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In this letter we introduce a novel approach to Hamiltonian tomography of non-interacting tight-
binding photonic lattices. To begin with, we prove that the matrix element of the low-energy
effective Hamiltonian between sites α and β may be obtained directly from Sαβ(ω), the (suitably
normalized) two-port measurement between sites α and β at frequency ω. This general result enables
complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice
networks by spectroscopy, and suggests that coupling between lattice sites is a topological property
of the two-port spectrum. We further provide extensions of this technique for measurement of
band-projectors in finite, disordered systems with good band flatness ratios, and apply the tool to
direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary
potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a
clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard
lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of
linear networks from photonic crystals to microwave lattices and everything in-between.

I. INTRODUCTION

The curse and blessing of synthetic quantum materials
is the control these systems afford. This control enables
access to near-arbitrary lattice geometries [1–4], tunable
interaction range [5], and all variety of state/phase prepa-
ration and readout techniques [6–8]. The challenge is
that every added degree of control provides another op-
portunity for disorder to creep in, substantially altering
the anticipated many-body physics. A variety of ap-
proaches have been developed to control disorder, rang-
ing from projection of corrective potentials onto cold
atoms [9] to improving lattice fabrication in supercon-
ducting circuits [10] and 2DEGs [11]. Indeed, as fabrica-
tion techniques have improved in 2DEGs, the accessible
fractional hall landscape has opened for study of immense
array of exciting topological phases, and it seems other
synthetic material systems could follow a similar trend.

If disorder is to be corrected site-by-site, it must be
characterized locally. This task is challenging, because
information about the onsite energy of a lattice site and
its tunneling rates to its neighbors are encoded non-
trivially and non-locally in the eigen-value/vector spec-
trum of the system. In the case of a 1D tight-binding
chain, the reflection spectrum off of the system end is
sufficient to extract the full non-interacting Hamiltonian
(see [12] and Appendix B). For a 2D lattice of known
topology, it is possible to make measurements along
a 1D boundary to extract the Hamiltonian parameters
[13], with sufficiently high signal-to-noise. Here we point
out a unique opportunity to employ direct spectroscopic
tools to extract particular desired matrix-elements of the
single-particle Hamiltonian. Building on prior theoretical
work connecting sum rules to linear response measure-
ments [14], we describe a general technique for resolv-
ing matrix elements of an arbitrarily connected Hamilto-
nian between lattice sites via simple two-port transmis-
sion and one-port reflection (local density of states) mea-
surements. We then extend the technique to robust mea-

surement of band projectors and Chern numbers, supple-
menting prior works that rely on physically modifying the
lattice structure [15, 16], or dissipation-calibrated mea-
sures of transverse displacement [17].

II. THEORY OF LATTICE SPECTROSCOPY

A. Formulae for Arbitrary Linear Networks

Suppose that we would like to characterize a non-
interacting network of lattice-sites in the site-basis, by
answering specific questions like “what is the energy cost
to put a particle on site α?” or “what is the tunnel-
coupling between sites α and β?”. One might attempt
to characterize the full lattice by performing two-port
measurements between all pairs of sites (m,n), and then
fitting the results with an analytic model to extract the
underlying lattice parameters. This works in principle,
but generally is highly susceptible to noise and requires
O(N2) measurements (except in the 1D case, see Ap-
pendix B); here we prove that the information for matrix
elements of the Hamiltonian Hαβ is entirely encoded in
the frequency-dependent two-port measurement Sαβ(ω)
between only the two sites α and β of interest, by con-
necting experimentally measurable quantities in linear
photonic lattices to theoretical results for sum rules of
response functions [14].

Let the system Hamiltonian be given by (in what fol-
lows we set ~ = 1):

H =
∑
l

(ωl + iκl/2)a†l al −
∑
α6=β

tαβa
†
αaβ (II.1)

where a†α(aα) creates (destroys) a photon on site α, tαβ
is the direct tunnel-coupling between sites α and β, ωl
is the energy cost to place a photon on site l, and κl is
the linewidth of a photon on site l including contribu-
tions from both internal loss and loss from out-coupling.



2

We have employed a non-Hermitian Hamiltonian formal-
ism which applies in the weak-driving limit [18–20]. In
this limit, the resonator transmission (S-matrix) between
sites α and β at frequency ω is given by [21, 22]:

Sfull
αβ (ω) = δαβ − i

√
καc κ

β
c × 〈α|

1

ω −H
|β〉 (II.2)

Here |l〉 (for l ∈ (α, β)) is the quantum state with a sin-

gle photon at site l: |l〉 ≡ a†l |0〉, where |0〉 is the vacuum
state. We have assumed that our physical system always
has out-coupling at every site; the part of the resonator
loss at site l, κl, that arises due to out-coupling rather
than internal loss, is labeled κlc. This quantity is entirely
real - imaginary out-coupling would be a shift of the res-
onance, and this effect is incorporated into the resonator
frequency ωl. For the rest of this paper, we consider the

offset-corrected S-matrix Sαβ ≡ Sfull
αβ − δαβ , where the

contribution from direct reflection has been subtracted.

Before proceeding, it is worthwhile to take a moment
to outline the realm of validity of our approach. For a
truly linear system such as the one described above, the
drive strength may in fact be arbitrarily large, so long
as Sαβ is re-interpreted as a two-point measurement of
creation and annihilation operators, rather than single-
photon states[23]. More generally, however, we aim to
employ this method to quantify the linear properties of
strongly non-linear systems [24], in which case it is suffi-
cient to require that the probe Rabi frequency be small
compared with the smallest κi in the system: otherwise
the system will be populated with multiple excitations,
and the linear Hamiltonian would no longer be sufficient.
We furthermore assume that the manifolds with well-
defined excitation numbers are isolated from one another:
that is, there should be no accidental degeneracies be-
tween manifolds with n and m excitations, for n 6= m, as
these could be mixed by a nonlinearity thereby breaking
the approximations that give rise to simple connection of
equation II.2 between the S-matrix and the Hamiltonian.

With these considerations in mind, we examine
Pr(

∫
ωSαβ(ω)dω), which diverges without the Cauchy

principal value Pr(). To perform the integration, we em-
ploy the following definitions: |µ〉 is the single-photon
eigenstate of H with eigenvalue εµ, and 〈ν| is the element
of the dual space to |µ〉 defined such that 〈ν|µ〉 = δµν ;
note that 〈ν| 6= [|ν〉]†, because H is not Hermitian, so the

matrix of eigenvectors is not unitary. We can then write:∫
ωSαβ(ω)dω

=− i
∫
ω

√
καc κ

β
c × 〈α|

1

ω −H
|β〉dω

=− i
√
καc κ

β
c

∫
ω〈α|

∑
µ

|µ〉〈µ|
ω − εµ

|β〉dω

=− i
√
καc κ

β
c 〈α|

∑
µ

[∫
ω
|µ〉〈µ|
ω − εµ

dω

]
|β〉

=− i
√
καc κ

β
c 〈α|

∑
µ

[∫
(1 +

εµ
ω − εµ

)|µ〉〈µ|dω
]
|β〉

=− i
√
καc κ

β
c 〈α|

[
W + iπ

∑
µ

|µ〉εµ〈µ|

]
|β〉

=− i
√
καc κ

β
c (W 〈α|β〉+ iπ〈α|H|β〉) (II.3)

Here W is the range of integration, and the sum
only includes poles within this range. We have further
assumed that the total bandwidth of the features un-
der consideration is a small fraction of the center fre-
quency, allowing us to assume the losses κ are frequency-
independent; more sophisticated techniques are required
for truly broadband experiments [25, 26], or for dissipa-
tion into structured continua. To extract the coupling
strengths κα,βc , we must also measure the 1-port reflec-
tions Sαα(ω) and Sββ(ω). An analogous calculation re-
veals that

∫
Sαα(ω)dω = πκαc (see appendix C), allowing

us to write:

〈α|H|β〉 =

∫
ωSαβ(ω)dω√(∫

Sαα(ω)dω
) (∫

Sββ(ω)dω
) − W 〈α|β〉

iπ

(II.4)

Thus we see that the matrix element of the Hamilto-
nian that couples a single photon in site α to site β is
given by the expectation of frequency weighted by the
two-port measurement (as measured by a vector network
analyzer, for example) between those two sites, prop-
erly normalized by one-port reflection measurements. If
α 6= β, then such a measurement provides the tunneling
matrix element tαβ , including its phase. If α = β, this
is an offset-subtracted reflection measurement, and it re-
sults in ωα + iκα/2, the onsite energy at site α, with the
imaginary part providing the onsite resonator linewidth.
For sites which are not directly connected, the measure-
ment will result in a zero value. It is somewhat surprising
that sites which are coupled through the network, though
not directly, yield zero for the integral – this suggests that
there is a hidden topological property in the frequency-
dependent two-point measurement between non-directly-
connected sites.

The power of this approach is clear: even with a
tremendous number of modes (approaching a contin-
uum), the bare frequency of a single resonator, or the
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tunnel coupling between a pair of resonators, can be di-
rectly extracted from 1- or 2- port frequency dependent
measurements. This provides a robust linear method for
estimating matrix elements of the Hamiltonian that is
much less sensitive to noise than other methods involving
e.g. fitting of all coupled modes. Handling the logarith-
mic divergence of the integral (formally taken care of via
a Cauchy principal value) requires some care, however,
and we suggest two approaches:

1. In small lattices, where the individual normal
modes are spectrally resolved, the integrals may be
performed by identifying and fitting the individual
resonances in the one/two port measurements, and
then evaluating the integrals as sums over said res-

onances (here Aαβl , φαβl , ωαβl γαβl are the parame-
ters resulting from the fit to the observed (offset-
corrected) two-point spectrum between sites α and
β, Sobs

αβ (ω)):

Sobs
αβ (ω) =

∑
l

Aαβl eiφ
αβ
l

1 + i
(ω−ωαβl )

γαβl /2

Nα ≡
∫
Sobs
αα (ω)dω

=
π

2

∑
l

Aααl eiφ
αα
l γααl

Xαβ ≡
∫
ωSobs

αβ (ω)dω − W 〈α|β〉
iπ

√
NαNβ

=
π

2

∑
l

Aαβl eiφ
αβ
l γαβl (ωαβl + iγαβl /2)

〈α|H|β〉 =
Xαβ√
NαNβ

(II.5)

2. In larger lattices, where the individual modes can-
not be spectrally resolved, the integrals may be ex-
plicitly computed from the observed spectra, taking
care to symmetrically cut off the tails at low- and
high- frequencies, to cancel the logarithmic diver-
gence of the integration (see Fig. 1). Note that this
cutoff need not be perfect, especially for the nor-
malization terms (coming from reflection measure-
ments), where the divergence is logarithmic. On
the other hand, the integration in equation II.4 di-
verges linearly for on-site matrix elements (α = β)
of the Hamiltonian, so it is crucial to subtract off
the integration-range dependent correction given
by the second term.

In both cases, it is assumed that Nα,β are real; er-
rors from finite integration region and imperfect center-
ing could render them complex, and so we assume that
the imaginary part of the integration is simply discarded
(see Appendix C). On the other hand Xαβ are assumed
complex: for Xαα, the real part arises from the on-site
energy, and the imaginary part from on-site loss; for com-
plex Xαβ with β 6= α, this corresponds to either a phase

ω

ln
|S
ij(
ω
)|

FIG. 1. Truncation of integration region. To avoid
the divergence in the integration of the tails of the transmis-
sion and reflection spectra, the symmetric tails of the spectra
should be identified by the locations in the spectra where the
lattice response has reduced to a simple Lorentzian, decay-
ing as 1/∆ (for Sαα; the decay is 1/∆2 for Sαβ , α 6= β),
and their values are identical. Here ∆ is the detuning of the
probe frequency to the manifold of resonances being consid-
ered. The integration then should only be performed between
these two points (area in gray), and the divergence of the tails
(area in gray stripes) will then cancel. In practice, choosing
the cutoff location is a trade-off between ensuring that one is
far enough from the resonant features to be in regions with
1/∆ (or 1/∆2) decay, but not so far out that other resonator
modes (corresponding to parasitic resonances outside of the
effective model as shown at the left, or other bands within
the effective model) become important. The impact of these
other modes on the integration can be further reduced using
the technique outlined in Appendix A.

on the tunneling term if Xαβ = (Xβα)∗, or lossy tun-
neling if Xαβ = −(Xβα)∗, and a general term may be
decomposed into a combination of the two.

Note also that low-area peaks contribute in proportion
to their area to the value of measured Hamiltonian ma-
trix element, so finite signal to noise ratio is likely not
a fundamentally limiting factor in the same way that it
would be if one attempted to use many transmission and
reflection measurements to fully invert and extract the
lattice Hamiltonian; missing a small peak makes invert-
ing the Hamiltonian fundamentally impossible, while it
produces errors in spectroscopy of a particular matrix
element on the order of that peak’s fractional area.

Particular care must be taken in the calibration of
phases in spectroscopy: Any physical coupler will likely
introduce additional frequency dependent phase varia-
tions to the spectra, arising from the structure of the
coupler itself. This prohibits a high-accuracy calibration
of the κc’s, which would necessitate detuning a single cav-
ity from its neighbors, or removing the tunnel couplers to
its neighbors, so that the cavity’s frequency and linewidth
are directly observable as a single resonance peak. The
phase variation can then be obtained from the measured
reflection spectrum, and subsequently used to calibrate
all other spectra.
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As a simple demonstration of this technique, we
consider a three-site tight-binding model, as shown in
Fig. 2(a, inset), where the outer two sites are tuned to
frequency ω0 − δω/2, and the central cite is tuned to
frequency ω0 + δω/2; the outer two sites are coupled to
the central cite with a tunneling energy J . Figure 2(a)-
(f) show computed reflection and transmission spectra
S11, S22, S33, S12, S23, and S13, respectively. As ex-
pected the outer two sites hybridize through an effec-
tive second-neighbor coupling ∼ J2/δω, while the central
site’s resonance is detuned by ∼ δω. For δω =100 MHz,
J =25 MHz, Fig. 2(g) shows the on-site energy 〈1|H|1〉
extracted via the tomography technique from the pre-
ceding section, as the upper limit of integration is var-
ied. It is apparent that the site-energy converges to
within ∼ J2/δω of the correct value as soon as the in-
tegration region includes the low-energy doublet, and is
further corrected as the region passes across the isolated
(and small) high-energy resonance. To extract 〈1|H|2〉,
Fig. 2(h) shows the tomography result as a function of
the upper limit of integration; once all resonances are in-
cluded, this value converges to J , as anticipated. Finally,
Fig. 2(i) shows the tunneling matrix element 〈1|H|3〉 as
a function of the upper limit of the integration; for a
range that only includes the doublet, the tomography
procedure yields a result proportional to the second-order
tunneling rate of J2/δω (though this precise value is not
obtained: the probed lattice-sites are not the “Wannier
functions” of the effective theory once the central site has
been adiabatically eliminated, and thus there are correc-
tions, see Appendix A); once the high-energy resonance
is included, the true tunneling rate of zero is recovered.

B. Band Projectors and Real-Space Measurement
of the Chern Number

An emerging goal in synthetic topological materials is
to characterize their topological invariants. While the
Hall conductivity is the method of choice in solid state,
transport measurements can be challenging in synthetic
systems, particularly those where the “charge carriers”
are bosons rather than fermions. Furthermore, such sys-
tems are typically subject to both disorder effects, and
the impact of finite size/boundaries, both of which break
the translational invariance necessary for application of
the TKNN formula [27] for the Chern invariant. In a
seminal work [28], Kitaev proved that the Chern num-
ber could be computed for a disordered system, so long
as the disorder is small enough that the bands remain
spectrally isolated from one another. In this case, one
may define a projector into band µ with matrix elements
between lattice sites α and β:

Pµαβ ≡ 〈α|

 ∑
n∈Bandµ

|n〉〈n|

 |β〉 (II.6)

δω

50
0

δω

25
0 20

0

δω

ω ωω

FIG. 2. Three site spectroscopy. (a)-(c) Reflection spec-
tra of sites 1,2, and 3, respectively of a three-site tight-binding
chain, whose outer sites are at equal energies, while the cen-
tral site is detuned (a, inset). (d)-(f) Transmission spectra
for 1-2, 2-3, and 1-3, respectively. All spectra are plotted
as the absolute value of the amplitude, and share a common
(arbitrary) normalization. The spectra exhibit a low energy
doublet resulting from second-order coupling between sites 1
and 3, and an isolated high-energy peak arising from the cen-
tral site. (g)-(i) Application of the Hamiltonian estimation
technique of equation II.4 to the three-site chain, as a func-
tion of the numerical integration range. We fix the lower limit
of integration at -150 MHz and vary the upper limit between -
150 MHz and 150 MHz. (g) Onsite energy of site 1, converging
to within J2/δω of − δω/2 once the integration range includes
the doublet, and the rest of the way once the high-energy fea-
ture is included. (h) The tunneling matrix element between
sites 1 and 2, converging only once all spectral features are
included. (i) The tunneling matrix element between sites 1
and 3, which is zero in our model. For (g)-(i) we plot only the
real-part of the estimated matrix elements, as the imaginary
part converges less rapidly.

If the sites in the bulk of the system are then parti-
tioned into three non-overlapping but adjacent regions
A,B,C, as in Fig. 3, the Chern number may be written:

Cµ = 12πi
∑

α∈A,β∈B,γ∈C

(PµαβP
µ
βγP

µ
γα − PµαγP

µ
γβP

µ
βα) (II.7)

While the regions A, B, and C must be infinitely large
to ensure precise convergence of the Chern number to
the TKNN invariant defined from the band structure, in
practice a region which is several unit cells (or equiva-
lently magnetic unit cells, in the case of the Hofstadter
model) is sufficient to achieve reasonable convergence (at
the ∼ 99% level, see Fig. 4(a). Furthermore, it is essential
that A,B and C avoid the system edges, as these pro-
vide a contribution to Cµ which precisely cancels that of
the bulk. This approach may be understood as a direct
measurement of the non-reciprocity of the system, as it



5

FIG. 3. Measuring Chern numbers in real space.
To measure the Chern number of a disordered band in the
bulk of a Chern insulator, a bulk region large compared to
the unit cell size (magnetic length in the Hofstadter model,
whose band-projector onto an arbitrary bulk site is shown
as gray-scale squares for α = 1

4
) is partitioned into three

similarly sized regions (red circles, green triangles, and blue
squares). The difference of triple band-projector products
red → green → blue and blue → green → red, summed
over all sites in each region, is equal to the Chern number
C/(12πi). There are a number of ways to spectroscopically
measure this projector, discussed in the text.

compares A → B → C coupling to C → B → A cou-
pling, similar to the case in a Faraday isolator [29]. As
shown in Fig. 4(b), as long as the disorder is an order of
magnitude smaller than the band spacing, Chern number
quantization is preserved.

The challenge then is to measure the band-projector
using the spectroscopic tools at our disposal. We suggest
three approaches:

1. Consider the integral:

Mµ
αβ ≡ Pr [

i√
καc κ

β
c

∫
ω ∈Bandµ

dωSαβ(ω)]

= Pr [

∫
dω〈α| 1

ω −H
|β〉]

= Pr [

∫
dω
∑
n

〈α|n〉〈n|β〉
ω − εn

]

Assuming good band flatness Band Width
Band Spacing � 1 [30,

31], we can integrate across band µ without accru-
ing a substantial contribution from the other bands,

yielding Mµ
αβ ≈ iπ〈α|

[∑
n∈Bandµ |n〉〈n|

]
|β〉.

Therefore Pµαβ ≈
1
iπM

µ
αβ . It is thus sufficient to

integrate the properly normalized Sαβ(ω) over a
single energy-band µ to extract the matrix element

of the projector onto band µ between sites α and
β. This integral is only logarithmically sensitive to
the limits of integration, so precise cancellation of
the tail contributions from finite linewidth and im-
perfect flatness are possible at near unity fidelities.

2. Consider a continuous wave excitation at site β
within the bulk of the lattice, at an energy ~ωo de-
tuned from band µ by an amount large compared to
its width, but small compared with its detuning to
other bands. Generically, response at site α is given

by Sαβ(ωo) = −i
√
καc κ

β
c
∑
n
〈α|n〉〈n|β〉
ωo−εn . Imposing

that the detuning to all other bands is large, their
contribution may be discarded. If we can simulta-
neously assume that ωo−εn = ∆n is approximately
constant for all n in band µ, ∆n = ∆, then we

have Sαβ(ωo) ≈ − i
√
καc κ

β
c

∆

∑
n∈Bandµ〈α|n〉〈n|β〉,

and thus Pµαβ ≈
i∆√
καc κ

β
c

× Sαβ(ωo).

3. Consider an excitation pulse at site β within the
bulk of the lattice, with a well-defined carrier fre-
quency centered on band µ, and temporally short
wave-packet (Gaussian, for maximum spectral ef-
ficiency). If this pulse is sufficiently short in time
to provide a spectral bandwidth larger than band
µ, while simultaneously long enough to not excite
other bands, the transmitted response of the sys-
tem at site α immediately after the pulse will reflect
the matrix element of the projector into band µ be-
tween sites α and β. If the pulse is too spectrally
narrow compared with the bandwidth of band µ,
the excitation will evolve spatially before the pulse
has terminated, and the projector cannot be ex-
tracted.

The second and third approaches impose much more
stringent requirements on the band flatness than the first,
and as such will not work well for Hofstadter models at
high flux per plaquette.

In any of these approaches, it should be possible, in
the low-disorder limit, to make use of the approximate
translational invariance from one magnetic unit cell to
the next to reduce the number of measurements from
∼N2, where N is the number of sites in one of the regions
A,B,C, to ∼ q×N , where q is the number of sites within
the magnetic unit cell (equal to 4 for an α = 1

4 Hofstadter

lattice). Because N ∼ q2, the total number of two-point
spectra required to extract the Chern number is thus
∼ q3.

A more fundamental limit comes from the finite life-
time of a photon in the lattice (due to absorption, for
example), which may cause the photon to be lost before
it can explore enough of the lattice to provide a stable
Chern number Cµ. As shown in Fig. 4(c), the Chern
number can be measured with fidelity above 95% so long
as the tunneling rate is 30× the photon decay rate, for
the lowest band of an α = 1

4 Hofstadter model, in spite of
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FIG. 4. Technical limitations of Chern number measurement. (a) Numerically computed dependence of the spec-
troscopically extracted Chern number of the lowest band upon region radius for an array of lossless resonators coupled in an
α = 1

4
Hofstadter configuration. Once the radius exceeds a magnetic length ( 1

α
= 4 sites), the measured value approaches the

translationally invariant TKNN value C = 1; it drops at the system edge (gray bar). (b) Numerically computed Chern number
versus the r.m.s. variation in on-site energy. The error band shows the variation over disorder realizations; the Chern number
is robust to disorder up to ∼ 0.1× J , comparable to the band-splitting of the model. (c) Numerically computed Chern number
versus resonator linewidth (in units of tunneling energy), using a frequency integration of the two port measurement Sαβ(ω),
as described in the text, for a region with five site radius. A loss rate ≤ 0.03×tunneling provides a fidelity ≥ 0.95. (d)-(f)
Identical calculations for the two middle bands of the α = 1

4
Hofstadter lattice, which touch at Dirac points and thus must be

analyzed together. The extracted Chern number C = −2 is consistent with the TKNN formula.

the substantial band curvature. The requirement on tun-
neling compared to decay is consistent with the particle
needing time to explore an area whose radius is the mag-
netic length ∼ q, to be sensitive to the Chern number.
Further, Fig. 4(d)-(f) demonstrate that this technique is
capable of extracting negative Chern numbers, as well as
Chern numbers with magnitude larger than one.

III. OUTLOOK

We have provided a novel toolset for characterizing
photonic lattices using one- and two- point measure-
ments to resolve matrix elements of the Hamiltonian.
We have further introduced a recipe to extract the band
projector, allowing direct measurement of Chern num-
ber in real-space. While the proposed approach is de-
signed for photonic lattices where network analyzer tech-
nology is commercially available, it can be applied much
more broadly (see appendix D) to explore properties
of optical resonators [32] and resonator arrays [33], cou-
pled quantum dots, mechanical/acoustical systems [34–
38], and potentially even electronic systems by reinter-
preting STM measurements. It should further be possi-
ble to measure Chern invariants of the energy “bands”

of topological quasi-periodic structures [39], where ex-
tremely low-loss materials and large measurement areas
will be necessary to overcome the small band-gaps and
large quasi-crystalline unit-cells.

IV. ACKNOWLEDGEMENTS

We would like to thank Brandon Anderson, William
Irvine, Charles Kane, Michael Levin, Nathan Schine, and
Norman Yao for fruitful discussions. This work was sup-
ported by ARO grant W911NF-15-1-0397. D.S. acknowl-
edges support from the David and Lucile Packard Foun-
dation; R.M. acknowledges support from the University
of Chicago MRSEC program of the NSF under grant
NSF-DMR-MRSEC 1420709; C.O. is supported by the
NSF GRFP.

Appendix A: Coupling to Multiple Sites

In practice, one must be careful to avoid accidental
direct coupling to multiple lattice sites when performing
the spectroscopy of a tunnel-coupled lattice system. Such
direct couplings arise naturally because in any real lat-
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tice the Wannier functions are not perfectly localized to
individual lattice sites. This non-local tail means while
the in- and out- couplers are physically connected only
to individual sites, they will drive and measure multiple
lattice sites.

To understand the consequences of this, consider two
degenerate sites at energy ω0, |a〉 and |b〉, that are
tunnel-coupled with an energy J , such that the Hamil-
tonian in the 1-excitation manifold is H0 = ω0(|a〉〈a| +
|b〉〈b|) − J(|a〉〈b| + |b〉〈a|). Now we drive with a cou-
pler |µ〉 ≡ cos ε|a〉+ sin ε|b〉 (predominantly connected to
site a), and measure with coupler |ν〉 ≡ cos ε|b〉+ sin ε|a〉
(predominantly connected to site b), corresponding to a
Wannier overlap of ∼ ε2 on adjacent sites.

We then measure Sµµ(ω), Sνν(ω), and Sµν(ω), and
attempt to extract the Hamiltonian matrix elements.
Applying the spectroscopy techniques from the text
yields: 〈µ|H0|µ〉Spec = 〈ν|H0|ν〉Spec = ω0 − J sin 2ε and
〈µ|H0|ν〉Spec = −J + (ω0 − iW/π) sin 2ε. We anticipated
that Sµµ(ω) and Sνν(ω) would provide on-site energies,
while Sµν(ω) was to provide the tunneling energy. In re-
ality, we find that the on-site energy experiences a small
correction from the tunneling energy, which, in the tight-
binding limit (where ε � 1), is almost certainly negligi-
ble. By contrast, the error in the tunneling energy may
be much larger than J itself if ε ≥ J

ω0
.

To circumvent this systematic issue, the measure-
ments of 〈α|H|β〉 may be re-orthogonalized using a basis
transformation based upon the matrix

∫
dωSαβ(ω).

A simpler solution is to shift all frequencies by some
constant Ω∼ω0, and then employ S̃µν(ω) = Sµν(ω − Ω)
for all resolvent calculations. We are then measuring
matrix elements of H0 − 1Ω, and thus the error in the
measurement of J will be of order (ω0−Ω) sin ε ≤ J sin ε,
and thus small.

Appendix B: Brute-Force Inversion of a 1D Chain
Through a Reflection Measurement

Here we summarize an existing brute-force ap-
proach [12] to extracting the properties of a 1D tight-
binding chain, using only reflection measurements off of
its end. This should be compared with the approach put
forth in this work, which extracts a single Hamiltonian
matrix element from each measured spectrum, but with
superior numerical stability.

Consider a 1D chain characterized entirely by nearest-
neighbor tunneling matrix elements tµ between sites µ
and µ+ 1, and onsite energy of site µ, δµ:

H1D =
∑
µ

[
δµa
†
µaµ − (tµa

†
µ+1aµ + t∗µa

†
µaµ+1)

]
(B.1)

For n lattice sites, this system has 2n − 1 unknowns,
coming from the n onsite energies, and n − 1 tunneling
matrix elements; it is thus conceivable that measuring

the n eigenmode energies, and n spectral weights (the
latter providing n − 1 linearly independent pieces of in-
formation, due to normalization), via a reflection mea-
surement off of a single lattice site, would be enough to
extract all system parameters. Symmetry precludes this
unless the probed site is at the end of the 1D chain, as
proven previously in Burgarth et al. [12].

The prescription we summarize[12] allows extraction
of all onsite energies δµ and tunneling matrix elements
tµ, from measured resonance frequencies ωj and their

spectral weights ψjµ=0, normalized such that
∑j

∣∣∣ψj0∣∣∣2 =

1. With measurements only at one end of the chain (µ =
0), we obtain all relevant lattice parameters:

δµ =
∑
j

ωj
∣∣∣ψjµ−1

∣∣∣2
|tµ| =

√∑
j

[
(ωj − δµ)ψjµ−1 − |tµ−1|ψjµ−2

]2
ψjµ =

1

|tµ|

[
ψjµ−1(ωj − δµ)− |tµ−1|ψjµ−2

]
(B.2)

Here we have implicitly assumed ψjµ=−1 = 0 for all
j. Raised, Roman indices refer to eigenmodes, while
lowered, Greek indices refer to sites, counted from the
probed end of the chain. Note that the expression for
δµ=0 reduces to the results from the main text.

Appendix C: Extracting Coupling Strength

In this appendix we derive the following relation, em-
ployed in the text:

∫
Sαα(ω)dω = πκαc ; we follow the

procedure used in the text to derive a related expression
for
∫
ωSαβ(ω)dω.

∫
Sαα(ω)dω

=− iκαc
∫
〈α| 1

ω −H
|α〉dω

=− iκαc
∫
〈α|
∑
µ

|µ〉〈µ|
ω − εµ

|α〉dω

=− iκαc 〈α|
∑
µ

[∫
|µ〉〈µ|
ω − εµ

dω

]
|α〉

=− iκαc 〈α|α〉 arctanx|+∞−∞
=πκαc (C.1)

To quantify the impact of finite integration region and
imperfect centering of said region on the resonances, we
evaluate the arc-tangent over an interval of integration
[ω0−Ω− δ, ω0 + Ω− δ], where ω0 is the center frequency
of a particular resonance, 2Ω is the width of the integra-
tion region, and δ is the centering error. This leads to
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a result of πκαc ×
(
1 + Γ

πΩ − i
2δ
πΩ

)
, where Γ is the width

of the resonance under consideration. In short, centering
errors do not impact the value of καc at lowest order, so
long as the imaginary part of the καc extracted from this
calculation is simply discarded.

Appendix D: Potential Experimental Applications

Our technique is applicable to a wide array of exper-
imental platforms; here we briefly explore the benefits
and difficulties inherent to each.

1. Microwave Resonator Arrays

An array of tunnel-coupled microwave resonators pro-
vide a near-ideal realization of the models that we would
like to tomographically characterize using the techniques
developed in this work. These resonators arrays have
now been demonstrated in the strongly interacting [40]
and ultra-low disorder [10] regimes, though not yet both
simultaneously; furthermore, there are proposals [41] and
recently, demonstrations [42] of tight-binding microwave
Chern insulators in resonator arrays.

The strength of microwave resonator arrays is the abil-
ity to individually address the chosen lattice sites by sim-
ply moving the probes [43]; this affords spatially- and
energetically- (or temporally-) localized measurement of
lattice properties. Proper phase- and amplitude- cali-
bration of the network analyzer permits complete recon-
struction of the complex two-site transfer function.

The primary challenge faced in microwave setups is
that the Wannier orbitals (defining the tight-binding ba-
sis) may not be entirely localized to individual lattice
sites, and so site-localized probes are likely to couple in
a complicated way to the tight-binding sites. This effect
may be quantified by noting that, in the tight-binding
basis,

∫
AllBands

Sαβ(ω)dω = δαβ ; off-diagonal contribu-
tions indicate non-local Wannier wavefunctions.

2. Mechanical Resonator Arrays

Recent experiments with arrays of coupled mechanical
oscillators [34–38] suggest another platform where our
approach could be employed. The ability to locally drive
the systems, and, in most cases, measure the response at
all sites using real-time video, makes extraction of Sαβ(ω)
straightforward.

A challenge is that these systems often do not
have much separation between positive- and negative-
energy eigen-modes, in units of their tunnel-coupling
(J ∼ ω0); this means that a tight-binding model is
often a far-from-ideal description of the dynamics in
the system, and the basic approach of this work breaks
down. Furthermore, the relatively low quality factor
of the mechanical oscillators employed means that

excitations do not typically propagate very far within
their lifetimes, limiting efficacy of the band-projector
and Chern-number measurement prescriptions. On a
practical note, the extraordinarily long time-scales of
such experiments (≥ 1 second to reach steady state [35])
means that the time required to site- and energy-
resolved spectroscopy could be prohibitive.

3. Near Degenerate Multi-Mode Optical
Resonators

The many transverse modes of an optical resonator (for
a fixed longitudinal mode number) provide a Floquet-
like implementation of a 2D quadratic Hamiltonian [44].
This analogy is quite familiar from studies of exciton po-
lariton condensates [45] and photonic BECs [46], but has
recently been harnessed to generate Landau levels for op-
tical photons [32]. Typical resonator finesses of ≥ 104 al-
low for many classical cyclotron orbits within the particle
lifetime.

While this is a continuum system, the Chern number
formula still applies to its Landau levels, so long as the
spacing between “sample points” (akin to lattice sites in
the periodic system) is small compared with the mag-
netic length. The ability to image the entire transmit-
ted resonator field on a CCD, combined with broadband
tunability of the probing laser and availability of spatial
light modulators to inject light at an arbitrary position,
will make measurement of band-projectors (in this case,
Landau-level projectors) straightforward. The challenge
will be extraction of the phase of the transmitted optical
field, which we propose to do by interfering the transmit-
ted resonator field with a reference light field, and using
the interference pattern to holographically reconstruct
the phase of the projector.

Another potential complication is that the mirror
transmission itself may vary spatially, akin to a site-
dependent καc in the language of the paper. This will
then need to be independently calibrated either directly
(with a uniform laser beam incident on the out-coupling
mirror) or using a technique akin to equation II.5.
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[35] R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).
[36] J.-A. Franco-Villafane, E. Sadurni, S. Barkhofen,

U. Kuhl, F. Mortessagne, and T. Seligman, Physical
review letters 111, 170405 (2013).

[37] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortes-
sagne, Physical Review B 88, 115437 (2013).

[38] A. Morales, J. Flores, L. Gutiérrez, and R. Méndez-
Sánchez, The Journal of the Acoustical Society of Amer-
ica 112, 1961 (2002).

[39] M. A. Bandres, M. C. Rechtsman, and M. Segev, Phys-
ical Review X 6, 011016 (2016).

[40] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch,
and A. A. Houck, Phys. Rev. X 7, 011016 (2017).

[41] B. M. Anderson, R. Ma, C. Owens, D. I. Schuster, and
J. Simon, Physical Review X 6, 041043 (2016).

[42] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Bab-
bush, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, et al., Nature Physics (2016).

[43] D. Underwood, W. Shanks, A. C. Li, L. Ateshian,
J. Koch, and A. Houck, Physical Review X 6, 021044
(2016).

[44] A. Sommer and J. Simon, New Journal of Physics 18,
035008 (2016).

[45] J. Kasprzak, M. Richard, S. Kundermann, A. Baas,
P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska,
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