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A proposed phase-estimation protocol based on measuring the parity of a two-mode squeezed-
vacuum state at the output of a Mach-Zehnder interferometer shows that the Cramér-Rao sensitivity
is sub-Heisenberg [Phys. Rev. Lett. 104, 103602 (2010)]. However, these measurements are prob-
lematic, making it unclear if this sensitivity can be obtained with a finite number of measurements.
This sensitivity is only for phase near zero, and in this region there is a problem with ambiguity
because measurements cannot distinguish the sign of the phase. Here, we consider a finite number
of parity measurements, and show that an adaptive technique gives a highly accurate phase esti-
mate regardless of the phase. We show that the Heisenberg limit is reachable, where the number
of trials needed for mean photon number n̄ = 1 is approximately one hundred. We show that the
Cramér-Rao sensitivity can be achieved approximately, and the estimation is unambiguous in the
interval (−π/2, π/2).

I. INTRODUCTION

Phase estimation and optical interferometry are the
basis for many precision measurement applications. Co-
herent light based interferometry is most commonly used
but its sensitivity for phase estimation is limited by the
shot-noise limit, ∆ϕ2 ≥ n̄−1, where ϕ is the unknown
phase, and n̄ is the mean number of photons used to per-
form the estimation [1]. This is not a problem in the
case of limitless resources or in the case of samples that
can withstand large doses of radiation. However, in order
to achieve a finer precision given a finite amount of re-
sources, one has to resort to interferometry with quantum
states of light, such as N00N states [2] with parity mea-
surements [3, 4], in order to achieve sub-shot-noise or the
Heisenberg limit (HL) to sensitivity of phase estimation.
Squeezed vacuum, which is the brightest experimentally
available nonclassical light, has received much attention.
In particular, the two-mode squeezed-vacuum (TMSV)
which is the simplest two-mode state that contains strong
photon-number entanglement, offers a notable improve-
ment in phase estimation precision when compared to
coherent states [4–7].

Significant advances have been made in quantum-
enhanced phase sensitivity [8] and the meaning of the
Heisenberg limit has been thoroughly examined [9, 10].
Yet, a proposed phase estimation scheme dips below the
HL in the case of an infinite number of parity measure-
ments [5]. That scheme is based on measuring the parity
of the state of light at the output of a Mach-Zehnder in-
terferometer (MZI), as shown in Fig. 1, with two-mode
squeezed-vacuum input. A parity measurement focuses
on whether the output photon number is odd or even,
rather than the the actual number itself. It turned out
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that this particular scheme using TMSV input has sub-
Heisenberg sensitivity, due to the fact that the photon
number uncertainty for the state of light inside of the
MZI is greater than the average photon number used for
the measurement [11, 12].

The Heisenberg limit, ∆ϕ2 ≥ 1/(MN2) for states with
N fixed total number of photons such as twin-Fock [13]
or N00N states [2] and M copies of the state, is a rigorous
lower limit for local phase sensitivity for such states [14].
The measure of estimation error ∆ϕ is the root-mean-
square error in estimating the parameter ϕ. However, for
states with well-defined mean photon number but unde-
fined total photon number, such as the TMSV used here,
it is now understood that the Heisenberg limit so defined
is not a lower limit.

Here we concern ourselves primarily with the Cramér-
Rao bound, which is provably the ultimate limit of phase
sensitivity [15]. For unbiased estimators, the estimation
error is lower bounded by ∆ϕ2 ≥ 1/(MF ), where F is
the quantum Fisher information for the state and M
is the number of measurements on copies of the state
used in obtaining the estimate. When there is a unique
maximally likely estimate, the bound is achievable in the
asymptotic limit that M →∞. Hence, if we saturate this
limit, as we do in this work with parity detection, then
our measurement scheme is optimal. Of course, in prac-
tice the number of measurements that can be performed
is limited, so the purpose of this paper is to investigate
how ∆ϕ2M changes with M . Unlike in Ref. [5] where the
Cramér-Rao bound sensitivity is expected in the limit of
an infinite number of parity measurements, we consider
a finite parity measurement record. We use the terminol-
ogy “detection” to denote measurement on an individual
copy of the state, and “measurement record” to denote
the list of parity detections.

In previous schemes considered [4, 6, 7], it was un-
clear as to how an unambiguous estimate could be made,
given that the parity of the output is symmetric around
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FIG. 1. Two-mode squeezed-vacuum states are generated
at the input of the Mach-Zehnder interferometer (MZI) by
an optical parametric amplifier (OPA), where ϕ is the phase
being measured and θ is a controllable phase. The parity
signal at the output of the MZI is then measured with photon-
number-resolving detectors. Since TMSV states always have
even photon numbers, the parity signal can be detected by
performing photon-counting at only one output.

the origin. If one infers the value of the measured phase
ϕ by only considering the statistics (number of odd/even
outcomes) of a static interferometer, there is ambiguity
in the sign of the phase estimate. Figure 2 shows the
probability distribution for the phase ϕ for an example
measurement record, generated for an actual phase of
0.15. The distribution has two maxima distributed sym-
metrically around 0.

In addition, the most sensitive region is confined to a
small interval where the relative phase between the two
arms of the interferometer is zero, where the ambigu-
ity of the sign is most problematic. Moving away from
this region, the phase sensitivity decays quickly. In this
paper we introduce an adaptive feedback scheme based
on Bayesian techniques to eliminate this ambiguity; an
example of the resulting probability distribution for the
phase is shown in Fig. 3. By implementing an adaptable
control phase θ we extend the region where the measure-
ment is accurate to the interval (−π/2, π/2). We show
that with a sufficient number of detections, the method
achieves Heisenberg-limited sensitivity. In this paper we
define the Heisenberg limit as ∆ϕ2 ≡ 1/(Mn̄2) [1].

In a Mach-Zehnder interferometer, the achievable
Fisher information is often phase-dependent (see for ex-
ample Refs. [16–18]), and reaches the QFI for only one
specific value of the phase. Adaptive phase feedback can
overcome this issue by driving the measured phase to the
optimal value. The phase-adaptive technique we adopt
here is based on that in Refs. [19, 20]. This method
has been experimentally demonstrated on both a pho-
tonic [21] and electron spin platform [22]. Both show an
improved estimation precision that beats the shot noise
limit. The technique uses Bayesian tools for calculat-
ing the probability distribution of the phase: it is known
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FIG. 2. The probability distribution for the phase ϕ for an
example measurement record, generated for an actual phase
of ϕ = 0.15 and the control phase θ = 0. The record consists
of M = 512 parity detections for n̄ = 3, of which 466 are
even.
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FIG. 3. The probability distribution for the phase ϕ for an
example measurement record, generated for an actual phase
of ϕ = 0.15 and θ being adaptive. The record consists of M =
512 parity detections for n̄ = 3. There is no ambiguity in the
sign of ϕ.

that the Bayesian estimator asymptotically saturates the
Cramér-Rao bound. For example, this has been shown
for the estimation of single parameter qubit gates [23]
and for measuring the phase of the local oscillator of a
TMSV state [24].

The structure of the paper is as follows. In Sec. II
we describe the model of the TMSV state and discuss
the problematic features associated with parity measure-
ments. In Sec. III we detail the adaptive technique used
to resolve these issues, and present results for the accu-
racy of the measurement scheme. We discuss the effects
of noise in Sec. IV, then conclude in Sec. V.
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II. MODEL

We consider a phase estimation scheme with a two-
mode squeezed-vacuum input state which is commonly
generated in unseeded optical parametric amplifiers. A
TMSV state is ideally a superposition of twin Fock states,

|ψn̄〉 =

∞∑
n=0

√
pn(n̄) |n, n〉 , (1)

where pn(n̄) = (1− tn̄)tnn̄, tn̄ = 1/ (1 + 2/n̄), and n̄ is the
average photon number in the state [25].

Parity based phase estimation was originally intro-
duced in quantum optics by Gerry [26] and is based on
the parity of the photon number detected at the output
of the MZI. Since the photon number in a TMSV state is
always even, the parity signals are the same in both the
output ports, and therefore can be detected by perform-
ing photon-counting at only one port. It turns out that
parity detection is sufficient to achieve the Cramér-Rao
bound in the case where the state is path symmetric [27],
which is the case here. Propagation of the light through
a MZI imprints phase information on the state that is
retrieved by measuring parity at the output of the MZI.
The expected value of the parity signal 〈Π̂〉 for a TMSV
based phase estimation scheme,

〈Π̂〉 =
1√

1 + n̄(n̄+ 2) sin2(θ − ϕ)
, (2)

was obtained in Ref. [5]. Equation (2) was obtained by

summing the expected parity value 〈Π̂〉n for each twin-
Fock state |n, n〉, weighted by their respective probability
of occurring,

〈Π̂〉 = (1− tn̄)

∞∑
n=0

tnn̄ 〈Π̂〉n , (3)

where 〈Π̂〉n = (−1)nLn[cos(2(θ − ϕ+ π
2 ))] and Ln is the

Legendre polynomial of order n [4].
A straightforward method for determining the magni-

tude of the unknown phase ϕ is as follows. If we let the
controllable phase be θ = 0 and we know n̄ at the in-
put, then we send the TMSV through the MZI of Fig. 1,
which interrogates the unknown phase ϕ. Then, we per-
form parity measurements at the output, which returns
either an even or odd outcome with probabilities Pe and
Po (as defined below), respectively. This allows us to

determine the parity signal Π̂.
This parity measurement can be implemented with

photon-number-resolving detectors or homodyne detec-
tion [28, 29]. Using balanced homodyne detection and
detectors with 99% quantum efficiency, phase estimation
precision above the shot noise limit has been experimen-
tally demonstrated with squeezed vacuum [16].

Inferring the parity of a state disregards the actual
number of photons detected and focuses on whether this

number is even or odd. Since Pe + Po = 1 and the ex-
pectation value of a state’s parity is 〈Π̂〉 = Pe − Po, the
probabilities of detecting an even or odd photon number
are

Pe =
1

2
(1 + 〈Π̂〉), Po =

1

2
(1− 〈Π̂〉). (4)

When the estimate is unbiased [30], the precision of the
estimate is lower-bounded by the Cramér-Rao bound,
∆ϕ2 ≤ 1/MF(ϕ), where M is the number of times the
estimation is repeated and F(ϕ) is the Fisher information
[15]. In this case, the Fisher information is

F(ϕ) =
1

Pe

(
∂Pe

∂ϕ

)2

+
1

Po

(
∂Po

∂ϕ

)2

=
1

1− 〈Π̂〉
2

(
∂ 〈Π̂〉
∂ϕ

)2

=
cos2(θ − ϕ)n̄(n̄+ 2)[

1 + n̄(n̄+ 2) sin2(θ − ϕ)
]2 . (5)

The Fisher information is maximized for θ − ϕ = 0.
Therefore, the ultimate precision of this estimation
scheme is 1/Mn̄(n̄+ 2), which is sub-Heisenberg if the
bound can be achieved. When F ≥ n̄, the scheme per-
forms better than the shot-noise limit. This would be
achieved if |ϕ − θ| is smaller than approximately n̄−1/4.
As |ϕ− θ| increases, the sensitivity decays quickly.

One can estimate ϕ from the statistics of the detec-
tions. In order to choose the estimate, it is useful to
determine a probability density function for the phase
based on the detection results. When the controllable
phase θ is constant, this probability density can be de-
termined via Bayes’ theorem to be

P(ϕ) ∝ P`e(ϕ)PM−`o (ϕ), (6)

where M is the number of parity detections and ` is the
number of even results. In this expression ϕ is being used
as a dummy variable for the system phase. The estimate
of the actual system phase could be chosen to be, for
example, the maximum of this probability distribution.

However, this approach cannot distinguish the sign of
the phase. For example, for n̄ = 3 and θ = 0, if 512 parity
measurements are performed and 466 turn out to be even,
the probability distribution for the phase is proportional
to

P(ϕ) ∝ P466
e (ϕ)P46

o (ϕ). (7)

It has two maxima in the interval [−π/2, π/2]: one at
ϕ = 0.18 and the other at ϕ = −0.18 (see Fig. 2). This
ambiguity comes about because the term containing ϕ is
squared, so P(ϕ) = P(−ϕ). Therefore 0.18 and −0.18
are equally valid estimates and cannot be distinguished.

One can model adaptive phase estimation with TMSV
and parity detection numerically in the following way.
Choose an average photon number n̄ and an actual value
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of the system phase ϕ, then generate a measurement
record of finite length M using the probabilities Pe and
Po. Each detection event is simulated from Pe(θ, ϕ)
by generating a random real number between 0 and 1,
then recording an even (odd) event if this number is less
(more) than Pe(θ, ϕ). After the detection, the control-
lable phase θ is updated according to a method described
in the next section. The new value of θ is used to recal-
culate Pe(θ, ϕ) to simulate the next detection. At the
end an estimate of the phase is determined based on the
measurement results. Note that the values of θ and the
final estimate of ϕ are determined entirely from the mea-
surement results (without using the actual value of the
phase), just as they would be in an actual experiment.
With this adaptive approach the ambiguity is eliminated,
as illustrated in Fig. 3.

III. THE MEASUREMENT SCHEME

In the adaptive technique, the controlled phase θ is
adjusted based upon previous detection results and con-
trolled phases. Intuitively, this method works by maxi-
mizing | 〈eiϕ〉 | thereby reducing the appearance of mul-
tiple peaks [19]. Since

〈eiϕ〉 =

2π∫
0

eiϕP(ϕ) dϕ, (8)

| 〈eiϕ〉 | is maximum when P(ϕ) is a delta function, and
equals zero when P(ϕ) is flat. Here we use a variation of
the method in Ref. [19] where we maximize | 〈ei2ϕ〉 |, as
explained next.

The adaptive technique uses the latest probability dis-
tribution P(ϕ) to calculate the next controlled phase.
Initially the distribution is flat, because there is no phase
information. The initial controlled phase is therefore cho-
sen to be random. Then, after each detection, the prob-
ability distribution is updated using Bayes’ theorem

P(ϕ|~µm, ~θm) ∝ P(µ|ϕ, ~θm)P(ϕ|~µm−1, ~θm−1), (9)

where µ denotes whether the detection is even or odd,
~µm = (µ1, µ2, .., µm) is the vector of successive detection

results, and ~θm = (θ1, θ2, .., θm) is the vector of the cor-
responding controlled phases. The lower case m is used
to indicate how many detections have been obtained so
far within a series of M detections used to obtain a phase
estimate. Therefore, µm indicates the m’th detection re-
sult, and θm indicates the controlled phase used for that
detection (so after m detections the controlled phase is
changed to θm+1).

The probabilities can be expressed as a Fourier series,

P(ϕ|~µm, ~θm) =
1

2π

K∑
k=−K

ake
ikϕ, (10)

n̄ No. of terms
1 10
2 10
3 15
5 20
8 25

TABLE I. For a TMSV state of mean photon n̄, the cut-off
for the number of Legendre polynomial terms used in Eq. (3).

where K is highest order of the Fourier coefficient. The
coefficient of the term eikϕ is denoted ak, which depends

on ~µm and ~θm (the dependence is not given explicitly for
simplicity). For example, P(ϕ) = 1

2π [1 + cos(2ϕ)] can be
written as

P(ϕ) =
1

2π
+

1

4π
ei2ϕ +

1

4π
e−i2ϕ, (11)

so a0 = 1, a2 = a−2 = 1/2, a1 = a−1 = 0, and ak = 0 for
|k| > 2. Therefore we can take K = 2. As in this exam-
ple, for the states we consider we only need even k be-
cause the probability distribution repeats modulo π. The
Fourier representation of the probability distribution is
particularly useful because the coefficients give the expec-
tation values of exponentials as a−k = 〈eikϕ〉. Therefore
a0 = 〈1〉 and is therefore 1 for a normalized distribution,
as it is in this example. The coefficient a−2 = 〈ei2ϕ〉 is
one that we use below.

Before the first detection, Eq. (10) contains only one
term, a0 = 1. After each detection result given by the
probabilities in Eq. (4), the Fourier coefficients ak in
Eq. (10) are updated using Eq. (9), which again uses
Eq. (4). However, to exactly represent Eq. (4) in terms
of Fourier coefficients, an infinite sum over the Legen-
dre polynomial terms is needed in Eq. (3). In order to
perform the numerical calculations, we truncated this in-
finite sum. It was found that the cut-off needed depended
on n̄; the values used are given in Table I.

We adjust the controlled phase θm based on the pre-
vious detection results and controlled phases. The value
for θm is the one which maximizes the average sharpness
of the probability distribution for ϕ after the next de-
tection, across the interval (−π/2, π/2). Here we take
the sharpness to be s(θ) ≡ | 〈ei2ϕ〉 |, which differs from
the case in Ref. [19] where the sharpness is | 〈eiϕ〉 |. We
make this choice because the probability distribution for
the parity detection results has a period of π instead of
2π.

The explicit expression for the average sharpness is

sav(θm) =
1

2π

∑
µ={+1,−1}

∣∣∣∣∣∣
π∫

0

ei2ϕ
m∏
k=1

P(µk|ϕ, ~θk) dϕ

∣∣∣∣∣∣ .
(12)

This expression corresponds to the average sharp-
ness for the measurement results weighted by their
probability of occurring. Maximizing this expression
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yields the highest average accuracy of the phase es-
timates after the next detection [31]. The integral
over ϕ simply yields the coefficient a−2. Therefore,
this integral may be obtained by summing the abso-

lute value of a−2 for P(ϕ|~θm, ~µm−1, µm = even) and

P(ϕ|~θm, ~µm−1, µm = odd) after the next detection. No
analytical formula exists for calculating the optimal θm,
so it was determined numerically [32].

At the end of each measurement record, the esti-
mate is taken to be the argument of a−2, correspond-
ing to arg(〈e2iϕ〉). This estimate of the phase is opti-
mal for a measure of the measurement accuracy based
on | 〈cos(2(ϕ̂− ϕ)〉 | [31], where ϕ̂ is the value of an in-
dividual estimate. Here we are using the mean-square
error (MSE), for which this estimate is not exactly opti-
mal. (The MSE is an estimate of the error that is equal
to the variance if the measurement is unbiased, and also
appropriately penalises biased estimates.) However, this
estimate is close to optimal for narrowly peaked distribu-
tions. In that case, the cosine function can be accurately
approximated by expanding to second order, so

| 〈cos(2(ϕ̂− ϕ)〉 | ≈ 1− 2 〈(ϕ̂− ϕ)2〉 . (13)

Therefore the estimate that maximizes | 〈cos(2(ϕ̂− ϕ)〉 |
approximately minimizes the MSE 〈(ϕ̂− ϕ)2〉. This es-
timate of the phase is also close to unbiased for narrowly
peaked distributions. This is because 〈e2i(ϕ̂−ϕ)〉 = 1. For
narrowly peaked distributions, the exponential can be ex-
panded to first order, giving 1 + 〈2i(ϕ̂− ϕ)〉 ≈ 1, which
implies that 〈ϕ̂〉 ≈ ϕ. Therefore, the Cramér-Rao bound
should hold approximately.

Another feature of this estimate of the phase, is that
together with the random initial controlled phase, it en-
sures that the measurement scheme is covariant. That
is, the probability distribution for the error in the esti-
mate is independent of the system phase. In order to
fairly evaluate the overall performance of a measurement
scheme, one should determine the MSE averaged over the
system phase. When the measurement scheme is covari-
ant, this averaging is unnecessary, because the MSE is
independent of the system phase.

In order to estimate the performance of this adaptive
scheme, measurement records were generated numeri-
cally and the controlled phases θm were calculated. After
each sequence of M detection events, one obtains an es-
timate for the phase, ϕ̂. The sequence of M detection
events and resulting estimate were simulated J times,
and the value of ∆ϕ was estimated by taking the root-
mean-square error of the J estimates. Since simulating
a large number of estimates is computationally intensive
with large M , J was chosen such that the error in esti-
mating ∆ϕ is approximately less than 3% of ∆ϕ, keeping
the simulation run time tractable.

It was found that in order to achieve the same precision
in calculating ∆ϕ2, as M increases, J can be reduced.
For example, for M ∈ [64, 128], J = 106 phase estimates
were performed to calculate ∆ϕ2, whereas when M =
3096, only J = 5000 estimates were necessary.
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FIG. 4. The distribution of estimates for ϕ, where M =
256 detections were used to obtain each estimate. The plot
contains results from J = 20000 measurement records which
were numerically generated for ϕ = 0.5 and n̄ = 3. The
distribution has a MSE ∆ϕ2 = 3.81 × 10−4.
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FIG. 5. The ratio of the phase MSE to the Heisenberg limit
versus the measurement record length M , for TMSV states
with a range of mean photon numbers: n̄ = 1 (blue dia-
monds), n̄ = 2 (red circles), n̄ = 3 (green stars), n̄ = 5 (purple
crosses) and n̄ = 8 (black squares). Error bars are shown only
if they are larger than the marker size. The Heisenberg limit
(blue dashed line) is plotted for comparison (it is 1 because
all values are shown as a ratio to the Heisenberg limit).

As an example, J = 20000 measurement records were
generated for ϕ = 0.5 and n̄ = 3, where M = 256 de-
tections were used for each estimate. Figure 4 shows the
distribution of the estimates. There is a spread in the
phase estimates with a MSE ∆ϕ2 = 3.81× 10−4.

In Fig. 5 we show the ratio of the MSE to the Heisen-
berg limit against the length of the measurement record
M . For most of the data points, the error bar is smaller
than the marker. For 1.0 ≤ n̄ ≤ 5.0, the MSEs beat the
HL. (Since the HL is ∆ϕ2 = 1/(n̄2M), when multiplied
by Mn̄2, the HL equals 1 on this plot.) In Fig. 6, we
show the ratio of the MSE to the quantum Cramér-Rao
bound; as we expect, the MSEs asymptotically approach
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FIG. 6. The ratio of the phase MSE to the quantum Cramér-
Rao bound versus the measurement record length M , for
TMSV states with a range of mean photon numbers: n̄ = 1
(blue diamonds), n̄ = 2 (red circles), n̄ = 3 (green stars),
n̄ = 5 (purple crosses) and n̄ = 8 (black squares). The quan-
tum Cramér-Rao bound (dashed orange line) is shown for
comparison. The error bars are shown only if they are larger
than the size of the markers.

this limit. Evidently, the smaller the mean photon num-
ber, the faster the MSEs converge to the bound. For

n̄ = 1, when M = 3096, the phase MSE is larger than the
Cramér-Rao bound by less than 10%. For larger n̄, the
relative difference from the Cramér-Rao bound is larger
for the same M . Larger M would be needed to achieve
agreement within 10%.

IV. MEASUREMENT SCHEME WITH NOISE

A. Losses

In reality photon-number-resolving detectors are not
100% efficient, and photonic states in an interferometer
are subjected to loss. If losses are equal in both arms,
then the inefficiency of the system can be combined and
described by a single parameter η, where 1−η is the prob-
ability of losing a photon. To model detector inefficiency
we use [33],

PD(t|s) =

(
s

t

)
ηt(1− η)s−t, (14)

which gives the conditional probability of detecting t pho-
tons given that s photons were present.

The Fourier coefficients for the parity signal in the
presence of loss are calculated as follows. First, calculate
how the state |n, n〉 is transformed by the interferometer,
according to

|n, n〉 → 1

22n

2n∑
σ=0

√
σ!(2n− σ)!

n∑
k=0

(−1)k

k!(n− k)!
e2ikφ

min(2k,σ)∑
`=max(0,σ−2n+2k)

(−1)`(2k)!(2n− 2k)!

(2k − `)!`!(2n− 2k − σ + `)!(σ − `)!
|σ, 2n− σ〉 .

(15)

Second, sum over n with the weightings pn(n̄). Third,
apply Eq. (14) to obtain the new photon number dis-
tribution in the presence of loss, and finally, sum the
even/odd-photon number events to give the parity signal.
The net result of this calculation is that when η is less
than 1, the visibilities of the signal peaks as a function of
ϕ are reduced; this effect becomes more pronounced as n̄
is increased.

Figures 7 and 8 show the phase MSE for n̄ = 1 and
n̄ = 3 respectively. The phase MSE multiplied by n̄2M
is plotted against M for a range of values of η. The
error bars are not shown if they are smaller than the
marker size. For n̄ = 1, when η = 0.95, Heisenberg
limit precision can be reached when M is approximately
one thousand, whereas for n̄ = 3, the variance does not
reach this limit even for η = 0.99. As is evident in the
plot, when losses are equal to 10% for n̄ = 3, the MSE
increases by a factor of more than 10, whereas if single
photon states or coherent states are used (MSE bounded
by the shot-noise limit), the MSE would only increase
by a factor of 1/η. Therefore, in order to observe error

below the Heisenberg limit (or even the shot-noise limit),
the system must be highly efficient.

Another type of detector noise, coarse graining [34, 35],
has a similar effect to inefficiency, since it means that the
detection is unable to resolve the exact photon number.
However, if photon numbers are grouped into bins, then
the parity signal is completely destroyed and the scheme
has no phase resolution.

B. Dark counts

Let the rate of dark counts be denoted r. That is,
at the detectors at the two outputs of the interferome-
ter, the probability of n dark counts follows the Poisson
distribution

Pdark(n) = e−r
rn

n!
. (16)

The parity is estimated just from the parity of the signal
at a single output of the interferometer. If the number of
dark counts is even, then there is no change in the parity,
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FIG. 7. The ratio of the phase MSE to the Heisenberg limit
is plotted against the measurement record length M for n̄ = 1
and a range of levels of loss. The results shown are: η = 1
(green stars), η = 0.99 (blue triangles), η = 0.95 (red crosses),
and η = 0.90 (purple squares) are shown. The Heisenberg
limit for η = 1 (dashed orange line) is plotted for comparison.
The error bars are not shown if they are smaller than the
markers.
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FIG. 8. The ratio of the phase MSE to the Heisenberg
limit is plotted against the measurement record length M
for n̄ = 3 and a range of levels of loss. The results shown
are: η = 1 (green stars), η = 0.99 (blue triangles), η = 0.95
(red crosses), and η = 0.90 (purple squares) are shown. The
Heisenberg limit for η = 1 (HL, dashed orange line) is plotted
for comparison. The error bars are not shown if they are
smaller than the markers.

but if the number of dark counts is odd then the parity
is changed. Therefore the probability of registering the
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FIG. 9. The ratio of the phase MSE to the Heisenberg limit
is plotted against the measurement record length M for n̄ = 1
and a range of dark count rates. The results shown are: r = 0
(red plusses), r = 0.001 (green crosses), r = 0.01 (orange
triangles), r = 0.05 (blue squares), and r = 0.1 (purple stars).
The Heisenberg limit for r = 0 (HL, dashed green line) is
plotted for comparison. The error bars are not shown if they
are smaller than the markers.

parity as even becomes

P ′e =

( ∑
n even

Pdark(n)

)
Pe +

( ∑
n odd

Pdark(n)

)
Po

= Pe +

( ∑
n odd

Pdark(n)

)
[Po − Pe]

=
1

2
(1 + 〈Π̂〉)− e−r

( ∑
n odd

rn

n!

)
〈Π̂〉

=
1

2
(1 + 〈Π̂〉)− e−r 1

2
(er − e−r)〈Π̂〉

=
1

2
(1 + e−2r〈Π̂〉). (17)

Similarly, we obtain

P ′o =
1

2
(1− e−2r〈Π̂〉). (18)

That is, the effect of the dark counts is simply to reduce
the visibility. According to Ref. [36], where applicable,
the fractional dark count rate compared to the maximum
count rate ranges between 10−8 to 10−2. The rate r is
the number of dark counts at each detector during the
measurement of the TMSV state, which involves detec-
tion of multiple photons. If we assume that each detector
needs to detect on the order of 10 photons for small n̄,
then r is in the range 10−7 to 10−1.

Figures 9 and 10 shows the phase MSE for n̄ = 1 and
n̄ = 3 in the presence of dark counts. The phase MSE
multiplied by n̄2M is plotted against M for r = 0.001,
r = 0.01, r = 0.05 and r = 0.1. The error bars are not
shown if they are smaller than the marker size. Evidently
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FIG. 10. The ratio of the phase MSE to the Heisenberg limit
is plotted against the measurement record length M for n̄ = 3
and a range of dark count rates. The results shown are: r = 0
(red plusses), r = 0.001 (green crosses), r = 0.01 (orange
triangles), r = 0.05 (blue squares), and r = 0.1 (purple stars).
The Heisenberg limit for r = 0 (HL, dashed green line) is
plotted for comparison. The error bars are not shown if they
are smaller than the markers.

for both n̄, when r = 0.001 the phase MSE is barely larger
than those of the ideal case when r = 0. For this reason
we do not plot the data points for smaller values of r.

For n̄ = 1, when r = 0.01, the Heisenberg limit can be
reached when M is approximately 200. For n̄ = 3 with
r = 0.01, the Heisenberg limit can still be reached, but M
needs to be over 3000. When r = 0.05, the phase MSEs
do not reach this bound, though for n̄ = 3, the precision
is still better than the shot noise limit. (In Fig. 10 the
shot noise limit is a straight line at Mn̄2∆ϕ2 = 3.)

The effect of dark counts can be predicted analytically
by considering the Fisher information. For parity signals
with the probability distribution in Eqs. (17) and (18),
the Fisher information is

Fr(ϕ) = n̄2(n̄+ 2)2e−4r sin2(θ − ϕ) cos2(θ − ϕ)

× [n̄(n̄+ 2) sin2(θ − ϕ) + 1]−2

× [n̄(n̄+ 2) sin2(θ − ϕ)− e−4r + 1]−1. (19)

A notable feature of this result is the exponential depen-
dence on the dark count rate. Regardless of the value of
n̄, the dark counts will have a significant effect when the
rate is comparable to 1. When n̄ = 1, the Fisher infor-
mation of the parity scheme is lower than the shot noise
limit when r is larger than ≈ 0.05, which is consistent
with the simulation.

In comparison, the dark count rates have a much less
significant effect on coherent states. If a coherent state
with mean photon number n̄ (which has shot-noise lim-
ited precision) is used in an MZI, dark counts simply
increase the mean intensities at the two outputs,

n̄± = n̄[1± cos(θ − ϕ)]/2 + r. (20)

The probabilities of detecting n photons at the two out-
put ports are given by the Poisson distributions

P±(n) = e−n̄±
n̄n±
n!
. (21)

This gives the Fisher information

FSQL(ϕ) =

∞∑
n=0

(
(∂P+(n)/∂ϕ)2

P+(n)
+

(∂P−(n)/∂ϕ)2

P−(n)

)
=

n̄2(n+ 2r) sin2(θ − ϕ)

(n+ 2r)2 − n̄2 cos2(θ − ϕ)
, (22)

This Fisher information is maximized at θ − ϕ = π/2,
where its value is n̄2/(n̄ + 2r). It is only decreased by
a factor of 1 + 2r/n̄ from the case without dark counts.
Provided the dark count rate is small compared to n̄, it
will not have a significant effect on the accuracy.

V. CONCLUSION

Schemes for phase measurement often consider N00N
states, or equal photon numbers in both input ports for
an interferometer [1, 13, 28, 37]. The states that are
most commonly produced experimentally are the TMSV
states. For these states, it was previously shown that par-
ity detection yields a phase sensitivity, estimated from
the Cramér-Rao bound, beyond the Heisenberg limit.
Since then, it was found that parity detection attains the
Cramér-Rao bound for a wide range of states including
TMSV states [38].

However, the ability to actually achieve estimation
with mean-square error near the Cramér-Rao bound was
uncertain, because the probability distribution for the
measurements is not well behaved. The sign of the phase
is ambiguous, because for any nonzero result, the proba-
bility distribution for the phase is symmetric about zero.
Moreover, the phase measurement is most sensitive in
a small region about zero, where the ambiguity of the
sign is most problematic (because widely separated peaks
would be easier to distinguish).

In this work we showed that it is possible to per-
form adaptive measurements on a moderate number of
copies of the state, and achieve small mean-square error,
that is close to the Cramér-Rao bound in the interval
(−π/2, π/2). In particular, we find that it is possible to
obtain mean-square error below the Heisenberg limit. It
was found that the higher the mean photon number is
in the TMSV state, the larger the number of trials is
needed to reach the Heisenberg limit. For mean photon
number n̄ = 1, approximately one hundred trials is suf-
ficient, whereas for n̄ = 5, one thousand is required. As
the mean number of the TMSV state is increased, the
number of parity detections needed to approximate the
Cramér-Rao bound also increases.

Those results are for an ideal system with no noise.
When loss is present, we find that the total efficiency of
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the system must be very close to one to observe precision
below the Heisenberg limit: for mean photon number
n̄ = 3, an efficiency larger than 0.99 would be necessary.
We also find that in the presence of dark counts where
the rate is lower than approximately 0.01, the Heisenberg
limit can still be reached.
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