
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Discontinuities in the electromagnetic fields of vortex
beams in the complex source-sink model

Andrew Vikartofsky, Liang-Wen Pi, and Anthony F. Starace
Phys. Rev. A 95, 053826 — Published  9 May 2017

DOI: 10.1103/PhysRevA.95.053826

http://dx.doi.org/10.1103/PhysRevA.95.053826


Discontinuities in the Electromagnetic Fields of Vortex Beams in the Complex
Source/Sink Model

Andrew Vikartofsky, Liang-Wen Pi, and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0299, USA

(Dated: March 7, 2017)

An analytical discontinuity is reported in what was thought to be the discontinuity-free exact
nonparaxial vortex beam phasor obtained within the complex source/sink model. This discontinuity
appears for all odd values of the orbital angular momentum mode. Such discontinuities in the
phasor lead to nonphysical discontinuities in the real electromagnetic field components. We identify
the source of the discontinuities, and provide graphical evidence of the discontinuous real electric
fields for the first and third orbital angular momentum modes. A simple means of avoiding these
discontinuities is presented.

I. INTRODUCTION

The worldwide effort to develop increasingly powerful
lasers will allow the exploration of new physical regimes
of intense laser interactions with matter as well as the
development of new applications that such intense laser
regimes permit [1, 2]. Experimentally, the highest laser
intensities are obtained using tight focusing techniques,
in which the laser spot size in the focal region is compa-
rable to the laser field wavelength. Theoretical simula-
tions of laser-matter interactions under such tight focus-
ing conditions require a detailed description of the laser
fields in the focal region that goes beyond the paraxial
approximation [3–9].

Laser beams that carry orbital angular momentum
(OAM) provide another means of investigation into laser-
matter interactions [10–12]. Consideration of light with
nonzero OAM has been increasing in many fields in-
cluding harmonic generation [13–15], particle accelera-
tion [16, 17], and quantum information [18, 19]. Multiple
nonparaxial analytic representations [20–23] have been
developed to model tightly focused beams with nonzero
OAM. One particularly important representation for a
free space beam is the Laguerre-Gaussian (LG) basis,
which can be used to represent optical vortices of any
angular momentum mode [24].

The complex point-source model [25–27] is one tool
that has been developed to analytically describe focused
beams carrying OAM. This model is used to find solu-
tions to the nonparaxial Helmholtz equation. This model
assumes that the beam source exists at a complex point
whose real value lies along the beam’s axis, and that the
beam can be represented by an outgoing spherical wave.
It was shown by M. Couture and P. A. Belanger [28]
that (for an appropriate choice of boundary conditions)
the spherical waves represented by this model are equiv-
alent to the paraxial representation of a Gaussian (zero
OAM) beam with all perturbative corrections included.
The major benefit of this method is that it provides a
closed form analytical representation of the beam’s pha-
sor, which is the complex function of the beam’s spa-
tiotemporal amplitude and phase that satisfies the scalar
Helmholtz equation [12, 24]. This is a distinct advantage

of the complex point-source model as compared to other
methods [20–22], in which the fields are usually defined
using either a series or an integral representation. The
complex point-source model, however, still has one ma-
jor drawback. Namely, the point-source Gaussian phasor
solution is known to contain singularities in its square
modulus as well as a discontinuity at the beam waist [29].

The complex source/sink model [29] was developed
to avoid the discontinuity and singularities encoun-
tered in the complex point-source model. The complex
source/sink model represents the beam as two counter-
propagating spherical waves, both centered at the imag-
inary location used in the complex point-source model.
In this new model, the singularities and discontinuity in
the square modulus of the Gaussian phasor both vanish.
In this paper, we show that the discontinuities still

arise in phasors generated from the complex source/sink
model for all odd OAM modes. The discontinuity in
the phasor leads directly to discontinuities in the electro-
magnetic (EM) fields. Thus, real fields generated from
the complex source/sink phasor are nonphysical for odd
OAM values.
This paper is organized as follows. In Section II, we

discuss use of the phasor in determining the EM fields
and highlight the source of their discontinuities. In Sec-
tion III, we demonstrate analytically why the disconti-
nuity appears in the phasor for odd OAM, and why it
does not appear for even OAM. It is also shown how the
discontinuity can be avoided. In Section IV, we present
numerical results illustrating the discontinuities in elec-
tric field components that result from the discontinuity
in the phasor. In Section V, we summarize our results
and present our conclusions.

II. THE PHASOR AND FIELD EQUATIONS

Traditionally, solving the full Helmholtz problem in-
volves finding six field solutions to the vector Helmholtz
equations. Matters are greatly simplified when instead
one needs to find only a single solution to the scalar
Helmholtz equation. This one solution is the beam’s pha-
sor.
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From a general expression for a phasor, Hertz poten-
tials [30, 31] (alternatively “Hertz vectors” or “polariza-
tion potentials”) can be used to generate exact expres-
sions for the complex EM fields. The Hertz vectors, de-
fined in Eq. (1) for a linearly polarized beam propagating
in the ẑ-direction, are represented in general as the com-
plex phasor with a direction chosen based on the beam
polarization:

Πe = ψ(r, t) x̂ (1a)

Πm = η0 ψ(r, t) ŷ (1b)

Here, ψ(r, t) is the phasor and η0 is the impedance of free
space.
The Hertz potentials are sometimes referred to as “su-

per potentials” because they directly generate the usual
scalar and vector EM potentials, which in turn generate
the EM fields. Consequently, the complex vector fields
E and B can be obtained directly from the Hertz poten-
tials [30], and therefore from the phasor.

E = ∇×∇×Πe − µ0
∂

∂t
(∇×Πm) (2a)

H = ∇×∇×Πm + ǫ0
∂

∂t
(∇×Πe) (2b)

Using the complex source/sink model, April [32, 33]
proposed an analytically exact discontinuity-free repre-
sentation of the phasor for nonparaxial LG beams of any
radial and OAM mode. April’s methods have since been
adopted in many other works (e.g., [34–41]). As long
as one considers only the square modulus of phasor solu-
tions derived from the complex source/sink method, such
as April’s phasor, the discontinuity and singularities are
absent as claimed [33, 42]. This does not mean, however,
that the phasors themselves are discontinuity free. As
we show in Section III, consideration of the real and/or
imaginary parts of the source/sink phasor, depending on
the choice of initial phase φ0, very clearly reveals a dis-
continuity at the beam waist for certain parameters. The
presence of this axial discontinuity depends on the choice
between two representations of the complex radius of cur-

vature of the spherical waves, R̃ [33, 43].
Most work using April’s phasor (e.g., [34–37, 39, 41])

has so far been done with the lowest order LG mode (the
“Gaussian mode,” which has zero OAM) or by consid-
ering the phasor only in the paraxial limit. As we will
show, the phasors for these two common cases are not
affected by this discontinuity.

III. DISCONTINUITY IN THE PHASOR

April [33] combined the complex source/sink method
with use of a Poisson-like frequency spectrum [21, 44],
f(ω), to analytically represent the generic phasor Up,n

from which EM fields can be derived using the Hertz po-
tentials. For the zero order radial mode (p = 0), April’s
phasor for the nonparaxial LG beam with any OAM in-
dex n can be expressed as (see Eqs. (16) & (17) of [33])

U0,n(r, ω) =
4 cos(nφ)

(2n− 1)!!
f(ω)

(
ka

2

)1+n/2

× exp(−ka)Pn
n (χ)jn(kR̃),

(3)

where jn is the spherical Bessel function, a is the confocal
parameter of the focused beam, φ is the cylindrical an-
gle, and the complex-valued associated Legendre function
Pn
n (χ) is defined by Eqs. (8.6.6) and (8.6.18) of Ref. [45],

Pn
n (χ) =

(
χ2 − 1

)n/2 dn

dχn

(
1

2nn!

dn
(
χ2 − 1

)n

dχn

)
, (4)

in which the complex argument, χ, is defined by

χ ≡ (z + ia)/R̃. (5)

There are two choices (cf. Eq. (14) of Ref. [33]) for the

complex spherical radius of curvature, R̃, in Eq. (3):

R̃1 =
√
ρ2 + (z + ia)2 (6a)

R̃2 =i
√
−ρ2 − (z + ia)2, (6b)

where ρ, φ, z are the cylindrical coordinates in which ẑ is
the direction of propagation. The Poisson-like frequency
spectrum f(ω) in Eq. (3) is defined as (see Eq. (4) of [21]
or Eq. (20) of [33])

f(ω) = 2πeiφ0

(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
θ(ω), (7)

where s is the spectral parameter [21, 44] (which is re-
lated to the bandwidth of the pulse, which in turn is re-
lated to its duration), ω0 is the frequency at which f(ω)
has its maximum, φ0 is the phase of the pulse, and θ(ω)
is the Heaviside unit step function.

It has been stated [33, 43] that neither choice of R̃ in
Eq. (6) would cause the phasor to suffer from discontinu-

ities, but we will show that only the choice R̃2 produces
continuous phasor components across the beam waist for
all values of OAM.
Note also that the associated Legendre functions de-

fined in Eq. (4) contain a branch cut only for odd index
n. The following sections will elucidate the interplay be-

tween this branch cut and the choice of R̃, and show
how this determines whether or not the phasors contain
discontinuities.
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A. Odd OAM Modes

Inspection of Eqs. (3)-(7) shows that only the last two
factors in the phasor may lead to the existence of a dis-
continuity. We thus focus on these two factors and ex-
press Eq. (3) as

U0,n(r, ω) = cn(φ, ω)P
n
n (χ)jn(kR̃), (8)

where cn(φ, ω) is defined by comparison of Eqs. (3)

and (8). To illustrate how the choice of R̃ determines
whether or not there is a discontinuity in the phasor, we
consider the simplest odd OAM mode, n = 1. We first

use the choice R̃1 to demonstrate a discontinuity at the
beam waist, z = 0.

1. Exact expansion of U0,1 in powers of R̃

Expressing the spherical Bessel function in Eq. (8) in
terms of sines and cosines [cf. Eqs. (A1)–(A3)] and defin-
ing the parameter

ξ ≡ kR̃, (9)

the n = 1 phasor may be expressed as

U0,1 = c1P
1
1 (χ)

(
−cos(ξ)

ξ
+

sin(ξ)

ξ2

)
. (10)

Replacing the trigonometric functions by their series ex-
pansions, we obtain

U0,1 = c1P
1
1 (χ)

[
−1

ξ

∞∑

m=0

(−1)mξ2m

(2m)!

+
1

ξ2

∞∑

m=0

(−1)mξ2m+1

(2m+ 1)!

]
.

(11)

Combining the two summations, we obtain:

U0,1 = c1P
1
1 (χ)

1

ξ

∞∑

m=0

κm ξ2m (12a)

κm ≡ (−1)m+1 2m

(2m+ 1)!
(12b)

where, from Eq. (4),

P 1
1 (χ) =

√
χ2 − 1. (13)

2. U0,1 with the choice R̃ = R̃1

Making the choice R̃ = R̃1 [defined in Eq. (6a)] in
Eqs. (5) and (9), U0,1 in Eq. (12a) becomes:

U0,1 =

√
−ρ2

ρ2 + (z + ia)2
· 1√

ρ2 + (z + ia)2

× c1

∞∑

m=0

(κmk
2m−1)

(
ρ2 + (z + ia)2

)m
.

(14)

We see that the summation in Eq. (14) involves inte-
ger powers of complex numbers, whereas the prefactors
multiplying the summation include two square roots of
complex numbers, whose evaluation requires some care.
In general, when dealing with products of square roots of
complex numbers, it is best to evaluate each square root
separately by expressing each complex number in terms
of its magnitude and phase before taking its square root.
In particular, multiplying the arguments of two square
roots before taking the square root can lead to erroneous
results. (For example,

√
−1 ·

√
−1 = i · i = −1, but√

−1 · −1 =
√
1 = 1.) Thus, we have expressed each of

the complex arguments of the two square root prefactors
in Eq. (14) in polar notation before taking the square
roots. The result is:

U0,1 = c1 exp

(
i

2
(φ1 − φ2)

) ∞∑

m=0

λm exp(imφ2) (15a)

φ1 = arctan

(
2az

−ρ2 + a2 − z2

)
(15b)

φ2 = arctan

(
2az

ρ2 − a2 + z2

)
(15c)

λm ≡ (κmk
2m−1)ρ

×
[
(ρ2 + z2 + a2)2 − (2aρ)2

](m−1)/2
. (15d)

Here, the real numbers λm are m-dependent magnitudes,
defined in Eq. (15d), and φ1 and φ2 are the phases of
the complex numbers inside the first and second square
root prefactors in Eq. (14) (which originate from P 1

1 (χ)

and R̃1 respectively). The arctan function is defined over
−π < φ ≤ π; thus, arctan has a branch cut along the neg-
ative real axis. At the beam waist z =0, the imaginary
parts of the complex numbers whose phases are given
by φ1 and φ2 are zero; thus, the branch cut along the
negative real axis of each arctan function in Eqs. (15b)
and (15c) is determined by the region over which the de-
nominators in each of their arguments is negative. At
z = 0 the denominator of φ1 is negative for ρ > a, while
that for φ2 is negative for ρ < a.
The φ1 and φ2 phase factors multiplying the sum in

Eq. (15a) always have a phase difference of π across the
branch cut due to their overall factor of 1/2 in the expo-
nential. The key point is that φ1 and φ2 have branch cuts
over different regions of the parameter ρ/a. Specifically,
U0,1 is discontinuous for ρ > a at z = 0 owing to the
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change in sign of φ1/2 across the branch cut, while for
ρ < a it is discontinuous owing to the change in sign of
φ2/2 across the branch cut. Consequently, U0,1 is discon-
tinuous across the beam waist at z = 0 for all values of
ρ/a owing to the discontinuity in the product of phases,
exp

(
i
2 (φ1 − φ2)

)
. These ranges of the ratio ρ/a over

which the discontinuities in the phases φ1/2, −φ2/2, and
(φ1 − φ2) /2 occur are illustrated in the three panels of
Fig. 1.
Note that for each term in the sum in Eq. (15a), there

is a phase factor involving an integer multiple of φ2. How-
ever, each of these terms is continuous across the branch
cut since each branch contains an integer number m of
full periods, resulting in a 2π phase difference across the
branch cut. Thus, the terms in the sum do not contribute
to any discontinuity.

3. U0,1 with the choice R̃ = R̃2

Use of the choice R̃ = R̃2 results instead in the phasor
U0,1 being continuous, as may be seen using the same
arguments as in the previous section. Specifically, we re-

place R̃1 by R̃2[defined in Eq. (6b)] in Eqs. (5) and (9)

and substitute the results in Eq. (12a). Since R̃2
1 = R̃2

2,
the terms in the summation are continuous across the
branch cut. We thus focus on the new square root pref-

actors (corresponding to those for R̃ = R̃1 in Eq. (14)):

U0,1 ∝

√
−ρ2

ρ2 + (z + ia)2
· 1√

−ρ2 − (z + ia)2
. (16)

The number inside the first square root factor is the same
as in Eq. (14); consequently, it has the same phase factor,
exp(iφ1). The number inside the square root in the de-
nominator of the second factor in Eq. (16) has the phase
factor exp(iφ3), where

φ3 = arctan

(
−2az

−ρ2 + a2 − z2

)
. (17)

Thus, the phasor has the same form as in Eq. (15a), but
with a different phase outside the sum, i.e.,

U0,1 = −ic1 exp
(
i

2
(φ1 − φ3)

) ∞∑

m=0

λm exp(imφ2) (18)

By considering the branch cut in arctan, one can see
that both φ1 and φ3 are discontinuous in the same re-
gion, namely for ρ > a. In both cases, the value changes
sign as the z = 0 plane is crossed. When these two
phase factors are multiplied together as in Eq. (18), each
one has a phase jump of π (cf. Figs. 1(a) and 2(a)),
so that their product has a phase jump of 2π, as shown
in Fig. 2(b). Hence, the phasor defined by Eq. (18) is
continuous across the branch cut.

FIG. 1. The phases (a) φ1/2, (b) −φ2/2, and (c) (φ1 − φ2)/2
as functions of ρ/a and z/a, where a is the confocal parameter
of the focused laser beam. Values of each phase over the range
from −π to +π are indicated by the vertical color coding strip
to the right of each panel. A phase jump of π occurs for
ρ/a > 1 in (a), for ρ/a < 1 in (b), and for all values of ρ/a in
(c). See text for discussion.
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(a)

(b)

FIG. 2. The phases (a) −φ3/2 and (b) (φ1 − φ3)/2 as func-
tions of ρ/a and z/a, where a is the confocal parameter of
the focused laser beam and the behavior of the phase φ1/2 is
shown in Fig. 1(a). Values of each phase over the range from
−π to +π are indicated by the vertical color coding strip to
the right of each panel. For ρ/a > 1 a phase jump of π occurs
in (a) and a phase jump of 2π occurs in (b). See text for
discussion.

4. Case of Arbitrary Odd OAM Modes

We may easily see that for any odd OAM index n in
Eq. (8), the phasor U0,n will exhibit the same behaviors
as just shown for the n = 1 case. First, the associated
Legendre function Pn

n (χ) in Eq. (4) always introduces a
square root factor as on the right hand side of Eq. (13)
for any odd index n, which in turn results in the first
square root factor in Eqs. (14) and (16) regardless of

whether one chooses respectively R̃ = R̃1 or R̃ = R̃2.
Second, the spherical Bessel function factor jn in Eq. (8)
will always introduce the second square root factor in
Eqs. (14) and (16), depending respectively upon whether

one chooses R̃ = R̃1 or R̃ = R̃2. One may see this by

examining the expression for the spherical Bessel function
given in Eq. (A1). Specifically, for odd n the square

root factor comes from the factor 1/R̃ outside the square
brackets in Eq. (A1); for odd n the two summations inside
the square brackets in Eq. (A1) involve only even powers

of R̃ and hence do not contribute any square root factors.
Thus, the discontinuity in the phasor U0,n for a particular

choice of R̃ has the same behavior for any odd OAM n.

B. Even OAM Modes

For even OAM modes n, the general expression for the
phasor in Eq. (3) has the same form as in Eq. (8). As
has already been noted above, the associated Legendre
function defined in Eq. (4) does not have a branch cut
for even index n. We thus focus on the spherical Bessel
function jn in Eq. (8), using the expression for jn in
Eq. (A1). From Eqs. (A2) and (A3) we see that for any
OAM mode n the functions P and Q involve respectively

even and odd powers of R̃. For even n, the sine and cosine
functions in Eq. (A1) may be expanded respectively in

terms of odd and even powers of R̃. Thus the two terms
inside the square bracket in Eq. (A1) each involve odd

powers of R̃. Owing to the 1/R̃ factor multiplying the
square bracket in Eq. (A1), the spherical Bessel function
jn for even n may thus be expressed as an expansion

in even powers of R̃. Consequently, since R̃2
1 = R̃2

2 the
spherical Bessel function jn for even n is independent of

the choice of the expression used for R̃. Also, since there

are no odd powers of R̃ in the expression for jn for even
n, no branch cuts are introduced. Thus, the phasor U0,n

for even n has no discontinuities.

IV. DISCONTINUITY IN THE REAL FIELDS

We can express the phasor of Eq. (3) in the time do-
main via a Fourier transformation,

U0,n(r, t) =
1√
2π

∫
U0,n(r, ω) exp(iωt)dω, (19)

the result of which is presented for arbitrary n in Eq. (A5)
of Appendix A. Recall that the frequency spectrum f(ω)
of the pulse, defined in Eq. (7), introduces an overall
phase factor exp(iφ0) in both the frequency-dependent
and time-dependent phasors in Eqs. (3) and (19) respec-
tively. Therefore, changes in the initial phase φ0 can
affect the occurrence of discontinuities in the real and
imaginary components of the phasor.
Figure 3 shows explicitly the discontinuities in the time

domain phasor for n = 3 when using the choice R̃ = R̃1

for three values of the phase φ0. These plots were gen-
erated for a linearly polarized beam with spectral pa-
rameter s = 712, beam waist w0 = 2 µm, wavelength
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. The square modulus [(a),(d),(g)], real part [(b),(e),(h)], and imaginary part [(c),(f),(i)] of the phasor U0,n(r, t) in
Eq. (19) for n=3 for phases φ0 = 0 [(a)-(c)], φ0 = π/4 [(d),(e),(f)], and φ0 = π/2 [(g),(h),(i)]. Here, x, y, z are the Cartesian
coordinates. The real and imaginary parts of the phasor are normalized to have a maximum amplitude of unity, and were

calculated using the choice R̃ = R̃1 at y = 0 and t = z/c. The linearly polarized beam is assumed to have a spectral parameter
s = 712, beam waist w0 = 2 µm, wavelength λ = 800 nm, and Rayleigh length zR ≈ 15.7µm. See text for discussion.

λ = 800 nm, and Rayleigh length zR = kw2
0/2. As ex-

pected, no discontinuity is visible in the square modulus
of the time domain phasor for any φ0. However, the dis-
continuity at z = 0 is clearly visible in the real and/or
imaginary parts of the phasor, depending upon the value
of φ0 [cf. panels (c), (e), (f), and (h) of Fig. 3].

In Figure 4, we plot the longitudinal fields Ez [obtained
using Eq. (2)] for the odd OAM phasors U0,n(r, t) for

n = 1 and n = 3 using the choice R̃ = R̃1 and an overall
phase φ0 = π. This choice of the phase φ0 yields a dis-
continuity in the imaginary parts of each of the phasors,
which in turn results in discontinuous fields Ez . The cor-
responding transverse fields (not shown) are continuous
across the beam waist at z = 0. In general, for linearly
polarized fields, our calculations show that discontinu-
ities in the real part of the time domain phasor lead to
discontinuities in the transverse components of E and B
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(a)

(b)

FIG. 4. Discontinuities in the longitudinal fields Ez [obtained
using Eq. (2)] across the beam waist z = 0 for the odd OAM
phasors U0,n for (a) n = 1, and (b) n = 3. These fields were

obtained using the choice R̃ = R̃1 for a phase φ0 = π, y = 0,
and t = z/c. The amplitudes of the fields are normalized to
unity. See text for discussion.

while discontinuities in the imaginary part of the time
domain phasor lead to discontinuities in the longitudi-
nal components of the fields. When both the real and
imaginary parts of the phasor have discontinuities, the
problem appears in all real field components.
As for the case of linear polarization, other beam polar-

izations will also suffer discontinuous real fields for pha-

sors calculated using the choice R̃ = R̃1. These discon-
tinuities originate in the phasor, which is polarization-
independent. The polarization only enters when com-
puting the fields using the Hertz potentials, as Eq. (1)

demonstrates for the case of linear polarization. The dis-
continuities may occur in different field components, de-
pending on the field polarization, but they will be present
in the real fields nonetheless.
Although our focus in this paper is on solutions to the

nonparaxial Helmholtz equation, a brief mention of the
paraxial case is warranted. In the paraxial limit of the

phasor (cf. Eq. (5) of Ref. [33]), the terms Pn
n (χ) and R̃ do

not enter. In fact, to lowest radial order the associated
Laguerre polynomials in the paraxial phasor are unity.
Thus the real and imaginary parts of the paraxial phasor,
by direct inspection, are simple oscillatory functions of z.
In this limit, therefore, the problem of discontinuities in
the fields does not arise.

V. SUMMARY AND CONCLUSIONS

In this work, we have shown (by examining the non-
paraxial source/sink phasor) that for all odd OAMmodes
discontinuities arise across the entire beam waist when
the choice R̃ = R̃1 is made for the complex spherical
radius. Whether these discontinuities lie in the real or
imaginary parts of the phasor depends upon the overall
phase φ0 of the laser pulse. In turn, these phasor discon-
tinuities result in nonphysical real electromagnetic field
components calculated from the Hertz potentials.

As we have shown, these problems do not exist for even
OAM modes. Further, in the paraxial limit, the terms
that cause discontinuous behavior are not present in the
phasor expression. Thus, real components of paraxial
fields are free from discontinuities in the phasor that
cause problems in the nonparaxial case.

Whether considering the fields of vortex beams in vac-
uum, or interacting with plasmas or other media, proper
physical theoretical models are necessary. As this work
has shown, discontinuities in the nonparaxial source/sink
phasor can be avoided completely by making the choice

R̃ = R̃2 for the complex spherical radius. Such a choice
avoids discontinuities in the complex phasor for all OAM
modes.
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Appendix A: Explicit Expression for the Phasor U0,n(r, t)

In this Appendix we present the result of carrying out the Fourier transform of the phasor U0,n(r, ω) in Eq. (3),

which is obtained from Eqs. (16) & (17) of Ref. [33] for the phasor Ũσ
0,n(r, ω) upon setting σ = e and p = 0 (and

dropping the explicit notation of the parity σ = e in our calculations). In order to carry out the Fourier transform in
Eq. (19), one must expand the spherical Bessel function in Eq. (3) using Eq. (10.1.8) of Ref. [45]:

jn(kR̃) =
1

kR̃

[
P

(
n+

1

2
, kR̃

)
sin
(
kR̃− nπ

2

)
+ Q

(
n+

1

2
, kR̃

)
cos
(
kR̃− nπ

2

)]
(A1)

where

P

(
n+

1

2
, kR̃

)
=

⌊n/2⌋∑

m=0

(−1)m(2kR̃)(−2m) (n+ 2m)!

(2m)! Γ(n− 2m+ 1)
(A2)

and

Q

(
n+

1

2
, kR̃

)
=

⌊(n−1)/2⌋∑

m=0

(−1)m(2kR̃)(−2m−1) (n+ 2m+ 1)!

(2m+ 1)! Γ(n− 2m)
(A3)

1. Result for U0,n(r, t)

Expanding the trigonometric functions in Eq. (A1) in terms of exponentials and replacing k everywhere by k = ω/c,
one may carry out the Fourier transform in Eq. (19) by making repeated use of the integral representation of the
gamma function (cf. Eq. (6.1.1) of [45]), i.e.,

Γ(γ + 1) = ηγ+1

∫ ∞

0

dω ωγ exp(−ηω) , Re η > 0 (A4)

The result for U0,n(r, t) is:

U0,n(r, t) = Cn cos(nφ)P
n
n (χ)






⌊n/2⌋∑

m=0

A(n,m)

(
c

R̃

)2m+1 [
(T−)

−(s+n/2−2m+1) − (−1)n(T+)
−(s+n/2−2m+1)

]

+

⌊(n−1)/2⌋∑

m=0

D(n,m)

(
c

R̃

)2m+2 [
(T−)

−(s+n/2−2m) + (−1)n(T+)
−(s+n/2−2m)

]





(A5)

In Eq. (A5) we have defined

A(n,m) ≡ i(−1)m+1(n+ 2m)!

(2m)! Γ(n− 2m+ 1)

Γ(s+ n/2− 2m+ 1)

2(2m+1) Γ(s+ 1)

(
s

ω0

)(2m−n/2)

(A6)

D(n,m) ≡ (−1)m(n+ 2m+ 1)!

(2m+ 1)! Γ(n− 2m)

Γ(s+ n/2− 2m)

2(2m+2) Γ(s+ 1)

(
s

ω0

)(2m+1−n/2)

(A7)

where s and ω0 are defined in the text below Eq. (7),

Cn ≡ exp[i (φ0 − nπ/2)]
(a
c

)(1+n/2) 2(1−n/2)

(2n− 1)!!
(A8)
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and

T± ≡ 1− iω0t

s
+
aω0

cs
± iω0R̃

cs
(A9)

2. Result for U0,1(r, t)

Setting n = 1 in Eq. (A5), we have

C1 = exp[i (φ0 − π/2)]
√
2
(a
c

)3/2
(A10)

A(1, 0) = −i Γ(s+ 3/2)

2 Γ(s+ 1)

(
s

ω0

)−1/2

(A11)

D(1, 0) =
Γ(s+ 1/2)

2 Γ(s+ 1)

(
s

ω0

)1/2

(A12)

Hence,

U0,1(r, t) = C1 cos(φ)P
1
1 (χ)

{
A(1, 0)

(
c

R̃

)[
(T−)

−(s+3/2) + (T+)
−(s+3/2)

]
+

+ D(1, 0)

(
c

R̃

)2 [
(T−)

−(s+1/2) − (T+)
−(s+1/2)

]} (A13)
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