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Abstract

In this work we examine loss in ring resonator networks from an “operator valued phasor addition”

approach (or OVPA approach) which considers the multiple transmission and cross coupling paths of a

quantum field traversing a ring resonator coupled to one or two external waveguide buses. We demonstrate

the consistency of our approach by the preservation of the operator commutation relation of the out-coupled

bus mode. We compare our results to those obtained from the conventional quantum Langevin approach

which introduces noise operators in addition to the quantum Heisenberg equations in order to preserve

commutation relations in the presence of loss. It is shown that the two expressions agree in the neighborhood

of a cavity resonance where the Langevin approach is applicable, whereas the operator valued phasor addition

expression we derive is more general, remaining valid far from resonances. In addition, we examine the effects

of internal and coupling losses on the Hong-Ou-Mandel manifold first discussed in Hach et al. Phys. Rev.

A 89, 043805 (2014) that generalizes the destructive interference of two incident photons interfering on a

50:50 beam splitter (HOM effect) to the case of an add/drop double bus ring resonator.
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I. INTRODUCTION

It is difficult to overstate the importance of the control of fields at the single or few photon level

in the realization of optical architectures for quantum computation, communication, and metrology.

In order to optimize the functionality of next-generation quantum information processing systems,

devices need to be scaled to the level of micro- or even nano-integration. Notable persistent chal-

lenges to advancement of efficient, scalable quantum information processing systems include the

identification of useful physical qubits, the discovery of materials for use in quantum circuits, and

the development of system architectures based on those qubits and materials. Light-speed trans-

mission and high resilience to noise in comparison with other possible physical systems identifies

photons as a very promising realization of the carriers of quantum (and classical) information. Fur-

ther, several degrees of freedom, for example, presence/absence of a photon or mutually orthogonal

optical polarization states can be used to encode quantum information [1].

One potential platform is silicon, which has desirable optical properties for integrated optical

systems at the telecommunication wavelength of 1550 nm. In addition, silicon is a candidate for

fabricating sub-Poissonian single photon sources relying on its high third order nonlinearity χ3 [2].

Using such sources, several diverse and exciting quantum phenomena can be explored, including

time bin entanglement [3], polarization entanglement [4], and N00N reduced de-Broglie wavelength

[5]. Pioneered largely by the early work of Yariv [6], silicon micro-ring resonators evanescently

coupled to silicon wave guides [7] find an ever-growing range of applications as the bases for devices

and networks that are at the heart of the phenomena underpinning many quantum technologies

[5, 8–13]. In particular, our collaboration has recently demonstrated theoretically a particular

enhancement of the Hong-Ou-Mandel Effect [11] and experimentally a two-photon interference

effect in down converted photons generated on-chip in a silicon microring resonator [5, 10].

Naturally paralleling the increased interest in silicon microring resonator networks, a significant

body of theoretical analysis has developed into a reasonably sophisticated description of the quan-

tum optical transport behaviors exhibitied in various simple topologies and environments. Two

basic approaches have emerged in formulating the theoretical description of such systems. One

that we shall refer to as the Langevin approach is based upon Lipmann-Schwinger style scattering

theory at the localized couplers between components (i.e. microrings and waveguides) along with

photonic losses modeled via noise operators representing a thermal bath of oscillators [9, 14–18].

The second approach, which we describe below, which we will loosely call “operator valued phasor

addition” or the OVPA approach, is based upon the construction of field transformations for the
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optical mode operators by considering a linear superposition of transition amplitudes through all

possible paths of the optical system [11, 19–23]

The Langevin approach [24–27] is advantageous with respect to its natural incorporation of

quantum noise and its seamless incorporation of finite coherence times and bandwidths. The

significant disadvantages of the Langevin approach are that it is difficult to apply to photonic

input states that are more exotic than one or two-photon Fock states and that it oversimplifies

to some degree the topology of the ring, potentially creating stumbling blocks in the analysis of

larger quantum networks of microrings and waveguides. Our OVPA approach is based on input and

output states of the quantum optical system which are related by working in an effective Heisenberg

picture [28]. This approach is easy to generalize to all network topologies and arbitrary photonic

input states. Previous works along this line of analysis have focused almost entirely upon lossless

operation of the networks [11, 19, 22]. These previous works have yielded interesting results, even

within the confines of such idealized conditions. The principal result of this present work is to

extend the analysis of silicon microring resonator networks to larger and more general devices. We

formulate an approach capable of capturing the advantages of both of the Langevin and previous

operator multi-path approaches in this area.

The paper is organized as follows. In Section II we derive the internal cavity and output mode

of an all through ring resonator (often called a single bus ring resonator) from the conventional

quantum Langevin approach which entails the inclusion of quantum noise bath operators. We relate

the expression for the out-coupled mode (exiting the bus) to the expression found by considering

the phasor addition of multiple transmission and cross coupling paths of a classical field traversing

the ring resonator. This latter classical approach is equivalent to considering the junction of the

bus to the ring resonator as an effective transmission/reflection beam splitter interaction with cross

coupling acting analogously as an effective “reflection” of the external bus driving field into the

ring resonator.

In Section III we quantize the OVPA approach. Unlike other multi-path approaches considered

in literature, we explicitly include quantum noise using Loudon’s expression for attenuation loss of

a traveling wave mode [29, 30], now adapted to the ring resonator/bus geometries. The expression

for the single bus resonator output mode is compared to the corresponding expression derived from

the Langevin approach in Section II. It is shown that the two expressions agree in the neighborhood

of a cavity resonance where the Langevin approach is applicable. The OVPA expression we derive

is more general, remaining valid far from resonance. We also generalize our OVPA approach to

the case of the add/drop (or double bus) ring resonator.
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In Section IV we examine the effects of internal and coupling losses on the Hong-Ou-Mandel

manifold first discussed in Hach et al. [11] that generalizes the destructive interference of two

incident photons interfering on a 50:50 beam splitter (HOM effect [31]) to the case of an add/drop

double bus ring resonator. In Section V we state our conclusions and outlook for future work.

To make this paper self contained we relegate many of the algebraic and background details to

the appendices. In Appendix A we review the classical derivation of the input-output formalism

that is used in this work. In Appendix B we review the quantum derivation of the input-output

formalism, where the emphasis is on the preservation of the operator commutation relations. In

Appendix C we review Loudon’s quantum formulation of traveling-wave attenuation in a beam

that we adapt in the main body of the text to the ring resonator geometries. In Appendix D we

explicitly demonstrate the quantum commutation relation for the expression for the out-coupled

single bus mode.

II. DERIVATION OF OUTPUT FIELD OF AN ALL THROUGH (SINGLE BUS) RING

RESONATOR

A. Langevin approach derivation

In this section we follow a conventional Langevin approach [24–27] for the derivation of the

output field of an single bus ring resonator. In Fig.(1) we show a microring resonator with input

(quantized) field â, output field ĉ, and internal ring resonator cavity mode âint. Here, γc is the cou-

pling coefficient between the input and internal mode and γint represents internal losses. Following

a c*κ−κ
τ

*τ
PQ

Qa Pa

R

â ĉ

R

intâ

cγ

intγ

FIG. 1. An all through (single bus) ring resonator
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the derivation in Eq.(B13) in Appendix B the equation of motion for the driven internal field âint

undergoing coupling and internal losses is given by,

˙̂aint(t) = − i
~

[âint, Hsys]−
(γc + γint)

2
âint(t) +

√
γc â(t) +

√
γint f̂(t), (1)

where f̂(t) are the quantum Langevin noise operators satisfying the white noise commutation

relations [f̂(t), f̂ †(t′)] = δ(t−t′). As discussed in Appendix B their presence is required by quantum

mechanics to ensure that the commutation relations for the internal field are satisfied. In addition

to Eq.(1), a boundary condition between the input, output and internal field is given by,

â+ ĉ =
√
γc âint. (2)

This boundary condition follows from the widely used input-output formalism [24–27, 32], a quan-

tum optical instantiation of the S matrix theory, relating early time input fields to late time output

fields in scattering problems. We present the derivation of Eq.(2) classically in Appendix A, and

quantum mechanically in Appendix B. In quantum optics, this boundary condition is used to

related the internal cavity mode âint to the external driving â and out-coupled ĉ modes.

For simplicity we take Hsys = ~ω0â
†
intâint to be the free field Hamiltonian for the inter-

nal ring resonator mode of frequency ω0. Transforming to the frequency domain via âint(t) =∫∞
−∞ dω âint(ω) e−iωt yields,

âint(ω) =
1

(γc + γint)/2− i(ω − ω0)

(√
γc â+

√
γint f̂(ω)

)
. (3)

Use of the boundary condition Eq.(2) then yields the desired relationship between the output field

ĉ and the input field â,

ĉ(ω) =
√
γc âint(ω)− â(ω) =

(
γ− + iδ

γ+ − i δ

)
â(ω) +

√
γc γint

γ+ − iδ
f̂(ω). (4)

where we have defined γ± = (γc ± γint)/2 and δ = ω − ω0. Note that Eq.(4) has the form of,

ĉ = Aa→c â+ B f̂ , (5)

with |Aa→c|2 + |B|2 = 1. Since the input â and noise field f̂ are independent, they commute and

this latter condition ensures that [ĉ(ω), ĉ†(ω′)] = δ(ω − ω′). The inclusion of loss for the internal

ring resonator mode âint requires the introduction of noise operators f̂ to ensure the preservation

of quantum commutations relations. This is the essence of the quantum Langevin approach. Note

that without internal loss (γint = 0), |Aa→c| = 1 and the output field ĉ is just a phase-shifted

version of the input field â [23–27].
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B. Transmission/cross coupling coefficient derivation: classical

In Fig.(2) we follow the multiple transmission and cross coupling paths in the ring resonator.

We use the notation of [5, 11] in which τ is the transmission from the input (classical) mode a to

output c along the straight waveguide (i.e. a → c) bus and −κ∗ is the cross coupling from mode

a into the ring resonator (i.e. from a→ P ). Similarly, κ is the cross coupling [33] from inside the

ring resonator to the waveguide bus (i.e Q→ c) and τ∗ is the internal transmission within the ring

(i.e. from Q→ P ). The output mode c is obtained as the coherent sum of all possible round trip

‘Feynman paths’ circulating inside the resonator including a round trip amplitude loss α = e−
1
2

ΓL

[6] and phase accumulation eiθ where θ = β(ω)L = n(ω)ω/cL, with L = 2πR the perimeter of a

ring resonator of radius R,

a c*κ− κ
τ

*τ
PQ

Qa Pa

R

â ĉ

R

intâ

cγ

intγ

FIG. 2. An all through ring resonator

c = τ aa→c + a (−κ∗)a→P (α eiθ)P→Q (κ)Q→c, (6a)

+ a (−κ∗)a→P (α eiθ)P→Q (τ∗)Q→P (α eiθ)P→Q (κ)Q→c, (6b)

+ a (−κ∗)a→P (α eiθ)P→Q (τ∗)Q→P (α eiθ)P→Q (τ∗)Q→P (α eiθ)P→Q (κ)Q→c, (6c)

+ . . . ,

=

(
τ − |κ|2 α eiθ

∞∑
n=0

(τ∗ α eiθ)n

)
a, (6d)

=

(
τ − α eiθ

1− τ∗ α eiθ

)
a. (6e)

In the above, the first term in Eq.(6a) is the direct transmission of mode a→ c (zero round trips),

and in the last line we have used |τ |2 + |κ|2 = 1, which states conservation of energy/power. The
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notation used in the second term of Eq.(6a) indicates the factors picked up by the mode a as it

undergoes one round trip in the resonator, namely (−κ∗)a→P as it cross couples with strength −κ∗

from the external bus to a point P just inside the ring, (α eiθ)P→Q as it circulates once around the

cavity from the point P to the point Q just before exiting the ring where it out couples (κ)Q→c with

strength κ to the external mode c. Eq.(6b) and Eq.(6c) explicitly track two and three circulations

respectively around the ring resonator. The sum of all possible circulations is given in Eq.(6d)

which reduces to the final expression Eq.(6e), which is the classical result as derived in [6, 34, 35].

C. Conventional matrix ‘beam splitter’ derivation

The derivation in the previous section is equivalent to the matrix ‘beam splitter’ formulation

of Rabus [35], with τ, τ∗ acting as transmission coefficients and κ, −κ∗ acting as a ‘reflection’

coefficients between the input modes a and aQ and output modes c and aP , c

aP

 =

 τ κ

−κ∗ τ∗

 a

aQ

 , (7a)

aQ = α eiθ aP . (7b)

Here, aP can be considered as the (classical) field cross coupled from the input mode a to just

inside the ring resonator at the point P . The mode aQ is the field aP propagated around the ring

once, which suffers a roundtrip loss α ≡ e−
1
2

ΓL, with combined coupling and internal loss Γ and

ring circumference L = 2πR, and a single roundtrip phase accumulation of θ. By solving for aP

from Eq.(7a) and using the internal round trip boundary condition Eq.(7b) we obtain the solution,

aP =
−κ∗

1− τ∗ α eiθ
(8a)

which upon using the boundary condition Eq.(7b) yields,

aQ =
−κ∗ α eiθ

1− τ∗ α eiθ
. (8b)

Finally, the first equation in Eq.(7a) c = τ a+ κ aQ yields the same solution as in Eq.(6e).

III. QUANTUM TRANSMISSION/CROSS COUPLING COEFFICIENT DERIVATION

OF OUTPUT FIELD(S) OF A RING RESONATOR

A. Quantum derivation

For the quantum derivation, we use the expression Eq.(C10) in Appendix C (see Fig.(10)) for

the attenuation loss of a traveling wave, modeled from a continuous set of beams splitters acting
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as scattering centers due to Loudon [29, 30],

âL(ω) = eiξ(ω)L â0(ω) + i
√

Γ(ω)

∫ L

0
dz eiξ(ω)(L−z) ŝ(z, ω), (9)

where for convenience we have introduced the shorthand notation for the input field at z = 0 ,

â0(ω) ≡ â(z, ω)|z=0 and the output field at z = L , âL(ω) = â(L, ω). In Eq.(9) we have defined the

complex propagation constant as ξ(ω) ≡ β(ω) + iΓ(ω)/2, with β(ω) ≡ n(ω)(ω/c) for a medium

of index of refraction n(ω) and attenuation constant Γ(ω). Note that since ŝ(z, ω) are input noise

operators, and â0(ω) is the input field before any interactions with the scattering centers, these

operators commute,

[â0(ω), ŝ(z′, ω′)] = [â0(ω), ŝ†(z′, ω′)] = 0. (10)

with commutation relations,

[â0(ω), â†0(ω′)] = δ(ω − ω′), [ŝ(z, ω), ŝ†(z′, ω′)] = δ(z − z′) δ(ω − ω′). (11)

Thus, if we explicitly form the commutation relation [âL(ω), â†L(ω′)] we obtain two terms,

[âL(ω), â†L(ω′)] = ei[ξ(ω)−ξ∗(ω′)]L [â0(ω), â†0(ω′)]

+
√

Γ(ω)Γ(ω′)

∫ L

0
dz

∫ L

0
dz′ ei[ξ(ω)(L−z)−ξ∗(ω′)(L−z′)] [ŝ(z, ω), ŝ†(z′, ω′)],

= δ(ω − ω′)
(
e−Γ(ω)L + Γ(ω)

∫ L

0
dz e−Γ(ω)z

)
,

= δ(ω − ω′), (12)

where in the second equality we have used i[ξ(ω)−ξ∗(ω′)] = −Γ(ω) and the commutation relations

for a0(ω) and s(z, ω) in Eq.(11), and that the integral in the second to last line yields (1−e−Γ(ω)L)/Γ.

Thus, the expression for the attenuated traveling wave âL(ω) in Eq.(9) explicitly preserves the

output field commutation relations.

In analogy with the classical field derivation in Section II B, we track the operator input field

â ≡ â0 as it couples into the ring resonator cavity making an arbitrary number of circulations
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around the cavity before it couples out to the output mode ĉ (see Fig.(2)),

ĉ = τ â0 (13a)

+ (−κ∗)a→P (â0
P→Q−→ â1)(κ)Q→c, (13b)

+ (−κ∗)a→P (â0
P→Q−→ â1

Q→P−→ τ∗â1
P→Q−→ τ∗â2)(κ)Q→c, (13c)

+ (−κ∗)a→P (â0
P→Q−→ â1

Q→P−→ τ∗â1
P→Q−→ τ∗â2

Q→P−→ τ∗2â2
P→Q−→ τ∗2â3)(κ)Q→c, (13d)

+ . . . ,

= τ â0 − |κ|2
∞∑
n=0

(τ∗)n ân+1, (13e)

=
(
τ − |κ|2

∞∑
n=0

(τ∗αeiθ)n
)
â0 − i|κ|2

√
Γ

∞∑
n=0

(τ∗)n
∫ (n+1)L

0
dz eiξ(ω)[(n+1)L−z]ŝ(z, ω), (13f)

=

(
τ − α eiθ

1− τ∗ α eiθ

)
â− i|κ|2

√
Γ
∞∑
n=0

(τ∗)n
∫ (n+1)L

0
dz eiξ(ω)[(n+1)L−z]ŝ(z, ω). (13g)

In Eq.(13a) we have the direct transmission of the input mode â0 ≡ â into the output mode ĉ,

while in Eq.(13b)- Eq.(13d) we follow the round trip evolution of the internal ring resonator mode

with ân ≡ ânL after n round trips through the cavity. In Eq.(13f) we have used the definition,

ân+1 ≡ â
(
(n+ 1)L, ω

)
= eiξ(ω)(n+1)Lâ0(ω) +

∫ (n+1)L

0
dz eiξ(ω)[(n+1)L−z]ŝ(z, ω) (14)

with eiξL ≡ α eiθ with α = e−
1
2

ΓL and θ = βL. The above notation is meant to similar to Eq.(6a)

with the added annotation â0
P→Q−→ â1 indicating that the operator mode â0 is transformed into

the operator mode â1 after one internal circulation within the ring from point P to point Q. The

notation â1
Q→P−→ τ∗â1 indicates that the mode â1 picks up a factor τ∗ as it internally transmits from

the point Q to the point P for the start of an additional circulation within the ring (as opposed to

out coupling with strength (κ)Q→c from the ring resonator at point Q into the external bus mode

ĉ).

As derived in Appendix D an explicit calculation of the output field commutation relation yields,

[ĉ(ω), ĉ†(ω′)] = δ(ω − ω′). (15)

The coefficient of the first term in Eq.(13g) [6] is identical in form to classical transmission coeffi-

cient in Eq.(6e), while the second operator term in Eq.(13g) is the Langevin noise term required

to preserve the commutation relation Eq.(15). Note that in Eq.(13g) we assumed without loss of

generality, a single uniform propagation wavevector β(ω) and loss Γ(ω) throughout the ring res-

onator. As shown in Appendix D this assumption can be relaxed and the commutation relations

Eq.(15) still hold for multiple, piecewise defined propagation wavevectors and losses along the ring

resonator of perimeter length L.
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B. Comparison with quantum Langevin approach

We now wish to compare the two expressions for the transmission amplitude Aa→c from the

input mode â to the output mode ĉ in the single bus ring resonator given by Eq.(4) for the Langevin

approach and by Eq.(13g) for the OVPA approach. The power transfer from â to ĉ is given by

Pa→c = |Aa→c|2/TR, where TR = L/vg is the round trip time in the ring resonator of perimeter

L = 2πR, and vg is the group velocity within the ring.

For the Langevin case Eq.(4), the expression for P
(Langevin)
a→c TR = (γ−

2 + δ2)/(γ+
2 + δ2) has

validity around a single resonance at frequency ω0 (see appendices A and B). By construction,

the expression using Eq.(13g) for P
(OV PA)
a→c TR = |(|τ | − α eiθ

′
)/(1 − |τ |α eiθ′)|2 for the ‘reflec-

tion/transmission’ derivation (defining τ = |τ | eiθτ and total phase θ′ = θ − θτ ) is valid for

all resonances as a function of θ = β(ω)L = ω TR. Thus, in a neighborhood of a particu-

lar resonance at frequency ω0 we have ∆θ′ = TR δ with δ = ω − ω0 for which we approximate

cos ∆θ′ ≈ 1 − ∆θ′2/2 = 1 − T 2
R δ

2/2. Substituting this approximation into P
(OV PA)
a→c TR, keeping

terms to order δ2, and equating this to P
(Langevin)
a→c TR yields,

Pa→c TR =

(α− |τ |)2

α |τ |T 2
R

+ δ2

(1− α |τ |)2

α |τ |T 2
R

+ δ2

=
γ−

2 + δ2

γ+
2 + δ2

, (16)

from which we can read off the expressions,

γ+ TR =
1− α |τ |√

α |τ |
, γ− TR =

α− |τ |√
α |τ |

, (17)

or equivalently,

γc TR =
(1 + α) (1− |τ |)√

α |τ |
, γint TR =

(1− α) (1 + |τ |)√
α |τ |

(18)

where we recall that α = e−
1
2

ΓL. The expressions in Eq.(18) are consistent in the limit of zero

coupling and internal losses γc = 0 and γint = 0 respectively, i.e. Γ = 0, which yields α = |τ | = 1.

Following [34] we can define a distributed loss for the OVPA case as,

|τ | ≡ e−Γτ L/2, α ≡ e−ΓL/2, (19)

In the limit of weak losses, we can expand these exponentials to first order in ΓL and Γτ L and

substitute into Eq.(18) to obtain,

γc TR ≈ Γτ L, γint TR ≈ ΓL. (20)
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Thus, in the OVPA approach, the magnitude of the transmission coefficient |τ | for power flowing

from mode â to ĉ represents a distributed loss at rate γc, the cavity decay rate, and round trip

ring loss α represents a distributed internal loss at the rate Γ = γint. In general, the Γ in Eq.(20)

is frequency dependent and are applicable in the proximity of each resonance δ = ω − ω0 = 0.

C. Add/Drop ring resonator

We can extend the formalism of the previous section to consider the quantum derivation of

the input-output relations for an add/drop ring resonator as illustrated in Fig.(3). Here b is the

a c*κ− κ
τ

*τ
PQ

Qa Pa

R

d bη

*η

γ *γ−

a c*κ− κ
τ

*τ

R

d bη

*η

γ *γ−

ie θα
ie θα −

− ie θα +
+

PQ

P′ Q′

FIG. 3. An add/drop ring resonator

(classical) mode injected at the add port and d is mode emitted at the drop port. We label as P ′

the point just inside the ring resonator at which b enters the cavity, and similarly Q′ as the point

just before the exit to the external mode d. We now divide the internal losses and phase shifts into

two half-ring portions via α+ e
iθ+ from P → Q′ and α− e

iθ− from P ′ → Q such that α = α+ α−

and θ = θ+ + θ−.

Let us first consider the output mode c of the form,

c = Aa→c a+Ab→c b, (21)

generalizing Eq.(6e) for the case of the all through (single bus) ring resonator. Comparison of

Fig.(2) and Fig.(3) as well as Eq.(6a) shows that the classical loss and phase accumulation factor

α eiθ is replaced by α eiθ → (α+ e
iθ+) (η∗) (α− e

iθ−) = α eiθ η∗ in the single bus amplitude Aa→c in

Eq.(6e).
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Correspondingly, in the quantum derivation we have ân+1 → (η∗)n+1ân+1 in Eq.(13e) such that

the contribution to ĉ from the input port mode â in Eq.(21) is given by τ â0−|κ|2 η∗
∑∞

n=0(τ∗ η∗)n ân+1

where ân+1 is given by Eq.(14).

For the add port we have classically,

Ab→c = (−γ∗)b→P ′ (α− eiθ−)P ′→Q (κ)Q→c (22a)

+ (−γ∗)b→P ′ (α− eiθ−)P ′→Q (τ∗)Q→P (α+ e
iθ+)P→Q′ (η

∗)Q′→P ′ (α− e
iθ−)P ′→Q (κ)Q→c (22b)

+ . . . ,

= −γ∗ κα eiθ/2
∞∑
n=0

(τ∗η∗ α eiθ)n, (22c)

= − γ∗ κα eiθ/2

1− τ∗η∗ α eiθ
., (22d)

where in Eq.(22a) the internal mode picks up a ‘half-circulation’ loss α− e
iθ− =

√
α eiθ/2 [35] in

traveling from the insertion point P ′ to the exit point Q a distance L/2 away [36]. In the quantum

derivation, this corresponds to a contribution in Eq.(21) to ĉ from the add port mode b̂ given by

−γ∗ κ
∑∞

n=0(τ∗ η∗)n b̂n+1/2. Here b̂n+1/2 is given by an analogous expression in Eq.(14) with â→ b̂

and n+ 1→ n+ 1/2, corresponding to the classical ‘half-circulation’ loss. Thus, Eq.(21) takes the

form (with â0 ≡ â and b̂0 ≡ b̂ indicating modes just inside the ring resonator experiencing zero

round trips),

c = Aa→c a+Ab→c b,

⇒ ĉ = τ â0 − |κ|2 η∗
∞∑
n=0

(τ∗ η∗)n ân+1 − γ∗ κ
∞∑
n=0

(τ∗ η∗)n b̂n+1/2, (23a)

=

(
τ − η∗ α eiθ

1− τ η∗ α eiθ

)
â−

(
γ∗ κ
√
α eiθ/2

1− τ η∗ α eiθ

)
b̂− i

√
Γ
(
|κ|2 η∗f̂a + γ∗ κf̂b

)
, (23b)

where we have define the noise operators as,

f̂a =

∞∑
n=0

(τ∗η∗)n ŝn+1, f̂b =

∞∑
n=0

(τ∗η∗)n ŝn+1/2, ŝm =

∫ mL

0
dz eiξ(ω)[mL−z] ŝ(z, ω). (24)

A similar analysis can be carried out for the drop port mode d̂ in terms of the input â and add

port b̂ modes, yielding,

d = Aa→d a+Ab→d b,

⇒ d̂ = −

(
κ∗ γ
√
α eiθ/2

1− τ η∗ α eiθ

)
â+

(
η − τ∗ α eiθ

1− τ η∗ α eiθ

)
b̂− i

√
Γ
(
κ∗ γf̂a + |γ|2 τ∗f̂b

)
. (25a)

Note, for the zero loss case α = 1 the transition amplitudes Aa→c, Ab→c, Aa→d, Ab→d are the same

ones derived classically in [35] and quantum mechanically in [11] for the add/drop ring resonator.
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The preservation of the commutation relations [ĉ(ω), ĉ†(ω′)] = [d̂(ω), d̂†(ω′)] = δ(ω − ω′) and

[ĉ(ω), d̂(ω′)] = [ĉ(ω), d̂†(ω′)] = 0 can be explicitly demonstrated straightforwardly (though with

somewhat more involved algebra) through the approach used in Appendix D for explicitly proving

the all through commutation relation Eq.(15)

IV. HONG-OU-MANDEL MANIFOLD WITH LOSS

In this section we re-examine the Hong-Ou-Mandel manifold (HOMM) introduced by Hach et.

al. [11] for the lossless add/drop double bus ring resonator in the previous Section III C, but now

using the expressions for the output modes c Eq.(23a) and and d Eq.(25a) which includes the

effects of internal and coupling losses. The HOMM is defined by the level surface Pc,d(1, 1) = 0

for the destructive interference of the coincident output photon state |1c, 1d〉 (given the input state

|1a, 1b〉 ) containing one photon in each system output mode c and d (see Fig.(3)) as a function

of the through-coupling parameters τ and η (for modes c and d respectively), and the internal

single round trip phase accumulation θ. In Fig.(4) we plot the region 0 ≤ Pc,d(1, 1) ≤ 0.001

corresponding to 99.9% destructive interference [37] of the quantum amplitude for the state |1c, 1d〉

for the real parameters 0 ≤ τ, η ≤ 1 (with the cross-coupling parameters giving by κ =
√

1− τ2

and γ =
√

1− η2) and −π ≤ θ ≤ π. As discussed in Hach et. al. [11], the two dimensional
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τ
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τ
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η
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θ

η

τ
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FIG. 4. (Color online) Hong-Ou-Mandel manifold (HOMM) for Pc,d(1, 1) ≤ 0.001 for zero loss α = 1, as a

function of through-coupling parameters 0 ≤ τ ≤ 1 and 0 ≤ η ≤ 1 for the system output modes c and d

respectively of Fig.(3), and the internal single round trip phase accumulation −π ≤ θ ≤ π (compare with

Fig.(5b) of [11]).
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(three parameter) HOMM arising in the lossless add/drop ring resonator generalizes the zero

dimensional (one parameter) Hong-Ou-Mandel effect [31] where the single adjustable parameter is

the transmissivity of the 50:50 beam splitter upon which the two photons interfere.

To examine the effects of coupling and intrinsic loss on the HOMM in the add/drop ring

resonator, we begin with the input state |1a, 1b, 0env〉 ≡ |1a, 1b〉 ⊗ |0〉env where |0〉env represents

the (for simplicity, zero temperature) initial vacuum state of the noise modes which are acted upon

by the noise operators f̂a and f̂b defined in Eq.(24). Let us write Eq.(23a) and Eq.(25a) for the

output modes c and d in terms of the system input modes a and b formally as

~̂cout =

 ĉ

d̂

 =

 Aa→c Ab→c
Aa→d Ab→d

  â

b̂

+

 F̂c

F̂d

 ≡M ~̂ain + ~̂F, (26)

where we have defined the collective noise operators F̂c = −i
√

Γ
(
|κ|2 η∗f̂a + γ∗ κf̂b

)
, and F̂d =

−i
√

Γ
(
κ∗ γf̂a + |γ|2 τ∗f̂b

)
. From the definition Eq.(24) we see that f̂a depends on an integer

number of round trip losses in the ring resonator (i.e. mode â → ĉ or b̂ → d̂ involving the noise

operator ŝn+1(z, ω)), while f̂b depends on an integer plus half number of round trip losses (i.e.

mode â → d̂ or b̂ → ĉ involving the noise operator ŝn+1/2(z, ω)). Thus, while [f̂a, f̂b] = 0, we

have [f̂a, f̂
†
b ] 6= 0. This is to be expected [17, 38] due to the feedback (sum over multiple round

trips) provided by the ring resonator. While the commutator [f̂a, f̂
†
b ] could be explicitly computed

directly as in Section D (for the single bus ring resonator) we can now invoke (as is typically done)

the unitarity of the input modes and output modes commutators to determine the value of the

noise commutators. Returning to Eq.(26) in terms of the collective noise modes F̂c and F̂d we can

infer that

[ĉ(ω), ĉ†(ω′)] = δ(ω − ω′)⇒ [F̂c(ω), F̂ †c (ω′)] =
(
1− (|Aa→c|2 + |Ab→c|2)

)
δ(ω − ω′), (27a)

[d̂(ω), d̂†(ω′)] = δ(ω − ω′)⇒ [F̂d(ω), F̂ †d (ω′)] =
(
1− (|Aa→d|2 + |Ab→d|2)

)
δ(ω − ω′), (27b)

[ĉ(ω), d̂†(ω′)] = 0⇒ [F̂c(ω), F̂ †d (ω′)] = − (Aa→cA∗a→d +Ab→cA∗a→d) δ(ω − ω′). (27c)

The input state |Ψ〉in = |1a, 1b, 0env〉 = â†b̂†|0a, 0b, 0env〉 is converted to the output state |Ψ〉out

by rewriting the input modes operators â† and b̂† in terms of the output mode operators ĉ† and

d̂†. Inverting Eq.(26) as

~̂a†in =M (~̂c†out − ~̂F †), M = M−1∗, (28)

yields the output state

|Ψ〉out ≡ |Ψ(2)〉c,d ⊗ |0〉env + |φ(1)〉c,d ⊗ F̂ †c |0〉env + |ϕ(1)〉c,d ⊗ F̂ †d |0〉env + |0, 0〉c,d ⊗ |Φ(2)〉env, (29)
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where

|Ψ(2)〉c,d =
√

2M11M21|2, 0〉c,d + Perm(M) |1, 1〉c,d +
√

2M12M22|0, 2〉c,d, (30a)

|φ(1)〉c,d = − (2M11M21|1, 0〉c,d + Perm(M) |0, 1〉c,d) , (30b)

|ϕ(1)〉c,d = − (Perm(M) |1, 0〉c,d + 2M12M22|0, 1〉c,d) , (30c)

|Φ(2)〉env = (M11F̂
†
c +M12F̂

†
d ) (M21F̂

†
c +M22F̂

†
d ) |0〉env, (30d)

where we have defined

Perm(M) ≡M11M22 +M12M21, (31)

as the permanent [39] of the matrix M.

Ultimately we are interested in the observable reduced system density matrix ρc,d = Trenv[|Ψ〉out〈Ψ|]

of the output modes c and d. The trace over the environment is facilitated by the observation

that e.g. Trenv[F̂
†
i |0〉env〈0|F̂j ] = env〈0|F̂j F̂ †i |0〉env = env〈0|[F̂j , F̂ †i ] + F̂ †i F̂j |0〉env = [F̂j , F̂

†
i ] for

i, j ∈ {c, d} and where use of Eq.(27a), Eq.(27b), and Eq.(27c) can be made.

The reduced system density matrix has the form

ρc,d =
∑

k={0,1,2}

pk ρ
(k)
c,d , Trc,d[ρ

(k)
c,d ] = 1,

∑
k={0,1,2}

pk = 1, (32)

where the index k labels the number of photons in the modes c and d. The 2-system-photon

sector ρ
(2)
c,d is spanned by the states {|2, 0〉c,d, |1, 1〉c,d, |0, 2〉c,d}, the 1-system-photon sector ρ

(1)
c,d is

spanned by the states {|1, 0〉c,d, |0, 1〉c,d}, and the the 0-system-photon sector ρ
(0)
c,d is the vacuum

state |0〉c,d〈0|.

Finally, P
(α)
c,d (1, 1) ≡ c,d〈1, 1|ρ

(1)
c,d |1, 1〉c,d is the probability, as function of the loss parameter

α = e−ΓL/2, that a coincidence detection will contain one output photon in mode c and one

output photon in mode d for the diagonal density matrix ρ
(1)
c,d . (Such events occur randomly with

probability p2). From Eq.(30a) we see that P
(α)
c,d (1, 1) = Perm(M) as has been recently noted in

the theory of generalized multiphoton (i.e HOM) quantum interference effects, especially in regards

to the problem of boson sampling [40]. The expression for P
(α)
c,d (1, 1) is given by

P
(α)
c,d (1, 1) =

(|τ |2 + α2 |η|2 − α r) (|η|2 + α2 |τ |2 − α r) + α2 |κ|4 |γ|4 + α |κ|2 |γ|2
(
(1 + α2) r − 2α(|τ |2 + |η|2)

)
(|τ |2 + α2 |η|2 − α r) (|η|2 + α2 |τ |2 − α r) + α2 |κ|4 |γ|4 − α |κ|2 |γ|2 ((1 + α2) r − 2α(|τ |2 + |η|2))

, (33)

where we have defined r ≡ 2 Re(τη e−iθ). Eq.(33) reduces in the lossless case α = 1 to

P
(α=1)
c,d (1, 1) =

(
|τ |2 + |η|2 − r − |κ|2 |γ|2

|τ |2 + |η|2 − r + |κ|2 |γ|2

)2

(34)
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FIG. 5. (Color online) Hong-Ou-Mandel manifold (HOMM) for 0 ≤ P
(α)
c,d (1, 1) ≤ 0.001 as a function of the

loss parameter α = e−ΓL/2, the through-coupling parameters 0 ≤ τ ≤ 1 and 0 ≤ η ≤ 1 for the system output

modes c and d respectively of Fig.(3), and the internal single round trip phase accumulation −π ≤ θ ≤ π.

(a) α = 1.0 (lossless), (b) α = 0.95, (c) α = 0.90, (d) α = 0.85, (e) α = 0.80, (f) α = 0.75 (compare with

Fig.(4)).

whose numerator (set equal to zero) was examined in [11] for the case of the lossless HOMM.

In Fig.(5) we plot the region 0 ≤ Pc,d(1, 1) ≤ 0.001 corresponding to 99.9% [37] destructive

interference of the quantum amplitude for the state |1c, 1d〉 for the real parameters 0 ≤ τ, η ≤ 1

(with the cross-coupling parameters giving by κ =
√

1− τ2 and γ =
√

1− η2) and −π ≤ θ ≤ π.

The HOMM begins to break up at approximately 5% loss (α = 0.95), and reduces to essentially

a lower dimension manifold for loss greater than 10% (α < 0.90). Currently, loss in silicon ring

resonators at 1550nm can be as low as 1% [5, 23] so that the observation of the HOMM appears

experimentally feasible.

In Fig.(6) we plot P
(α)
c,d (1, 1) = 0 for the important special case of critical coupling τ = η = 1/

√
2

(i.e. 3dB couplers) versus the internal single round trip phase accumulation θ for various loss

parameters 0.5 ≤ α ≤ 1.0. As the internal and coupling loss (Γ) increases (α = e−ΓL/2 decreases)

we observe the expected disappearance of the HOM dip (zero minima for the lossless case α = 1.0)

and the decrease in visibility (difference between maximum value at θ = 0 and minimum values of
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FIG. 6. (Color online) Hong-Ou-Mandel manifold (HOMM) for P
(α)
c,d (1, 1) = 0 for the important special case

of critical coupling τ = η = 1/
√

2 (i.e. 3dB couplers) versus the internal single round trip phase accumulation

−π ≤ θ ≤ π for various loss parameters α = e−ΓL/2. (left) 0.75 ≤ α ≤ 1.0, (right) 0.50 ≤ α ≤ 0.75 (compare

Fig.(6b) of [11]).

P
(α)
c,d (1, 1) = 0). Again, we can see that for up to 5% loss (0.95 ≤ α ≤ 1.0) the observation of the

HOMM appears experimentally feasible.

It is also interesting to examine the one system photon sector ρ
(1)
c,d of the reduced density matrix

ρc,d spanned by the basis states {|1, 0〉c,d, |0, 1〉c,d}. Let us define the un-normalized state ρ̃
(1)
c,d as

ρ̃
(1)
c,d = |φ(1)〉c,d〈φ(1)| [F̂c, F̂ †c ]+|φ(1)〉c,d〈ϕ(2)| [F̂d, F̂ †c ]+|ϕ(2)〉c,d〈φ(1)| [F̂c, F̂ †d ]+|ϕ(2)〉c,d〈ϕ(2)| [F̂d, F̂ †d ],

(35)

and p1 = Tr[ρ̃
(1)
c,d ], then ρ

(1)
c,d = ρ̃

(1)
c,d/p1. Note that ρ

(1)
c,d = Tr[|Ψ(1)〉out 〈Ψ(1)|] arises from the trace

over the environment of the (post-selected) one system photon portion of |Ψout〉 in Eq.(29) where

|Ψ(1)〉out ≡
1
√
p1

(
|φ(1)〉c,d ⊗ F̂ †c |0〉env + |ϕ(1)〉c,d ⊗ F̂ †d |0〉env

)
, (36)

and hence |Ψ(1)〉out could be considered as the (system-environment) purification of the (post-

selected, with probability p1) system state ρ
(1)
c,d . As such, the entropy S(1) = −Tr[ ρ

(1)
c,d log2 ρ

(1)
c,d ]

indicates a measure of the bipartite entanglement between the system and environment for the

post-selected state |Ψ(1)〉out. In Fig.(7) we plot level surfaces of S(1) as a function of τ , η and θ for

various values of the loss parameter α. Values of S(1) closer to unity indicate greater entanglement

between single system photon (in mode c and d), and the single photon lost to the environment

in the post-selected state |Ψ(1)〉out. These regions of larger entanglement are diminished as loss is

increased (α decreased).

Lastly, it is interesting to note that from the definition of |φ(1)〉c,d in Eq.(30b) and |ϕ(1)〉c,d in

Eq.(30c) that both states are suppositions of the one system photon basis states {|1, 0〉c,d, |0, 1〉c,d}.
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FIG. 7. (Color online) Contour plots of the von Neumann entropy S(1) = −Tr[ ρ
(1)
c,d log2 ρ

(1)
c,d ] for the one

system photon sector of ρc,d as a function of through-coupling parameters 0 ≤ τ ≤ 1 and 0 ≤ η ≤ 1, and

the internal single round trip phase accumulation −π ≤ θ ≤ π, for various loss parameters α = e−ΓL/2.

(a) α = 0.95, (b) α = 0.75, (c) α = 0.50, (d) α = 0.25. (Surface manifolds for contour values of S(1) ∈

{0.99, 0.95, 0.75, 0.50, 0.25, 0.10} retain the same nested relative orientation (from left to right) for all subplots

(a)− (d) as that labeled in (a)).

These superpositions are completely destroyed precisely at the condition that HOMM is strongest,

namely P
(α)
c,d (1, 1) = Perm(M) = 0.

V. SUMMARY AND OUTLOOK

In this paper we have examined quantum optical losses in ring resonators using field operator

transformations. Specifically, we have demonstrated the equivalence between our operator val-

ued phasor addition of ‘Feynman paths’ circulating within the resonator and the more standard

Langevin approach. In fact, we have shown that the OVPA approach we present here is slightly

more general in that it is valid for all frequencies of light while the Langevin only holds near a

resonance of the system. This result represents an important ‘unification’ of the description of such

networks based upon scattering theory with that based upon quantum transfer functions (matri-
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ces). With the results of this paper in place, we can now investigate the quantum optical response

of ring resonator networks to exotic states of light in the presence of losses We will apply the tech-

niques developed here and elsewhere in the references to design and optimize silicon nanophotonic

networks for quantum information processing, optical metrology, and communication.

Note, after the completion of this work, the authors were made aware of the paper by Raymer

and McKinstrie (2013) [41] which considered a generalization of the standard Langevin input-

output formalism that explicitly takes into account circulation factors accounting for the multiple

round trips of the fields inside a cavity or ring resonator. That work considered an equation of

motion for one round trip of a single bus cavity field with no internal losses, along with auxiliary

beam-splitter like boundary conditions relating the input and output fields to the circulating cavity

field. While not explicitly including internal propagation losses, the authors indicated how they

would be included in a Langevin approach. The current work discussed in this paper is similar

in spirit, but considers directly the total summation of all round trip circulations of the field(s)

in a lossy (coupling and propagation) single bus and dual bus ring resonator without the use of

boundary conditions. The two approaches are equivalent to each other. Both works consider the

agreement of the formalism with the standard Langevin approach in the high cavity Q limit.

Appendix A: Classical derivation of input-output fields

In the interest of making this paper as self-contained as possible, we review in this appendix

the classical derivation of the input-output formalism by Haus [42–44], relating the coupling of an

internal cavity (complex) amplitude aint to an external input ain and output field aout as illustrated

in Fig.(8). Since the optical system considered here is linear, the classical equations will also hold in

the quantum regime, as will be reviewed in the next appendix, where consideration of commutation

relations must be additionally taken into account. The phenomenological derivation by Haus relies

on three principles (i) energy conservation, (ii) time reversibility and (iii) perturbation theory

to formulate a dynamical, and boundary condition relation between the internal cavity and the

external driving and out-coupled modes.

1. A single cavity resonance

The equation of motion for the internal field aint in a one-sided lossy Fabry-Perot cavity, as

illustrated in Fig.(8), driven by an external field ain and out-coupled to the external field aout is
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given by,

ȧint = −(i ω0 + γc/2 + γint/2) aint +
√
γc ain. (A1)

Here, ω0 is the resonance frequency of the undriven cavity, γc is the power decay rate of the internal

ina

outa

inta

cγ

ˆina

ˆouta

intâ

intγ

cγ

intγ

FIG. 8. One-sided cavity with classical input field amplitude ain, output field aout and internal cavity field

aint. γc is the (power) decay rate of the internal field to the external field through the mirror. γint represents

internal losses within the cavity.

field through the partial mirror to the external mode (d|aint|2/dt = −γc aint), and γint describes

internal (e.g. scattering) losses within the cavity. The term
√
γc ain describes the in-coupling of

the form κ ain of the external field of complex amplitude ain with coupling constant κ. One can

relate the coupling constant κ to the cavity decay rate γc through energy conservation and time

reversal as κ2 = γc (for detailed derivation see Haus [42–44]). For a driving field excitation ain

proportional to e−iω t, the internal field has the solution,

aint =
κ ain

γc/2 + γint/2− i (ω − ω0)
. (A2)

describing a complex Lorentzian form of width (γc + γint)/2.

One can relate the output field aout to the input ain and internal cavity field aint through power

conservation (in appropriately normalized units of energy and power),

|ain|2 − |aout|2 =
d|aint|2

dt
= −γc |aint|2 +

√
γc (ain a

∗
int + a∗in aint). (A3)

Since the system is linear we can write formally the ansatz aout = cin ain + cint aint, for some

complex constants cin and cint. From the case of the undriven cavity with no internal losses

(ain = γint = 0), energy conservation d|aint|2/dt = −γc |aint|2 = −|aout|2 yields aout =
√
γc aint so

that cint =
√
γc. Substituting aout = cin ain +

√
γc aint into the left hand side of the above ansatz

produces |ain|2 (cint + 1)− γc |aint|2 −
√
γc (cin ain a

∗
int + c∗in a

∗
in aint) which on comparison with the

right hand side of Eq.(A3) yields the real solution cint = −1. Thus, we obtain,

aout = −ain +
√
γc aint, or ain + aout =

√
γc aint, (A4)

20



which can be considered as a boundary condition for the fields at the lossy mirror.

Using Eq.(A2) and the boundary condition Eq.(A4) we can calculate the reflection coefficient

r as,

r =
aout
ain

=

√
γc aint − ain

ain
=

(γc − γint)/2 + i(ω − ω0)

(γc + γint)/2− i(ω − ω0)
≡ γ− + iδ

γ+ − iδ
, (A5)

where in the last equality we have defined γ± = (γc± γint)/2 and δ = ω−ω0, as in the main body.

Note that when the internal losses are zero γint = 0 one has |r| = 1, otherwise |r| < 1. Eq.(A1) and

the boundary condition Eq.(A4) describe the internal classical field amplitude aint of the resonator

near a single resonance and relates it to the input driving field ain and the external traveling wave

mode aout that it couples to. Since the systems is linear, these equations also hold in the quantum

regime, as will be shown in the next appendix, where consideration of commutation relations must

be taken into account.

2. Extension to internal losses and multiple resonances

The generalization to multiple resonances is achieved by writing Eq.(A1) for each internal cavity

mode aint,j near resonance frequency ω0,j , with individual coupling γc,j and internal losses γint,j ,

ȧint,j = −(i ω0,j + γc,j/2 + γint,j/2) aint,j +
√
γc,j ain. (A6)

The boundary condition Eq.(A4) generalizes to,

aout = cin ain +
∑
j

√
γc,j aint,j . (A7)

The reflection coefficient similarly generalizes to,

r =
aout
ain

= cin +
∑
j

γc,j
(γc,j + γint,j)/2− i(ω − ω0,j)

,≡ cin +
∑
j

Lj , (A8)

where we have defined the complex Lorentzian Lj = γc,j/[γc,j + γint,j)/2− i(ω − ω0,j)]. Again, for

zero internal losses γint,j = 0 we must have |r|2 = 1 which leads to a quadratic equation for cin

(taken as real),

(cin + 1) (cin − 1) + (cin + 1)
∑
j

|Lj |2 + 2
∑
j 6=k

Re(Lj L
∗
k) = 0. (A9)

We see that cin is now a function of ω. For a single resonance j = 1 there is only one term in the sum∑
j Lj and hence the last term in Eq.(A9) is not present. By inspection, cin = −1 in this case. For

the general case, near a particular resonance ω = ωj +Ω such that Ω, γc,j � |ωj−ωk| for k 6= j (i.e.
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well separated resonances, large free spectral range) |Lk 6=j | ≈ γc,k/|ωj−ωk| � 1 so that the last cross

term in Eq.(A9) is negligible and only the single |Lj |2 term contributes to the middle sum. Hence, as

in the single resonance case Eq.(A9) becomes approximately (cin+1) (cin−1)+(cin+1) |Lj | ≈ 0 with

solution cin(ωj + Ω) ≈ −1. Thus, near each individual resonance, the single resonance boundary

condition Eq.(A4) holds.

Appendix B: Quantum derivation of input-output fields

The quantum derivation of the input-output relations for optical fields in a cavity is attributed

to the work of Collett and Gardiner [32]. Here we follow the often cited texts of Walls and Milburn

[24] and of Orszag [27]. In this formulation a Hamiltonian is prescribed to yield dynamics of the

same form given classically in Eq.(A1) due to the linearity of the system. The quantum version of

the classical boundary condition Eq.(A4) arises from the difference between the equations of motion

for the noise operators considered in the far past and far future, which couples the internal cavity

mode to the external modes of the cavity. The essential new feature of the quantum derivation is

the preservation of the commutation relations of all involved operators, which is required by the

unitarity of the quantum evolution. While this material is now standard in quantum optics canon,

we include it here for completeness, and for comparison to the OVPA coupling derivation used in

the main body of the text.

ina

outa

inta

cγ

ˆina

ˆouta

intâ

intγ

cγ

intγ

FIG. 9. Same one sided cavity as in Fig.(8), except now classical amplitudes have been changed to quantum

fields.

The quantum input-output relations are instantiations of the S (scattering) matrix which relates

input fields to output fields. Here we assume linear interactions between the system and the bath,

the rotating wave approximation and that the spectrum of the bath is flat, independent of frequency.
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The Hamiltonian is given by,

H = Hsys +HB +HINT , (B1a)

HB =

∫ ∞
−∞

dω ~ω b̂†(ω) b̂(ω), (B1b)

Hint = i ~
∫ ∞
−∞

dω κ(ω)
(
b̂†(ω) âint − b̂(ω) â†int

)
. (B1c)

Here âint is the internal cavity mode, b̂†(ω), b̂(ω) are the creation and annihilation operator for the

bath modes assumed to have a white noise spectrum such that [b̂(ω), b̂†(ω′)] = δ(ω−ω′), and κ(ω) is

the coupling constant. Though the frequencies are positive, the integration range can be extended

from (−ω0,∞) in a rotating frame of frequency ω0. The lower limit of the integral can then be

extended to −∞ for ω0 � ∆ω where ∆ω is the bandwidth of frequencies under consideration (say,

near a particular resonance).

The Heisenberg equations of motion yield,

˙̂
b(ω, t) = −i ω b̂(ω, t) + κ(ω) âint, (B2a)

˙̂aint(ω, t) = − i
~

[âint, Hsys]−
∫ ∞
−∞

dω κ(ω) âint. (B2b)

We can solve Eq.(B2a) for b̂(ω, t) depending on two different choices of the initial conditions,

b̂(ω, t) = e−iω(t−t0) b̂(ω, t0) +

∫ t

t0

dt′ κ(ω) e−iω(t−t′) âint(t
′), (B3a)

b̂(ω, t) = e−iω(t−t1) b̂(ω, t1)−
∫ t1

t
dt′ κ(ω) e−iω(t−t′) âint(t

′). (B3b)

In Eq.(B3a) the initial condition has been chosen at a time in the far past t0 < t such that

b(ω, t0) represents the bath operators at very early times (often taken to be t0 = −∞), whereas

in Eq.(B3b) the initial condition has been chosen to be in the far future t1 > t such that b(ω, t1)

represents the bath operators at very late times (often taken to be t1 = ∞). We also assume

that in the far past, the bath and the system are uncorrelated so that the operators commute

[aint, b(ω, t0)] = [aint, b
†(ω, t0)] = 0.

We first consider the substitution of Eq.(B3a) into Eq.(B2b) to obtain the exact equation,

ȧint(t) = − i
~

[âint, Hsys]

−
∫ ∞
−∞

dω κ(ω) e−iω(t−t0) b̂(ω, t0), (B4a)

−
∫ ∞
−∞

dω κ2(ω)

∫ t

t0

dt′ e−iω(t−t0) âint(t
′). (B4b)

We now invoke the Markov approximation that coupling κ(ω) is constant over the bandwidth ∆ω

so that we can pull it out from under the integral in term (B4a). As in Appendix A we relate
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the coupling constant κ(ω) to the cavity decay rate γc via κ2(ω) = γc/(2π). We further define the

remaining integral in term (B4a) as,

âin(t) ≡ − 1√
2π

∫ ∞
−∞

dω e−iω(t−t0) b̂(ω, t0), (B5)

using the sign convention that incoming fields to the cavity have a minus sign, while outgoing

fields have a plus sign (see aout(t) below. Thus, the term (B4a) becomes
√
γc âin(t). By use of the

definition and properties of the delta function,

1

2π

∫ ∞
−∞

dω e−iω(t−t′) = δ(t− t′), (B6a)∫ t

t0

dt′ f(t′) δ(t− t′) =

∫ t1

t
dt′ f(t′) δ(t− t′) =

1

2
f(t), t0 < t < t1, (B6b)

and the initial bath operator equal time commutation relations [b̂(ω, t0), b̂†(ω′, t0)] = δ(ω−ω′), one

has

[âin(t), â†in(t′)] = δ(t− t′). (B7)

By again pulling out κ(ω) = γc/(2π) from under the integral in Eq.(B4b) and using Eq.(B6a) and

Eq.(B6b) the term in Eq.(B4b) becomes −γc/2 aint(t). Gathering these results together yields the

equation for the internal cavity mode âint(t),

˙̂aint(t) = − i
~

[âint, Hsys]−
γc
2
âint(t) +

√
γc âin(t). (B8)

This is the exact same form as the classical equation of motion for aint in Eq.(A1) if we take Hsys =

~ω0 â
†
int âint as the free-field, empty cavity Hamiltonian, and consider no internal losses γint = 0.

Eq.(B8) is the quantum Langevin [24–27] equation of motion for the internal cavity mode âint

coupled to the input driving field âin. It is an embodiment of the fluctuation-dissipation theorem

[25] which states that effect of loss (dissipation) in the system is accompanied by the presence of

noise sources (fluctuations) as the cause of the loss. These noise operators must be present quantum

mechanically in order to preserve the system commutation relations [âint(t), â
†
int(t

′)] = δ(t − t′).

Otherwise, without the presence of the term âin(t) in Eq.(B8) the system commutator would decay

to zero as e−γc(t−t
′).

We can repeat the above development of the equation of motion for âint, this time using the

solution for b̂(ω, t) in Eq.(B3b) in terms of the far-future modes b̂(ω, t1) to obtain,

˙̂aint(t) = − i
~

[âint, Hsys] +
γc
2
âint(t)−

√
γc âout(t). (B9)
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where we have defined âout(t) analogous to Eq.(B5) as,

âout(t) ≡
1√
2π

∫ ∞
−∞

dω e−iω(t−t1) b̂(ω, t1), (B10)

which straightforwardly yields the commutation relations,

[âout(t), â
†
out(t

′)] = δ(t− t′), (B11)

analogous to Eq.(B7). Lastly, the boundary condition between the input, output and internal cavity

mode is obtained by subtracting the two equations of motion for âint(t) Eq.(B8) and Eq.(B9) to

obtain,

âin(t) + âout(t) =
√
γc âint(t), (B12)

which has the exact same form as the classical boundary condition obtained in Eq.(A4).

Although the above analysis pertains to cavities driven by a bath, it is not necessarily a theory

about noise, since the only properties assumed about the bath is flat spectral response [27]. Similar

to Eq.(A1), we can explicitly include internal losses, treating âin as an external (non-noise) driving

field by explicitly including noise operators f̂(t) that are delta correlated in time [f̂(t), f̂ †(t′)] =

δ(t− t′),

˙̂aint(t) = − i
~

[âint, Hsys]−
(γc + γint)

2
âint(t) +

√
γc âin(t) +

√
γint f̂(t). (B13)

Appendix C: Loudon’s quantum traveling-wave attenuation

One of the primary expressions we use in the main body of the paper is Loudon’s formulation

for traveling-wave attenuation by an infinite series of discrete beam splitters. Here we summarize

Loudon’s derivation [29, 30] and note several important points on the commutation relations for

the effective noise operator expressions.

To model loss in a quantized traveling wave field â, Loudon considers successive propagation

through an infinite series of fictitious beam splitters as illustrated in Fig.(10). For the rth beam

splitter, ŝ
(in)
r represents noise that is scattered into the beam by scattering centers, while ŝ

(out)
r

represents light that is scattered out of the beam. Each beam splitter (i.e. scattering center) is

modeled by a frequency dependent transmission and reflection coefficient T (ω), R(ω), respectively

such that,

âr+1(ω) = T (ω) âr(ω) +R(ω) ŝ(in)
r (ω), (C1a)

ŝ(out)
r (ω) = R(ω) âr(ω) + T (ω) ŝ(in)

r (ω). (C1b)
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FIG. 10. Loudon’s traveling-wave attenuation by an infinite set of discrete beam splitters.

Here we assume that the pairs of input and output operators satisfy the usual boson commutation

relations,

[âr(ω), â†r(ω
′)] = [âr+1(ω), â†r+1(ω′)] = [ŝ(out)

r (ω), ŝ†(out)r (ω′)] = δ(ω − ω′). (C2)

and that operators for the different scattering sites are independent and obey,

[ŝ(in)
r (ω), ŝ

†(in)
r′ (ω′)] = δr,r′ δ(ω − ω′). (C3)

Successive iteration of Eq.(C1a) yields,

âN+1(ω) = TN (ω) â1(ω) +R(ω)
N∑
r=1

TN−r(ω) ŝ(in)
r (ω). (C4)

We now take the continuum limit N → ∞, ∆z = L/N → 0 and |R(ω)|2 → 0 and define the

attenuation constant Γ(ω) = |R(ω)|2/∆z. Using |T (ω)|2 + |R(ω)|2 = 1 we have,

|T (ω)|2N = (1− |R(ω)|2)N = (1− Γ(ω)L/N)N → e−Γ(ω)L, (C5)

for which we take,

T (ω) = ei n(ω)(ω/c)− 1
2

Γ(ω) ∆z ≡ eiξ(ω)∆z, ξ(ω) ≡ β(ω) + iΓ(ω)/2, β(ω) ≡ n(ω)(ω/c). (C6)

In Eq.(C6) we have chosen the phase of T (ω) to incorporate the free propagation constant β(ω) ≡

n(ω)(ω/c) through a medium of index of refraction n(ω), and defined the complex propagation

constant as ξ(ω) ≡ β(ω) + iΓ(ω)/2. We use (N − r)∆z = L − z and convert from discrete to

continuous modes through the identification,

ŝ(in)
r (ω)→ (∆z)1/2ŝ(z, ω), δr,r′ → ∆z δ(z − z′), (C7)
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with commutation relations,

[ŝ(z, ω), ŝ†(z′, ω′)] = δ(z − z′) δ(ω − ω′). (C8)

The continuous noise operators ŝ(z, ω) are assigned the expectation values,

〈ŝ(z, ω)〉 = 〈ŝ†(z, ω)〉 = 0, (C9a)

〈ŝ†(z, ω) ŝ(z′, ω′)〉 = FN (ω) δ(z − z′) δ(ω − ω′), (C9b)

where FN (ω) is the position-independent mean flux of noise photons per unit angular frequency.

Using
∑N

r=1 → (∆z)−1
∫ L

0 dz we arrive at Loudon’s expression for an attenuated traveling beam,

âL(ω) = eiξ(ω)L â0(ω) + i
√

Γ(ω)

∫ L

0
dz eiξ(ω)(L−z) ŝ(z, ω), (C10)

where for convenience we have introduced the shorthand notation for the input field at z = 0 ,

â0(ω) = â(z, ω)|z=0 and the output field at z = L , âL(ω) = â(L, ω). Note that since ŝ(z, ω)

are input noise operators, and â0(ω) is the input field before any interactions with the scattering

centers, these operators commute,

[â0(ω), ŝ(z′, ω′)] = [â0(ω), ŝ†(z′, ω′)] = 0. (C11)

Thus, if we explicitly form the commutation relation [âL(ω), â†L(ω′)] we obtain two terms,

[âL(ω), â†L(ω′)] = ei[ξ(ω)−ξ∗(ω′)]L [â0(ω), â0(ω′)]

+
√

Γ(ω)Γ(ω′)

∫ L

0
dz

∫ L

0
dz′ ei[ξ(ω)(L−z)−ξ∗(ω′)(L−z′)] [ŝ(z, ω), ŝ†(z′, ω′)],

= δ(ω − ω′)
(
e−Γ(ω)L + Γ(ω)

∫ L

0
dz e−Γ(ω)z

)
,

= δ(ω − ω′), (C12)

where in the second equality we have used i[ξ(ω) − ξ∗(ω′)] = −Γ(ω), the commutation relations

for a0(ω) in Eq.(C2), and s(z, ω) in Eq.(C8) and that the integral in the second to last line yields

(1−e−Γ(ω)L)/Γ. Thus, the expression for the attenuated traveling wave âL(ω) in Eq.(C10) explicitly

preserves the output field commutation relations. We can rewrite Eq.(C10) in a Langevin form as,

âL(ω) = eiξ(ω)L â0(ω) + i
√

1− e−Γ(ω)L f̂(ω), (C13a)

f̂(ω) ≡ 1√
1− e−Γ(ω)L

∫ L

0
dz eiξ(ω)(L−z) ŝ(z, ω), (C13b)

where the Langevin noise operators f̂(ω) satisfy the delta correlated commutation relations,

[f̂(ω), f̂ †(ω′)] = δ(ω − ω′). (C14)
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Note, that in the absence of loss Γ = 0 Eq.(C13a) reduces to the un-attenuated free propagating

field expression âL(ω) = eiβ(ω)L â0(ω), which is unitary since |eiβ(ω)L| = 1. One could deduce

Eq.(C13a) by phenomenologically introducing loss as âL(ω) ∼ e[iβ(ω)−Γ(ω)]L â0(ω), assuming âL(ω)

takes the form of âL(ω) = A â0(ω) + B f̂(ω), with [f̂(ω), f̂ †(ω′)] = δ(ω − ω′), and requiring by

quantum mechanics that [âL(ω), â†L(ω′)] = δ(ω − ω′), which implies that |B| =
√

1− |A|2 with

freedom to choose the phase of B. This deduction is the essence of the Langevin approach, where

the inclusion of loss requires the introduction of additional noise operators f̂(ω) to ensure that

the quantum mechanical commutation relations are preserved. What is not obtained from this

procedure is the functional from of f̂(ω) as given by Eq.(C13b). The above derivation of âL(ω) by

Loudon preserves the commutation relations [âL(ω), â†L(ω′)] = δ(ω − ω′) by explicit construction.

In the derivation of Eq.(C10) and subsequent commutation relation Eq.(C12) a single loss Γ

was assumed throughout the whole length L of the ring resonator. This was not an essential

assumption. If the ring resonator had loss Γ1 over length L1 and loss Γ2 over the remaining length

L2 = L− L1 one can easily derive

âL(ω) = eiξ2(ω)L2 eiξ1(ω)L1 â0(ω) + eiξ2(ω)L2 i
√

Γ1(ω)

∫ L1

0
dz eiξ1(ω)(L1−z) ŝ(z, ω)

+ i
√

Γ2(ω)

∫ L

L1

dz eiξ2(ω)(L−z) ŝ(z, ω). (C15)

The commutation relation then yields a sum of terms given by (compare to Eq.(C12))

[âL(ω), â†L(ω′)] = δ(ω − ω′)
(
e−Γ2(ω)L2 e−Γ1(ω)L1

+ e−Γ2(ω)L2 Γ1(ω)

∫ L1

0
dz e−Γ1(ω)(L1−z) + Γ2(ω)

∫ L

L1

dz e−Γ2(ω)(L−z)
)
,

= δ(ω − ω′). (C16)

This result can be straightforwardly generalized to an arbitrary number of sections of the ring

resonator of length Li with corresponding losses Γi such that
∑

i Li = L.

Appendix D: Derivation of single bus commutation relation Eq.(15)

In Eq.(13g) we derived an expression for the output field ĉ in terms of the input field â and ring

resonator noise operators ŝ(z, ω),

ĉ(ω) =

(
τ − α eiθ

1− τ∗ α eiθ

)
â(ω)− i|κ|2

√
Γ
∞∑
n=0

(τ∗)n
∫ (n+1)L

0
dz eiξ(ω)[(n+1)L−z]ŝ(z, ω) (D1)
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where we have use the definition, an+1 = eiξ(n+1)Lâ0 +
∫ (n+1)L

0 dz eiξ(ω)[(n+1)L−z]ŝ(z, ω) with ξ(ω) =

β(ω) + iΓ(ω)/2 such that eiξL ≡ α eiθ with α = e−
1
2

ΓL and θ = βL. In this appendix we wish to

show explicitly that output field commutation relation Eq.(15) yields,

[ĉ(ω), ĉ†(ω′)] = δ(ω − ω′), (D2)

where the input field and noise operators satisfy,

[â(ω), â†(ω′)] = δ(ω − ω′), [ŝ(z, ω), ŝ†(z′, ω′)] = δ(z − z′) δ(ω − ω′), (D3)

and

[â(ω), ŝ(z′, ω′)] = [â(ω), ŝ†(z′, ω′)] = 0. (D4)

Let us define,

Aa→c =

(
τ − α eiθ

1− τ∗ α eiθ

)
≡ eiθτ

(
|τ | − α eiθ′

1− |τ |α eiθ′

)
, τ = |τ |eiθτ , θ′ ≡ θ − θτ (D5)

where we have defined τ = |τ |eiθτ and the total phase angle θ′ ≡ θ − θτ , so that we can write

Eq.(D1) as,

ĉ(ω) = Aa→c â(ω)− i F̂ (ω). (D6)

The goal is to then show that,

[F̂ (ω), F̂ †(ω′)] = (1− |Aa→c|2) δ(ω − ω′). (D7)

Forming the commutator Eq.(D2) we obtain,

[ĉ(ω), ĉ†(ω′)] = δ(ω − ω′)

(
|Aa→c|2 +

∞∑
n=0

∞∑
m=0

In,m

)
, (D8)

where we have defined,

In,m = Γ |κ|4(τ∗)n τm
∫ (n+1)L

0
dz

∫ (m+1)L

0
dz′ eiξ(ω)[(n+1)L−z] e−iξ

∗(ω′)[(m+1)L−z′] δ(z − z′), (D9)

where the spatial delta function in Eq.(D9) arises from using the commutators for the noise oper-

ators ŝ(z, ω) in Eq.(D3). The last term in Eq.(D8) can be written as,

∞∑
n=0

∞∑
m=0

In,m =
∞∑
n=0

In,n + 2
∞∑
n=0

n−1∑
m=0

Re(In,m), (D10)
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where we have used Im,n = I∗n,m. The diagonal sum in Eq.(D10) is straightforwardly computed as,

∞∑
n=0

In,n = Γ |κ|4
∞∑
n=0

|τ |2n
∫ (n+1)L

0
dz e−Γ[(n+1)L−z],

= |κ|4
∞∑
n=0

|τ |2n (1− (α2)n+1),

=
|κ|2(1− α2)

1− |τ |2 α2
, (D11)

where we have used i(ξ − ξ∗) = −Γ and α2 = e−ΓL. For the off-diagonal sum in Eq.(D10) we use

the fact that for n > m and for some arbitrary function f(z, z′),∫ (n+1)L

0
dz

∫ (m+1)L

0
dz′f(z, z′) δ(z − z′) =

∫ (m+1)L

0
dz′f(z′, z′), (D12)

since the intergration over the longer interval (n+1)L ensures the contribution of the delta function

on the shorter interval (m+ 1)L. We then obtain,

2
∞∑
n=0

n−1∑
m=0

Re(In,m) = 2 |κ|4 α2
∞∑
n=0

(τ∗αeiθ)n
n−1∑
m=0

(ταe−iθ)m
(

1

(α2)m+1
− 1

)
(D13)

where eiξL ≡ α eiθ. The above finite and infinite geometric sums can be computed using∑n−1
m=0 x

m = (1 − xn)/(1 − x) and
∑∞

n=0 x
n = 1/(1 − x). After some lengthy but straightfor-

ward algebra one obtains,

2

∞∑
n=0

n−1∑
m=0

Re(In,m) = 2
|κ|2 (1− α2)

1− |τ |2 α2

(|τ |α cos θ′ − |τ |2α2)

|1− |τ |α eiθ′ |2
. (D14)

Adding Eq.(D11) to Eq.(D14) yields,

∞∑
n=0

∞∑
m=0

In,m =
|κ|2(1− α2)

|1− |τ |α eiθ′ |2
, (D15a)

≡ 1− |Aa→c|2, (D15b)

where the last line follows from the use of the expression for Aa→c in Eq.(D5) and |τ |2 + |κ|2 = 1.

Finally, the commutation relation Eq.(D2) can be extended (though the algebra would be

somewhat tedious) to the case of a ring resonator with an arbitrary number of sections of length

Li with corresponding losses Γi such that
∑

i Li = L by using the results and generalizations of

Eq.(C15) and Eq.(C16) at the end of the previous appendix.

ACKNOWLEDGMENTS

PMA, AMS and CCT would like to acknowledge support of this work from OSD ARAP QSEP

program. EEH would like to acknowledge support for this work was provided by the Air Force

30



Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP) SUNY-IT Grant No.

FA8750-13-2-0115. The authors also wish to thank M. Raymer for pointing out their previous

related work. Any opinions, findings and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of AFRL.

[1] P. Kok and B. W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge Uni-

versity Press, Cambridge, 2010).

[2] S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, Optics Express 17, 16558

(2009).

[3] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legr, and N. Gisin, Phys. Rev. Letts. 93, 1

(2004).

[4] X. Li, P. Voss, J. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).

[5] S. F. Preble, M. L. Fanto, J. A. S. C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, Phys.

Rev. Appl. 4, 021001 (2015).

[6] A. Yariv, Electronic Letts. 36, 321 (2000).

[7] W. Bogaerts and et al., Laser and Photonics Rev. 6, 47 (2012).

[8] Z. Vernon and J. E. Sipe, Phys. Rev. A 91, 053802 (2015).

[9] Z. Vernon and J. E. Sipe, Phys. Rev. A 92, 033840 (2015).

[10] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. O’Brien, and M. G. Thomspon,

Nature Comm. 6:7948, 1 (2015).

[11] E. E. Hach III, S. F. Preble, A. W. Elshaari, P. M. Alsing, and M. L. Fanto, Phys. Rev. A 89, 043805

(2014).

[12] N. C. Harris, D. Grassani, A. Simbula, M. P., M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund,

D. Bajoni, and C. Galland, Phys. Rev. X 4, 041047 (2014).

[13] A. L. G. A. C. Turner, M. A. Foster and M. Lipson, Optics Express 16, 4881 (2008).

[14] J. Shen and S. Fan, Phys. Rev. A 76, 062709 (2007); 79, 023837 (2009); 79, 023838 (2009).

[15] M. Tsang, Phys. Rev. A 81, 063837 (2010); 84, 043845 (2011).

[16] E. E. Hach III, A. W. Elshaari, and S. F. Preble, Phys. Rev. A 82, 063839 (2010).

[17] S. Huang and G. S. Agarwal, Optics Express 22, 020936 (2014).

[18] S. Barzanjeh, S. Guha, C. Weddbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Phys. Rev. Lett.

114, 080503 (2015).

[19] R. Matloob and R. Loudon, Phys. Rev. A 52, 4823 (1995); 53, 4567 (1996).

[20] J. Skaar, J. Escartin, and H. Landro, Am. J. Phys. 72, 1385 (2004).

[21] S. F. Preble, E. E. Hach III, and A. W. Elshaari, Proc. of SPIE Defense, Security and Sensing 8749,

8747 (2013).

31



[22] S. Ataman, (arxiv:1407.1704) (2014); Eur. Phys. J. D 68, 288 (2014); 69, 44 (2015); 69, 187 (2015).

[23] E. E. Hach III, S. F. Preble, and J. A. Steidle, Proc. of SPIE Defense, Security and Sensing 9500,

950012 (2015); 9850, 98500D (2016).

[24] D. F. Walls and G. J. Milburn, Quantum Optics, (Chap. 7) (Springer-Verlag, New York, 1994).

[25] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Chaps. 17.2, 17.4) (Cambridge

University Press, Cambridge, 1995).

[26] M. O. Scully and M. S. Zubairy, Quantum Optics, (Chap. 9) (Cambridge University Press, Cambridge,

1997).

[27] M. Orszag, Quantum Optics, (Chap. 14.3-4) (Springer-Verlag, New York, 2000).

[28] C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge Univeristy Press,Cambridge,

2004).

[29] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Phys. Rev. A 57, 2134 (1997).

[30] R. Loudon, Quantum Theory of Light, 3rd ed., (Chap. 7.5) (Oxford University Press, New York, 2000).

[31] Z. O. C.K. Hong and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

[32] M. J. Collet and C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).

[33] If the junction of the ring resonator with the external waveguide bus is considered as a beam splitter

interaction, the cross coupling coefficients act an as effective reflection coefficients, see Eq.(7a).

[34] J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators, (Chap. 3) (Springer-Verlag, London,

2008).

[35] D. G. Rabus, Integrated Ring Resonators (Springer-Verlag, Berlin, 2007).

[36] Without loss of generality and for algebraic simplicity we have assumed that loss and phase accumu-

lation in each half-circulation of the ring resonator are identical, α+ = α− =
√
α and θ+ = θ− = θ/2.

These are not a crucial assumptions. Eq.(C15) and Eq.(C16) show that one can assume an arbitrary

number of different piecewise constant losses along the lengths Li of the ring such that
∑
i Li = L.

Similar considerations hold for the phase accumulation.

[37] The choice of ε = 0.001 for 0 ≤ P (α)
c,d ≤ ε was chosen to be ten times smaller than current high accuracy

experimental detection realizations.

[38] S. Barnett, C. R. Gilson, B. Huttner, and N. Imoto, Phys. Rev. Lett. 77, 1739 (1996).

[39] S. Scheel, Acta Physica Slovaca 58, 675 (2008); (arXiv:quant-ph/0406127v1).

[40] S. Tan, Y. Gao, H. de Guise, and B. Sanders, Phys. Rev. Lett. 110, 113603 (2013); H. de Guise,

S. Tan, I. Poulin, and B. Sanders, Phys. Rev. A 89, 063819 (2014); M. Tillmann, S. Tan, S. Stoeckl,

B. Sanders, H. de Guise, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Phys. Rev. X 5, 041015

(2015); M. Tichy, Phys. Rev. A 91, 022316 (2015).

[41] M. Raymer and C. McKinstrie, Phys. Rev. A 88, 043819 (2013).

[42] H. A. Haus, Waves and Fields in Optoelectronics, (Chap. 7) (Prentice Hall, Englewood Clifss, NJ,

1984).

[43] B. E. Little, S. T. Chau, H. A. Haus, J. Foresi, and J. P. Laine, J. Lightwave Tech. 16, 998 (1997).

32



[44] H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements, (Chap. 2.12) (Springer-Verlag,

New York, 2000).

33


