +(n+2)hfres)t[

i [ Eq+hf E 7
_ e_ ;( + f;es+ L 4 nhfres

where = 27 frapi. Similarly,

UQM'la n> = 67% (E0+hf;CS+E1 +nhfres

+v(1 —

In Eqgs. (B23) and (B24), we note that if the system is
initially in a state with a fixed photon number, then over
time it will diffuse into many different photon states.
However, we now show that if the initial state is a coher-
ent state, then it will remain in the same time-evolved
state. (Indeed, coherent states are designed to have this

property for large IV, due to their correspondence to clas-
sical fields [21].)

The coherent state at t = 0 can be written as

a(t =0)) =Y caln), (B25)
where from Eq. (4), we have
cn=e N2 /Nn/nl (B26)

Here again, we have chosen the phase of ag such that ¢ =
0. In the bare-state basis, the time-evolution operator
can be expressed in the general form

UQM(t)|i, n> = e_inQﬂ'ﬁ Z Bij,mlja n -+ m)

Jim

(B27)

)t [cos(Qt/2)|0,n 4+ 1
—irysin(Qt/2)[0,n — 1) — iye 4Tt 5in(Qt/2)0, 1 + 3) | ,

)t [cos(Qt/2)|1, n) — i sin(Qt/2)0,n + 1)
e lest) cos(Q/2)|0,n — 1) + iy sin(Qt/2)[1, n + 2) + iy et sin(Qt/2)[1,n — 2) | .

) cos(Qt/2)[0,n + 1) — isin(Qt/2)|T, n)]

cos(Qt/2)|1,n + 2) — isin(Qt/2)[0, n + 3)]

—isin(Qt/2)|1,n) — (1 — e_i4”f*est) cos(Qt/2)|1,n + 2)
(B23)

(B24)

(

For the current example, the tensor B;; ,,, corresponding
to Egs. (B23) and (B24), is

i [EofhfrcﬁEl ]
2

Bgoo =€ " " cos(Qt/2),

i 7L[Eo*hf_res+E1:|t .
Byo,—2 = —ie " 2 v sin(Qt/2),
_ i [Bo=hfres+E o
Byo 2 = —ie h[ 3 l]t'ye*“l“frest sin(2t/2),
71[E0*hrf_res+E1:|t .
BOl,—l =—ie " 2 sm(Qt/Q),

i {Eo—hf}oﬁm }t
2

By =—¢ " (1

Eq+hfres+Eq ]t
2

o 67i47l'frest) COS(Qt/2)7

Big_1 = 67%[ (1 — ei4”frest) cos(Qt/2),

. L:[Eo+hf“ms+E1]t i
Bip1 = —ie * 2 sin(Q2t/2),
i [E0+hfres+E1]t
Biig=e " 2 cos(Qt/2),
i [ Bo+hfres+Eq

By, = ie #[ 2 ]tyei4ﬂ<fresfsin(§2t/2),

i |:E[)+h.fres+E1]
2

b~ sin(Qt/2).

Using Egs. (4) and (11), it is now easy to show that
the semiclassical time evolution is given by

Usemili) =(a(t)|Uqnli, (0))

=2 leaf?

n,m,j

127 frest Bijmlj). (B28)

Cner
Cn

Using Stirling’s approximation and Eq. (B26), it is also
easy to show that

m? +2m(n — N)
4N

Cn+m
Cn

‘ ~ exp [— ] ~1, (B29)

where we have taken n ~ N and m < N. Finally, noting
that > |cn|? = 1, we obtain

Usemi|i> = Z eiQTrmfreStBij,m‘j>~

m,j

(B30)
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FIG. 6. The dynamical evolution of a transversely driven two-
level system under strong resonant driving. Exact numerical
results are shown as thick red lines, while the analytical results
obtained in Egs. (B31) and (B32) are shown as thin white
lines; the square of the difference between the two solutions is
less than 10~ over the whole range of the plot. Here, we take
|0) as the initial state and plot the probabilities Py = |co|? and
P1 = |c1)? of being in qubit states |0) and |1) as a function of
time. The system parameters are given by {Fo, E1, A}/h =
{-10,10,3} GHz, where Ey and E; are the energies of the
qubit states and A is the amplitude of the drive.

Finally, we obtain the time evolution of the trans-
versely driven two-level system, driven on resonance:

Usemil0) = (B31)
cos(Qt/2)[0) — i sin(Qt/2)e 12 Freat |1)
—2iry[cos(Qt/2) sin(27 frest)|1)

+ Sin(Qt/2) cos(27 frest)e 2 51| 0)],
Usemill) = (B32)

2 frest (cos(Qt/2)|1> — isin(Qt/2)e2 =t |0)

1)),

where we have dropped an overall phase term. For each of
these equations, the first line corresponds to the standard
Rabi solution, while the second and third lines represents
strong-driving corrections. If we assume that the system
is initially prepared in its ground state |0), this yields the
following leading-order results for the probability evolu-
tion:

—2iry[cos(2/2) sin(2m frest)|0)
— sin(Qt/2) cos(QWfrest)ei%fmst

Py(t) = |co(t)]? = cos®(Qt/2) — ~sin(Qt) sin(47 frest),
(B33)

Pi(t) = |e1(t))? = sin?(Qt/2) +  sin(Qt) sin(47 frest).
(B34)

Here, we observe the emergence of fast oscillations with
frequency 2 fres and amplitude given by ~ysin(Qt) o« A.
Together with the renormalization of fies by the Bloch-
Siegert shift, these represent the main effects of the
counter-rotating term on the evolution of the two-level
system.

15

Figure 6 shows a comparison of our analytical results,
obtained above, and the corresponding numerical sim-
ulations of the evolution of a two-level system with a
transverse drive. We see that the analytical results pro-
vide an excellent description of the dynamics, including
strong-driving effects.

To summarize: the main (slow) oscillations in Fig. 6
represent the conventional Rabi results. The fine struc-
ture is due to the counter-rotating terms, which are
dropped in the RWA, but which can have a strong ef-
fect on the gate fidelity when the drive is strong. In
principle, the dressed-state method captures all strong
driving effects if we keep all the terms in Hqn; however
we can obtain corrections at increasing orders of approx-
imation by block-diagonalizing larger subsets of the full
dressed-state Hamiltonian, or by including higher-order
terms that arise in the block-diagonalization procedure.
Finally, we note that the results obtained here were sim-
plified under the assumption of resonant driving; how-
ever, more general, non-resonant results can also be ob-
tained in the same manner.

Appendix C: Dressed State Analysis of the
Quantum Dot Hybrid Qubit

We now provide the details of our main results for
quantum dot hybrid qubits, which were summarized in
Sec. ITI B of the main text. We first derive expressions for
the driving matrix V in the large-detuning regime. We
then derive the time-evolution operator Usem; at lowest
order (RWA) and next-lowest order in the expansion pa-
rameter A/hf, using the formalism described in Sec. II B
and Appendix B1. As before, A is the driving ampli-
tude and hf is the energy spacing between the triplet
manifolds. Since analytical results are difficult to ob-
tain, except in special cases, we focus below on the large-
detuning limit. However, we note that the simulations
reported in this paper do not involve such approxima-
tions and are exact, up to numerical accuracy.

1. Driving Matrix in the Large-detuning Regime
a. Tunnel Coupling Driving
As  consistent with Eq. (1), in the basis

{]-:S),|-T),|S-)}, the time-dependent, semi-classical
Hamiltonian with tunnel coupling driving is given by

-5 0 Aq(t)
H=| 0 —5+Esr —Ao(t)], (C1)
Ai(t)  —Ax(t) 5

where A;(t) = Ajp + r;Aq(t) for i = 1,2 and A, (t) =
Acos(2rft). We now consider the far-detuned limit
€ > A1, As, Fst and diagononalize the undriven Hamil-
tonian Hy up to leading order in the small parameter



A;/e, yielding the eigenbasis {|0),|1),|L)} and the cor-
responding energies

e A?

) O — C2
0 2 5’ ( )

€ A2
Ei~—-+4+FEgp— —2 C3
1 2+ ST . (C3)

e A2 A2
B~ 4 2Ly 72 C4
gt e (C4)

which are consistent with Eq. (A6) in the appropriate
limit. We then evaluate the driving term in this basis,
obtaining H = Ho + V cos(2n ft), where

2A A A
— ;07“1 1;7“2 + E_Qg;“}r o]
~ Ajora Agory _ 2A9g7o _
V~A € + e—FEgr e—Egt 2
r —r 281071 | 282072
1 2 € e—FEsT

(C5)
In particular, we see that Vi1 ~ A[Aqgra/e + Agor1/(e —
Egr)], which gives the leading order (RWA) expression
for the Rabi frequency, hfrabi = Vo1, when the qubit is
driven on resonance, as consistent with Eq. (13).

b. Detuning Driving

Similarly, in the basis {|-S),|-T),|S-)}, the semi-
classical Hamiltonian for detuning driving is given by

_ 5+5;C(t) 0 AlO
H= 0 —H%“(t) +Esy —Ay |, (C6)
Aqg —Ay 7E+E§°(t)

where e,.(t) = Acos(2rft). Again assuming the far-
detuned limit, we obtain the Hamiltonian H = Hg +
V cos(2n ft) in the {|0),|1), | L)} basis, with energies given
by Egs. (C2)-(C4), and

V ~ (C7)
1 A _ Ay Ay
2 e? e(e—EsT) €
A A
Al — A1 Ao _1 2 2
e(e—EsT) 2 + (e—FEsT)? 257EST N
A Ay 1_ A7 A
e e—Est 2 e? (e—EsT)?

In this case, we see that Vo1 ~ —AA1Ay/e(e — Egr).
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2. Lowest-Order Results

We now derive the lowest-order (RWA) results for
the quantum dot hybrid qubit, assuming that ¢ >
2.5FEgr [71]. In this regime, we have Fy — Ey ~ Egr
and E; — Fy ~ . Note that the driving matrix V is not
specified here — it can describe tunnel coupling driving
[Eq. (C5)], detuning driving [Eq. (C7)], or even a combi-
nation of the two.

Following our prescription in Appendix B1 for con-
structing dressed states in a three-level system, we ob-
tain results that are lowest-order in A/hf for the per-
turbed Hamiltonian ’;’:ln7~ which acts on the manifold
Gn = {|0,n+1),|1,n),|L,n —k)}. The corresponding
block Hamiltonian is given by

Eo+hf Vo1/2 0
Vo/2  E 0 . (C8)
0 0 By — khf

Holock =

At this level of approximation, we obtain hfy = E; — Ej
for the RWA resonance frequency and Afgrani = Vo1 = A2
for the Rabi frequency.

In principle, the evolution operator for an arbitrary
driving frequency f can be derived. Here, for simplicity,
we assume resonant driving, f = fo; then the evolution
operator in the basis {|0), |1), |L)} is given by

Usemi = (C9)
e Bt cos(Qt/2)  —ie"wEotsin(Qt/2) 0
—ie~ 7Pt sin(Qt/2) e~ w1 cos(Qt/2) 0

0 0 e i P

We note that this operator includes no coupling to the
leakage state. There are two reasons for this decoupling.
First, since € > 2.5FEgT, we must have k > 2; however Vi,
only couples states that differ by one photon. Second, the
hybridization of dot states is unimportant at this level of
approximation. As a result, the leakage state in Eq. (C9)
remains decoupled for all times. (This is not true for e <
2.5Egt, however.) Within the logical subspace {|0), |1)},
Eq. (C9) thus describes the conventional Rabi result, and
does not include any strong-driving corrections.

3. Second-Order Results

We now present next-order results for the quantum
dot hybrid qubit, assuming € > 3.5Fg7. At this order,
we obtain

R Eo+hf + 5o Voi/2 0
Hblock = Voi/2 Ey+ B 0 ;
0 0 Er — khf + ﬁL
(C10)
where
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ﬂ _ ‘/021 + VO2L 4 VEO (Cll)
O T 4(Eo—Ei—hf) " 4(Eo—EL—hf)  4(Eo— Er + hf)’
V021 V12L V[?l
= , C12
A H—Bot BEr 4 1f) T 4B —E —hf) " HEBr = Er + 1)) (C12)
ﬁL — VOQL V[%O V12L Vgl (013)

H—Fot EL+1f)  4(—Bo+ Er—Nf) 4B+ Er+hf)  H—Fr + EL — )

(

are the Bloch-Siegert shifts. The resonant driving fre-  while the Rabi oscillation frequency is still given by
quency is now given by hfies = E1 + 81 — Eo — Bo,  hfrabi = Vo1 = AL
At this order, the perturbed manifold is given by

~ Voo Voo Vo1
1) = 1 — - — 2)— ——«——— 11 2 14
VOL VOL
_ L,n)— Ln+2
2(EL—Eo—hf)| ) 2(EL—Eo-i-hf)| )
. Vi Vi Vi
|17n>:|1,n>+m_—;%_i_]#)|0,n—l>+ﬁ|l7n—l>—ﬁu,n—i—l) (C15)
VlL ‘/1L
_ Ln—1)— Lin+1
2(EL—E1—hf)| ) 2(EL_E1+hf)| )
\Ln—k)=|L,n—k)+ Vio 0,n —k—1) + Vio 0,n — k+1) (C16)

2(Er, — Eo + hf) 2(Er, — Eg — hf)
Vi1
Ln—k—1
+2(EL—E1+hf)| " )+

Vi1
2(Er — E1 — k)

Vir
ohf

Vio
ohf

1,n—k+1)+ |L,in—Fk—1)— |L,n—k+1)

Again, for simplicity, we assume resonant driving at f = fres. The matrix elements of Usep; are then given by

i Voo sin(2 ~rest —# (Botfo)t
e~ 7 (Bot00)t g0t /2) — i~ Sin(2r hf) - cos(2t/2)
0

sin(Qt/2), (C17)

(Usemi)oo

Vo1 co8(27 frest) €~ 1 (E1H51)1E
- Er — Eo + hfo
Vi1 Sin(27 frest) €~ 1 (ErB11E
hfo

cos(Qt/2), (C18)

(Usemi)1p = —ie~ F(F1HA sin(Qt/2) —

sin(Qt/2)

Vo1 Sin(Qﬂ'frest) e_%(EO'i‘ﬁo)t
— .
El - EO + ]Lfo

Voo Sin(?wfrest) e~ (Bo+Bo)t

hfo
cos(2t/2), (C19)

(Usemi)gy = —ie™ 7 FotBo)t sin(Qt/2) — sin(Q¢/2)

Vou Sin(2ﬂfrest) e~ # (E1+B1)t
i '
Ey — Eo + hfo

VA1 Sin(27 frest) e~ 5 (E1+PL)E

(Usemi)1; = e~ H (Bt cos(Qt/2) —i o cos(Qt/2)
0

sin(2t/2), (C20)

Vo COS(27Tfrest) e~ 7 (Eo+Bo)t
2
El - E() + h/fo
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corresponding to the evolution within the logical subspace, {|0),|1)}. The leakage state evolves according to

(Usemi) o = (2(E‘fiengrj;fo) + 2(;7/0“)—612?_]&2;0)> e (BotBo)t ¢og(Qt/2)

h (%EYIfe;Zﬁ—CS;fo) ’ 2(27/—E—f|rhf>> e F PP sin(Q2/2)

i (2(—130 +%J§L ) T 2(—E, +V§50L - hf0)> e RELHAL, (C21)
(renin = <2<E?ieszf52fo> * E O—e_Ez—fkhfo)> e R sin(2t/2)

: (%EYMi%itzfo) * 2(;1“6;?;;0)) T et

i <2(—E1 +V;L Tl 2B +ng - hf0)> e HELHILL (C22)

For brevity here, we have omitted the terms (Usemi)y;,,
(Usemi)1p,» and (Usemi ) 1., since they play a relatively mi-
nor role when the qubit is initialized into the logical sub-
space.

We can visualize these results more clearly by consid-
ering a qubit initialized into state |0). In this case, to
lowest order in A, the solution for the probabilities of
being in the qubit states, Py and P;, are given by

Py = |co|* = cos?(0t/2) (C23)
Vou . . z
5B By L) sin(2¢) sin(47 frest),
Py = |e1|? = sin?(Qt/2) (C24)
+ Vou sin(Qt) sin(47 frest).

2(Ey — Eo + hfo)

The solution for the leakage state, Py, is oscillatory and
proportional to A2%; however, its form is rather com-
plicated and we omit it here for brevity. Similar to
Egs. (B33) and (B34) for the two-level system, we again
observe Rabi oscillations at frequency /2w, which are
modulated by fast oscillations of frequency 2fres, orig-
inating from the counter-rotating term. We note that
fast oscillations of Py and P; at leakage frequencies,
f = (EL — Eo)/h,(EL — E1)/h, only arise at O[A?],
and are therefore much smaller. If the leakage state
becomes appreciably occupied however, such oscillations
would also be observed with amplitudes of O[A]. Prob-
ability oscillations calculated in this way are plotted in
Fig. 3(a), keeping corrections up to higher order in A.
We see that the analytical results from our dressed-state
theory are generally quite accurate. As before, we also
note that although the results here were obtained for the
special case of resonant driving, the general evolution op-
erator corresponding to arbitrary frequencies can also be
derived by the same method.

From Egs. (C21) and (C22), we see that oscillations
of Pp, occur at relatively high frequencies correspond-
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FIG. 7. Simulation results for the infidelity, 1—F', of an X ro-
tation, obtained by driving the detuning. The results should
be compared to Fig. 5(c), where tunnel coupling driving was
used. In both cases, we assume the same control parame-
ters, Est/h = 12 GHz and {e, A1,A2} = {6,0.7,0.7} Esr.
The colors and line styles also have the same meaning as in
Fig. 5(c), with one exception: in Fig. 5(c), the dashed lines
corresponded to including strong-driving corrections for fres
and frabi up to O[(A/hf)?], while here, we include corrections
up to O[(A/hf)"].

ing to leakage, as consistent with the results observed
in Fig. 3(b). This behavior can be traced back to the
hybridization of leakage and logical states in Eq. (C16),
since there are no direct couplings between leakage and
logical states in Eq. (C10). Here, the evolution of the
leakage state is fully coherent, since noise is not included
in the model.
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FIG. 8. Simulation results for the infidelity, 1 —F, of an X /o
rotation, using (a) tunnel coupling driving, and (b) detuning
driving. The simulation parameters used here are the same
as those mentioned in Figs. 5(c) and 7, where X, gates were
investigated. The colors and line styles here have the same
meaning as those figures.

Appendix D: Detuning Driving

In Figs. 3 and 5 of the main text, we plot results
based on tunnel coupling driving. In this Appendix,
we perform simulations using detuning driving. The
calculations use the control parameters Egp/h = 12
GHz and {e,A1,As} = {6,0.7,0.7} EsT, which are the
same as those used in Fig. 5(c¢), and correspond to the
large-detuning regime that is commonly used in experi-
ments, since it affords partial protection against charge
noise [23]. Here, we use the same pulse shapes defined in
Egs. (16)-(18). However, the pulse amplitudes are chosen
to keep the gate times fixed for all the different simula-
tions. As before, we perform the simulations with or
without strong-driving corrections for frapi and fres [72].
The resulting process fidelities for X, gates are plotted
in Fig. 7.

The overall trends in Fig. 7 are similar to those ob-
served in Fig. 5(c). However there are at least two im-
portant differences, which can both be attributed to the
same physics: (1) the detuning driving fidelities are typ-
ically lower (i.e., the infidelities are higher), compared
to tunnel coupling driving at comparable gate times,
(2) the order of the strong-driving corrections needed to
achieve high-fidelity gates is higher for detuning driv-
ing (O[(A/Rhf)*]), compared to tunnel coupling driving
(O[(A/hf)?]). Both of these effects arise from the fact
that the Rabi frequency scales as (A; 2/¢)? for detuning
driving, while it scales as (Aj2/¢) for tunnel coupling
driving. In the large-detuning regime, detuning driving
therefore causes much slower gates for the same driving
amplitude. Since gate times are held fixed in our simu-
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lations, detuning driving therefore requires us to apply
larger driving amplitudes A to compensate for the gate
speeds. In turn, the stronger drive induces gate errors
and reduces the fidelity. Similarly, higher-order correc-
tion terms have a stronger effect in Fig. 7 due to the
stronger drive.

In conclusion, for the different detuning-driving scenar-
ios shown in Fig. 7, we find that only smoothed rectan-
gular pulses with strong-driving corrections provide gates
with relatively high fidelities at short gate times. For a
gate time of 1 ns in these simulations, the observed fi-
delity is better than 99%, while for a gate time of 2 ns,
the fidelity improves to 99.99%.

Appendix E: X/, gates

In this Appendix, we perform simulations to determine
whether the specific choice of gate operations can affect
the fidelity results. In contrast with all other simulations
up to this point, we now investigate the process fidelity
of X7 /2 gates. We also consider tunnel coupling driving
as well as detuning driving.

For X5 gates, the ideal evolution operator can be
expressed in the lab frame as

1 —iFEgt i —LEgt
—_ R g _—— h 9
Vet = | V27 . v (E1)
ideal = i — LBt 1 —iEt ’
——e nllg —e nltg
V2 V2

where {Ey, E1} = {Ey, F1} in the RWA approximation,
and {EO, El} = {Ey + Bo, E1 + p1} if we include strong-
driving corrections. As consistent with our previous sim-
ulations, the Bloch-Siegert shifts (8y and £1) and the
modified resonance and Rabi frequencies include correc-
tion terms up to O[(A/hf)?] for tunnel coupling driving,
or O[(A/hf)*] for detuning driving.

The results of these X/, simulations are shown in
Fig. 8. The general trends are similar to those observed
in Figs. 5(c) and 7 for X, gates. Overall, we see that
fidelities are improved for X, gates, which can be ex-
plained by the fact that, for the same driving amplitude
A, an X/, gate should take about half as long as an
X gate. Hence, for a fixed gate time t,, the X/, gate
requires a smaller driving amplitude, which in turn im-
proves its fidelity. To conclude, we find that X, gates
with ¢, = 1 ns and fidelities > 99.99% can be achieved us-
ing a variety of schemes for tunnel coupling driving, but
still require smoothed rectangular pulses with high-order
strong-driving corrections for detuning driving.
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