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Spin-incoherent Luttinger liquid (SILL) is a different universal class from the Luttinger liquid. This differ-

ence results from the spin incoherence of the system when the thermal energy of the system is higher than

the spin excitation energy. We consider one-dimensional spin-1 Bose gas in the SILL regime and investigate

its spin-dependent many-body properties. In Tonks-Girardeau limit, we are able to write down the general

wave functions in a harmonic trap. We numerically calculate the spin-dependent (spin-plus, minus, and 0)

momentum distributions in the sector of zero magnetization which allows to demonstrate the most significant

spin-incoherent feature compared to the spinless or spin-polarized case. In contrast to the spinless Bose gas,

the momentum distributions are broadened and in the large momentum limit follow the same asymptotic 1/p4

dependence but with reduced coefficients. While the density matrices and momentum distributions differ be-

tween different spin components for small N , at large N they approach each other. We show these by analytic

arguments and numerical calculations up to N = 16.

I. INTRODUCTION

A plethora of studies on one-dimensional (1D) quantum

systems of gaseous atoms [1] thrive recently due to the ex-

perimental achievements of 1D confined bosons [2–4]. Many

studies focus on the ground state properties of spinless bosons

[5–7] such as spatial and momentum distributions [8–10],

quantum magnetism in a spinful Bose gas [11–16], and low-

energy excitations in the Luttinger liquid model [17, 18].

Meanwhile a spinful quantum system in the spin-incoherent

regime [19] also provides a new avenue for studying 1D

quantum many-body systems. This regime is termed as spin-

incoherent Luttinger liquid (SILL) which forms a different

universality class from the Luttinger liquid, where the tem-

perature is high enough that different spin configurations can

be regarded as degenerate while low enough that charge ex-

citation is suppressed. For 1D spin-1 Bose gas with s-wave

scattering lengths satisfying |a0 − a2| ≪ a0,2 [20], there ex-

ists a window of temperature for the gas in SILL regime. This

happens since the sound velocity is much larger than the spin

velocity.

In the crossover regime between Luttinger liquid and SILL,

1D fermions with tunable spins [21] and their high momentum

tails [22] have been studied, which show an evident broaden-

ing in the momentum distributions [23, 24]. Quantum critical-

ity [25] and Pomeranchuk effect [26] in the spin-incoherent

regime are also theoretically predicted in the two-dimensional

Hubbard model. Here in contrast we investigate 1D spin-1

Bose gas in the SILL regime in a harmonic trap, which is stud-

ied only recently [27]. We shall focus on the Tonks-Girardeau

(TG) regime [28, 29] where the density is sufficiently low that

the effective repulsion between particles can be regarded as in-

finite. TG spinor Bose gas is a special case of SILL since the

exchange energy vanishes in this limit [13–16]. Therefore TG

gas automatically is in the regime of SILL. In TG gas limit, we

can write down the exact spatial wave functions since bosons

are fermionized and impenetrable due to effectively infinitely-

strong atom-atom interactions. We then numerically calculate

the momentum distributions for the three individual compo-

nents of the spin-1 Bose gas (spin-plus, minus, and 0). These

predictions can be measurable in spin-resolved matter-wave

experiments, either the time-of-flight experiment [30–33] or

Bragg scattering spectroscopy [34–39]. This system allows for

better demonstrations of SILL physics which is within reach

of present experimental conditions. As compared with elec-

tronic spin-1/2 systems [19, 24], ultracold atom experiments

not only provide controllable spatial dimensions but also tun-

able atom-atom interactions via Feshbach resonances, thus

making our investigations testable in the quantum many-body

systems.

In Ref. [27], we have derived the wave functions and

density matrix for 1D spin-1 Bose gas in TG limit. We nu-

merically calculate its momentum distributions, summed over

spin components, up to six bosons. The momentum distribu-

tions are uniformly broadened as the number of bosons N
grows. We have also derived the analytical large momentum

(p) asymptotic in one-body momentum distributions, which

shows the universal 1/p4 dependence. The coefficients of the

asymptotic 1/p4 are also formulated for arbitraryN . Here we

present the spin-dependent properties of density matrix in 1D

spin-1Bose gas in TG limit, and show the spin-dependent mo-

mentum distributions up to N = 16. We also obtain the spin-

dependent coefficients of 1/p4 for asymptotic large p. Though

the momentum distributions vary between different spin com-

ponents for smallN , they approach each other asN increases.

We show this from the numerical results accompanied by an-

alytical arguments in the large N limit.

The rest of the paper is organized as follows. In Sec. II we

introduce the general wave functions for 1D spin-1 Bose gas.

In Sec. III, we derive the general forms of density matrices

for each spin components with individual spin function over-

laps in SILL regime, and present the numerically calculated

results using Monte Carlo integration method implemented

with Gaussian unitary ensemble. In Sec. IV. we discuss the

analytical derivation of high momentum asymptotic for each

component, which we compare with numerically calculated

momentum distributions. We also investigate the momentum
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distributions in largeN limit using the method of steepest de-

scent or stationery phase, and compare them with the numeri-

cal results. Finally we conclude in Sec. V.

II. GENERAL WAVE FUNCTIONS IN TG LIMIT

Our effective Hamiltonian of ultracold 1D spin-1 Bose gas

in TG limit can be expressed as [11, 40, 41],

H =
N∑

i=1

[

− ~
2

2m

∂2

∂x2i
+

1

2
mω2x2i

]

Ispin

+
∑

i<j

δ(xi − xj)U0Ispin, (1)

wherem andω are respectively the mass of the bosons and the

axial trap frequency. U0 is the spin-independent interaction,

which in TG limit becomes infinite. Here we have already ig-

nored a spin-dependent interaction term since, in TG limit, all

spin configurations are degenerate [13–16]. In general we can

express the wave function of N bosons as

|Ψ〉 =
∑

s1,s2,...sN

ψs1,s2,...sN (~x)|s1, s2, ..., sN 〉, (2)

where we denote ~x = (x1, x2, ..., xN ) and |s1, s2, ...sN 〉 ≡
|~s〉 as the spatial distributions and the spin configurations re-

spectively. Here we can label si = +, −, or 0, respectively

for spin-plus, minus, and zero components for the ith particle.

The total wave function must satisfy the bosonic symmetry,

therefore it is sufficient to just consider the ordered region of

x1 < x2 < ... < xN , and we can obtain all other regions via

permutations of this ordered region. In TG gas limit, the atoms

become fermionized that their spatial wave functions take the

Slater determinant form of noninteracting fermions. For the

symmetrized spatial part of the wave function, we denote it as

ψsym
~n (~x) which can be expressed in terms of the eigenfunc-

tions φnj
(xj) of the noninteracting fermions in a harmonic

trap,

ψsym
~n (~x) =

1√
N !

A[φn1
(x1), φn2

(x2), ..., φnN
(xN )]

× sgn(x2 − x1)× sgn(x3 − x2)...

× sgn(xN − xN−1). (3)

We denote the sign function as sgn and the anti-symmetrizer

as A for later convenience. The orbital indices are (n1, n2,

...nN ), and the prefactor
√
N ! normalizes the wave function.

For convenience we use the dimensionless forms of the eigen-

functions φn(y),

φn(y) =
1√
2nn!

1

π1/4
Hn(y)e

−y2/2, y ≡ x/xho, (4)

where Hn are Hermite polynomials. The harmonic oscillator

length is xho ≡
√

~/(Mω) where ω is the trap frequency and

M is the atomic mass.

To eventually evaluate the density matrix for say the ”+”

component, we need to obtain the wave function amplitude

where at least one particle has spin ”+”. First we consider

some degenerate and normalized spin configuration state |χ〉
in some sector of magnetization, and the wave function can

be expressed as |Ψ〉 = ψsym
~n (~x)|χ〉. Take N = 3 for an exam-

ple, we obtain the probability amplitude ψsym
+,s2,s3(x, x2, x3)

for the first particle having spin ”+” when we project |Ψ〉 to

〈s1 = +, x1 = x| in the ordered region of x < x2 < x3.

To access the probability amplitudes in the other regions, we

use the permutation operators P12 and P123 on the projected

states, obtaining

x < x2 < x3, 〈(+, s2, s3)|χ〉,
x2 < x < x3, 〈(s2,+, s3)|χ〉 = 〈P12(+, s2, s3)|χ〉,
x2 < x3 < x, 〈(s2, s3,+)|χ〉 = 〈P123(+, s2, s3)|χ〉, (5)

where we have suppressed the common ψsym
~n (~x) factors.

Similar construction applies for other N ’s. In the next section

we proceed to calculate the spin-dependent density matrices

for spin-1 Bose gas in the SILL regime.

III. DENSITY MATRICES FOR SILL OF SPIN-1 BOSE

GAS

The spin-dependent single-particle density matrix can be

straightforwardly written down from the wave function de-

scribed above. For example of the spin-plus component, we

have

ρ+(x, x
′) = N

∑

~s′

∫

dx̄ψ∗
+,~s′(x, x̄)ψ+,~s′(x

′, x̄), (6)

where x̄ ≡ (x2, x3, ..., xN ) and ~s′ ≡ (s2, s3, ..., sN). A factor

of N represents N possible choices of x and x′.
Again we take N = 3 as an example, and consider only the

region of x < x′ which is symmetric to x > x′. The spin-plus

single-particle density matrix for N = 3 then becomes

ρ+(x < x′) =3× 2×
{∫

x<x′<x2<x3

(E,E)+ +

∫

x<x2<x′<x3

(E,P12)+ +

∫

x<x2<x3<x′

(E,P123)+

+

∫

x2<x<x′<x3

(P12, P12)+ +

∫

x2<x<x3<x′

(P12, P123)+ +

∫

x2<x3<x<x′

(P123, P123)+

}

×ψsym∗
~n (x, x2, x3)ψ

sym
~n (x′, x2, x3)dx2dx3, (7)
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where the parentheses () in various integral regions repre-

sent the spin function overlaps. Take (E,P12)+ as an example

where E is the identical permutation operator, we define

(E,P12)+ =
∑

s2,s3

〈E(+, s2, s3)|χ〉〈P12(+, s2, s3)|χ〉. (8)

Similar forms apply to the other spin function overlaps in Eq.

(7). Also the factor of 2 in Eq. (7) comes from the contribu-

tion of the integral region x2 > x3, where the spin function

overlaps are the same as those with x2 < x3.

In the SILL regime, we average the above individual spin

function overlaps by the total number of spin state configura-

tions, which is denoted as Trχ(E)≡∑

χ 〈χ|E|χ〉. It is simply

the trace (Tr) of the identical operator over all spin configura-

tions |χ〉 since 〈χ|E|χ〉 = 1. We define the normalized spin

function overlap in general as (using the same notation as the

non-normalized one for simplicity)

(P12...j , P12...k)+ =

∑

~s′〈P12...j(+, ~s
′)|P12...k(+, ~s

′)〉
Trχ(E)

,(9)

where P12...j are j-particle permutation operators in the sym-

metric group SN . To derive Eq. (9), we have used the identity
∑

χ |χ〉〈χ| = 1. (P12...j , P12...k)+ in general represents the

spin function overlap from the integration region where the

particle at x permutes to just behind xj while the particle at x′

permutes to just behind xk.

In general for arbitrary N , we obtain the spin-plus density

matrix as

ρ+(x < x′) =N !

{∫

x<x′<x2...<xN

(E,E)+ +

∫

x<x2<x′...<xN

(E,P12)+ +

∫

x<x2<x3<x′...<xN

(E,P123)+ + ...

+

∫

x2<x<x′...<xN

(E,E)+ +

∫

x2<x<x3<x′...<xN

(E,P12)+ + ...+

∫

x2<x3...<xN<x<x′

(E,E)+

}

×ψsym∗
~n (x, x̄)ψsym

~n (x′, x̄)dx̄, (10)

where we have used the properties of (P12...j , P12...j)+ =
(E,E)+ and (E,P12...j)+ = (P12...m, P12...m+j−1)+ for

j,m ≥ 2. The first property can be proved from Eq. (9) by

using P−1
12...jP12...j = E−1E = 1. To prove the second prop-

erty, we can reduce P−1
12...mP12...m+j−1 to

(Pm−1,m...P23P12)
−1Pm...m+j−1(Pm−1,m...P23P12)

= P−1
12 P

−1
23 ...P

−1
m−1,mPm...m+j−1Pm−1,m...P23P12,

= P1,m+1...m+j−1,

such that (E,P1,m+1...m+j−1)+, using again Eq. (9), is ex-

actly the same as (E,P12...j)+.

Other spin components of the density matrices, ρ−(x < x′)
and ρ0(x < x′), can be derived similarly from characterizing

the respective normalized spin function overlaps ()−,0 which

we will evaluate below.

From now on we limit ourselves to the specific sector of

total Sz ≡ ∑N
i=1 si = 0. For Sz close to N , spin-1 Bose gas

will behave not much different from the polarized or spinless

one. Therefore we choose the sector of zero Sz , which allows

the SILL of spin-1 Bose gas to distinguish most significantly

from the spinless bosons for Sz .N . The spin configurations

|χ〉 in this sector generally involve n pairs of (+−), that is

| + + + − − −00...0〉 with n = 3 for example. The total

number of states can then be calculated as

wN ≡ Trχ(E) =

N
2

or N−1

2∑

n=0

N !

(n!)2(N − 2n)!
, (11)

which we obtain by permutingn (±)’s and (N−2n) (0)’s. For

the spin-plus component of the single-particle density matrix

in Eq. (10), the spin configuration |00...0〉 with n = 0 never

contributes. Therefore we consider only the spin configura-

tions of at least one pair of (+−), and |χ〉 can be generally

expressed as

|+ +...+
︸ ︷︷ ︸

n−1

−...−
︸ ︷︷ ︸

n

00...0
︸ ︷︷ ︸

N−2n

〉.

The first + is projected out in ρ+(x < x′), and thus we have

the normalized spin function overlap (E,E)+,

(E,E)+ =
1

wN

N
2

or N−1

2∑

n=1

(N − 1)!

(n− 1)!n!(N − 2n)!
, (12)

which is averaged by wN , the total number of states. We note

that all the arguments of the factorials should be equal and

larger than zero. (E,E)+ is proportional to the number of

states obtained by permuting the rest of (n−1) (+)’s, n (−)’s,

and (N − 2n) (0)’s. For (E,P12...j)+, it has a contribution

only when the first j entries are (+)’s,

|+...+
︸ ︷︷ ︸

j

+...+
︸ ︷︷ ︸

n−j

−...−
︸ ︷︷ ︸

n

00...0
︸ ︷︷ ︸

N−2n

〉,

such that we have

(E,P12...j)+ =
1

wN

N
2

or N−1

2∑

n≥j

(N − j)!

(N − 2n)!n!(n− j)!
,(13)

which denotes the number of states obtained by permuting the

rest of (n − j) (+)’s, n (−)’s, and (N − 2n) (0)’s. In this

specific sector of zero Sz , we note that in general (E,P12...j)+
is nonvanishing only when j ≤ N/2.

These corresponding spin function overlaps in ρ−(x < x′),
which are (E,E)− and (E,P12...j)−, should be the same as
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those in ρ+(x < x′). While for ρ0(x < x′), we have the spin

function overlaps as

(E,E)0 =
1

wN

N
2

or N−1

2∑

n=0

(N − 1)!

(n!)2(N − 2n− 1)!
, (14)

(E,P12...j)0 =
1

wN

N
2

or N−1

2∑

n=0

(N − j)!

(n!)2(N − 2n− j)!
, (15)

which respectively denote the number of states contributed

from the spin configurations with the first one and the first

j entries of (0)’s. We note of the identity that

2(E,E)+ + (E,E)0 = 1. (16)

This also corresponds to the particle number conservation,

that is 2N+ + N0 = N , where N±(0) ≡
∫
dxρ±(0)(x, x).

Thus the number of particles is proportional to the spin func-

tion overlaps, N±(0) = N(E,E)±(0). Furthermore we note

that

2(E,P12...j)+ + (E,P12...j)0 = wjN/wN , (17)

where wjN was defined in Ref. [27],

wjN ≡
N
2

or N−1

2∑

n=0

[
(N − j)!

(n!)2(N − 2n− j)!

+
2(N − j)!

(n− j)!n!(N − 2n)!

]

. (18)

A. Spatial correlation in SILL of spin-1 Bose gas

The effect of the spin function overlaps in the SILL regime

can be seen in Fig. 1 where we compare the spatial correla-

tions of spin-1 [ρ(x, x′)] and spinless bosons [ρspl(x, x
′)] at

some chosen x in a harmonic trap. Spinless or spin-polarized

bosons show a wider spatial distribution than the spin-1 case,

−3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

x’/x
ho

 

 

N=10, x
ho

ρ
spl

(x/x
ho

=−1,x’)

N=10, x
ho

ρ(x/x
ho

=−1,x’)

FIG. 1. (Color online) Single-particle density matrix of spin-1 and

spinless bosons for N = 10 in the sector of Sz = 0. The density

matrix of spin-1 bosons is ρ(x, x′) = 2ρ+(x, x
′) + ρ0(x, x

′). The

spatial correlations are plotted at chosen x/xho =−1. Spinless (spl)

bosons (+) show broader spatial distributions than the spin-1 bosons

(�), indicating a narrower distribution in momentum space.

indicating a sharper momentum distribution. Large |x − x′|
in the spatial correlation corresponds to the small p region.

For spinless bosons, it has been shown in the bulk that

ρspl,b(x, x
′) ∝ |x − x′|−1/2, thus small p behavior is pro-

portional to |p|−1/2 [42–45]. This narrow momentum distri-

bution resembles the one of a Bose-Einstein condensate but

not quite since no condensation is allowed [46] due to large

quantum fluctuations in 1D system. Therefore no off-diagonal

long-range order can be present in the density matrix of 1D

Bose gas. However a superfluid phase can exist in 1D quantum

systems, possessing a power-law decay in spatial correlations.

This power-law decay can be well described in the Luttinger

liquid model using the bosonization method [17, 18].

In a harmonic trap as shown in Fig. 1, the spatial correla-

tions of ρspl(x, x
′) are similar to the one in a bulk in a moder-

ate region of |x− x′| until the correlation decays faster at the

edge of the trap (x′ & 4xho). In the trap, ρspl(p = 0) is finite.

It has also been shown that ρspl(p = 0) ∝ N in the large N
limit [7].

In sharp contrast to the spinless bosons in Fig. 1, the

spin-1 Bose gas in the SILL regime shows an exponential

decay in its spatial correlation, which is therefore not con-

densed. This exponential decay has been predicted in the

single-particle Green’s function of quantum wires in the SILL

regime [19, 47, 48], distinguishing from the Luttinger liq-

uid with only power-law decays. In the momentum distribu-

tions on the other hand, spin-incoherence tends to broaden the

distributions, which has been investigated in the t-J model

[24, 49, 50] or the system of uniform two-component gas [23].

Similarly the spin-1 bosons in the SILL regime will also have

a broadened momentum distribution due to the averaging of

the spin function overlaps, which we discuss in more details

below. Large p behavior will be discussed later in Sec. IV. A.

B. Momentum distribution in SILL of spin-1 Bose gas

We define the spin-dependent momentum distributions as

ρ±(0)(p) =
1

2π

∫ ∞

−∞

dx

∫ ∞

−∞

dx′eip(x−x′)ρ±(0)(x, x
′),(19)

where we set ~ = 1. We then numerically calculate the mo-

mentum distributions of the three components in 1D TG Bose

gas based on Eq. (10), ρ−(x < x′), and ρ0(x < x′). In

Fig. 2, both spin components of ρ+(p) and ρ0(p) are uni-

formly broadened as N grows, and ρ+(p) 6= ρ0(p) for finite

N . The effect of spin-incoherence also averages out the oscil-

latory structure that is present in the momentum distribution

for specific spin state of spinor Bose gas [11]. Furthermore

the peaks of ρ0(p) are larger than ρ+(p) up to N = 16. This

is due to N0 ≥ N± in general and the spin function overlaps

(E,P12...j)0 are always larger than (E,P12...j)+, which we

will show more specifically in Fig. 9 in Appendix. For spin-

less bosons, the peaks of ρspl(p) have a scaling of ρspl(p = 0)
∝ N [7]. Here the spin-1 Bose gas in the SILL regime shows

fitted scalings of ρ+(p = 0) ∝ N0.49 and ρ0(p = 0) ∝ N0.66

from Fig. 2. These reduced scalings again show the feature of

broadened momentum distributions in the SILL regime
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FIG. 2. (Color online) Momentum distributions of (a) spin-plus [ρ+(p)] and (b) zero components [ρ0(p)] in the SILL regime. In the sector

of Sz = 0, we numerically calculate the momentum distributions of 1D spin-1 TG gas up to N = 16. They are uniformly broadened as N
increases, and the peaks of ρ0(p) are larger than ρ+(p) due to the spin function overlaps.

To calculate ρ±(0)(x, x
′) we implement Gaussian unitary

ensemble (GUE) [7] to speed up the convergence in the

Monte Carlo (MC) integration method. The GUE draws a

series of (N − 1) random numbers in x̄, which are re-

pulsively distributed due to the joint probability density of

Π1≤i<j≤N−1(xi − xj)
2. This implementation of GUE thus

enables our MC integration to simulate up to N = 16, which

in this case takes about 140 hours with MC simulations of M
= 106 sets of random numbers using 200 parallel CPU cores.

All MC simulations in Fig. 2 use M = 107 except for N =
16 with M = 106.

In the next section we investigate their asymptotic forms

in large momentum limit, which show 1/p4 decay, and their

momentum distributions in large N limit.

IV. MOMENTUM DISTRIBUTIONS IN HIGH p AND

LARGE N LIMITS

A. Asymptotic high p limit

For spinless bosons in the TG limit, relative wave func-

tion between two particles in short distance is ψrel(x, x
′) ∝

|x−x′|, indicating of impenetrable bosons and corresponding

to the feature of fermionic repulsion. Again it has been shown

[42–45] in a bulk where ρspl,b(x, x
′) in short distance is pro-

portional to [1+...+|x−x′|3/(9π)+...]. Thus the non-analytic

|x− x′|3 term in the short-distance correlation gives a univer-

sal 1/p4 asymptotic in large momentum limit. This universal

1/p4 asymptotic is not unique for a Bose gas with two-body

contact interactions [8–10]. It also shows up in Tan’s relation

[51, 52] in the two-component Fermi gas [53–56]. We note

that the coefficient of the scaling depends on the many-body

state and is related to the slope of energy (−dE/dg−1
1D) [9, 22].

For 1D spin-1 TG Bose gas on the other hand, the analytical

results for a high p asymptotic total momentum distribution

ρ(p) have been derived [27], showing also a universal 1/p4 de-

pendence. Similarly for its spin-dependent components, they

can be straightforwardly written as

ρ±(0)(p) =
p→∞

2[(E,E)±(0) + (E,P12)±(0)]

2πp4

×
∑

(ni,nj)

∫ ∞

−∞

dx

∣
∣
∣
∣

φ′ni
(x) φ′nj

(x)
φni

(x) φnj
(x)

∣
∣
∣
∣

2

,(20)

where (ni, nj) denotes any possible pairs of N harmonic os-

cillator eigenfunctions. The asymptotic form depends on the

spin function overlap (E,P12)±(0) because it has significant

contributions only from the integral regions of x < xj < x′

and x′ < xj < x for all xj ∈ x̄ with x ≈ x′. The asymptotic

form for the spinless bosons can be also obtained by replacing

[(E,E)±(0) + (E,P12)±(0)] with 2 in Eq. (20). We note that

using Eqs. (20) and (18), we have 2ρ+(p) + ρ0(p) = ρ(p)
where the last quantity was computed in Ref. [27].

The spin-1 Bose gas in the SILL regime shows very differ-

ent properties from the spin-coherent ones in the coefficients

of high p asymptotics. The coefficients are always less than

the ones in spinless bosons since (E,E)±(0), (E,P12)±(0)

< 1. This is because the spin part of the wave function is

no longer necessarily symmetric under interchange of two

particles. And for large N , [(E,E)±(0) + (E,P12)±(0)] →
[1/3+ (1/3)2] = 4/9 from Eq. (A22), less than 2 for the case

of spinless bosons as well. As an example, in Fig. 3 we com-

pare the numerical and analytical results of ρ+(p) in high p
limit. The numerically calculated high p asymptotics approach

approximately to the analytical ones. For even larger pxho
& 7, the trends either drop and cross the analytical asymp-

totics, or bounce back and oscillate, indicating the inaccuracy

of numerical results in these regions. To reach accurate high p
asymptotics is quite demanding in MC integrations and con-

suming more CPU time for even largerN . However, MC sim-

ulations have already achieve the accuracy of 10−3 and 10−2

of the momentum distributions for N = 2− 3 and 10 respec-

tively.
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FIG. 3. (Color online) Asymptotics of high momentum distributions

in Fig. 2. High momentum distributions are plotted in logarithmic

scales and compared with analytic calculations (dash) in the spin-

plus component of 1D spin-1 TG Bose gas. The analytical asymp-

totics are (0.085, 0.245, 0.694, 1.267, 2.131, 3.225, 8.305)/p4 , re-

spectively for N = 2 − 7 and 10. The line symbols and colors are

the same as Fig. 2, and a vertical line (dash-dot) at around pxho

∼ 7 guides the eye for the limitation in accuracy of the numerical

calculations.

We have also evaluated numerically the potential (〈V 〉) and

kinetic energies (〈K〉). Since our 1D bosonic TG gas has the

same density distribution as the one of a Fermi gas, we have

〈V 〉 = 〈K〉 = N2
~ω/4, equivalent to half of the total energy,

which complies with the Virial theorem [57, 58]. In Ref. [27],

we concatenate ρ(p) with the asymptotic tails analytically de-

rived to improve the energy calculations. Here we directly use

the momentum distributions of ρ(p) calculated by MC sim-

ulations implemented with GUE. We find that the numerical

results of these energies improve to the relative errors below

7% and 10% for N = 2 − 7 and 16 respectively to the exact

values of 〈V 〉 and 〈K〉. This further shows the advantage of

GUE in the convergence and accuracy of our numerical re-

sults.

In Fig. 4, we plot the difference of spin-plus and zero mo-

mentum distributions numerically, ρ+(p) − ρ0(p), from Fig.

2. The difference goes away gradually as N increases, indi-

cating these two components approach each other in large N
limit. The dips at around p ∼ 0 demonstrate that the peaks

of ρ0(p) are always higher than ρ+(p), which is due to larger

spin function overlaps for the spin-0 component. A special

feature of the peaks for the case of N = 2 shows a wider

ρ+(p) than ρ0(p) while this feature is not obvious for larger

N .

B. Large N limit

Due to the limits of numerical integration, we can only cal-

culate the single-particle density matrix of spin-1 Bosons up

to N = 16. For finite N , we have demonstrated numerically

ρ+(p) 6= ρ0(p) since in general N0 ≥ N+ and spin function

overlaps (E,P12...j)0 are always larger than (E,P12...j)+.

Thus the peaks of ρ0(0 = 0) are larger than ρ+(p = 0). In this

subsection we attempt to investigate the momentum distribu-

tions in large N limit. The study in this limit can give insight

−2 −1 0 1 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

px
ho

[ρ
+
(p) − ρ

0
(p)]x

ho
−1

FIG. 4. (Color online) The difference between spin-plus and spin-0
momentum distributions. The symbols and colors are plotted corre-

spondingly as in Fig. 2, where we choose N = 2 − 6 and 16. The

case of N = 7 is neglected here for it is too close to the one of N =
6. The difference diminishes gradually as N increases.

to practical experiments where several hundreds or thousands

of atoms are involved.

To investigate the individual components of spin-1 momen-

tum distributions in large N limit, we need the asymptotic

forms for various spin function overlaps. These spin function

overlaps in general can be written as

(E,E)+ =
f
(N−1)
1

f
(N)
0

, (E,P12...j)+ =
f
(N−j)
j

f
(N)
0

,

(E,E)0 =
f
(N−1)
0

f
(N)
0

, (E,P12...j)0 =
f
(N−j)
0

f
(N)
0

, (21)

where

f
(N)
k ≡

N−k
2∑

j=0

N !

(k + j)!j!(N − 2j − k)!
. (22)

We find the asymptotic form of f
(N)
k in large N limit in

Appendix using the method of steepest descent or stationary

phase [59]. In Fig. 9 of Appendix, the asymptotic forms in Eq.

(A20) are used to compare with the exact ones of Eqs. (12),

(13), (14), and (15), and they approach to the exact ones in

large N limit for small j in Eq. (21). Therefore we shall use

the asymptotic forms to compare the spin-plus with the spin-0
components of the spin function overlaps for large N .

We define their relative deviations as
∣
∣
∣
∣

(E,P12...j)+ − (E,P12...j)0
(E,P12...j)0

∣
∣
∣
∣
, (23)

which asymptotically approaches to

∣
∣
∣
∣
∣

f̄
(N−j)
j − f̄

(N−j)
0

f̄
(N−j)
0

∣
∣
∣
∣
∣
, (24)

in large N limit, where f̄
(N−j)
j is the asymptotic form of

f
(N−j)
j . This asymptotic form allows us to compute the de-

viations for even larger N than using the exact formulas. In

Fig. 5, the relative deviations decay as N increases for small
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FIG. 5. (Color online) Relative deviations of Eq. (24) for the asymp-

totic forms f̄
(N−j)
j and f̄

(N−j)
0 of the exact spin function overlaps

(E,P12...j)+ and (E,P12...j)0 respectively. The relative deviations

are plotted for j = 2(�), 3(+), 4(×), 5(◦), and 10(⋄). The deviations

decrease as N increases, which indicate that the asymptotic forms

are approaching each other. It suggests that spin-plus and zero com-

ponents of the momentum distributions coincide in large N limit.

j and become below 10−2 for N ∼ 600 with j ≤ 3. Note that

for a moderate j = 10, it only reaches 0.1 for as high as N
= 600. Since the spin function overlaps with smaller j con-

tribute much more to the momentum distributions than j .
N/2 [see Figs. 9(a) and (b)], along with much less relative

deviations, we expect that the spin-plus momentum distribu-

tion approaches the one of spin-0 asN increases. We have also

shown this trend in Fig. 4 for finite N up to sixteen particles.

This can be further confirmed by studying respective contri-

butions from the integral regions in the single-particle density

matrix ρ+(x < x′) of Eq. (10). In Fig. 6 we plot the re-

sults of most significant 12 out of a total 15 integral regions

for the case of N = 5 with and without the multiplications of

spin function overlaps. The order of the integral regions can

be seen from Eq. (10). We denote the first five regions as x
< x2 with x′ < x2 moving sequentially to x5 < x′, the next

four regions (6th to 10th) as x2 < x < x3 with x2 < x′ < x3
moving sequentially to x5 < x′, and so on for the rest of the

regions. A feature of hard core bosons in 1D harmonic trap is

that atoms prefer to distribute evenly in space. The particles at

x̄ repel each other due to their strongly repulsive interactions

in TG limit. Thus more significant peaks of the integral con-

tributions occur roughly at the corresponding integral regions

depending on (x, x′). For example in Fig. 6(a), the spatial

correlation at (x, x′) = (−1, 0) has the largest contribution at

the seventh integral region, x2 < x < x3 < x′ < x4 < x5.

Similarly the spatial correlation at (x, x′) = (−1, 3) has the

largest contribution at the ninth integral region, x2 < x < x3
< x4 < x5 < x′. In Fig. 6(b) we multiply these values with

the spin function overlaps (inset), and show that significant

contributions come from the overlaps with small j. For four

specific spatial correlations we choose here, significant values

dwell in the 6th, 7th, 10th, and 11th integral regions, which

correspond to the spin function overlaps (E,E)+, (E,P12)+,

(E,E)+, and (E,P12)+ respectively. Moreover as expected

the spatial correlations decay as |x − x′| increases, reminis-

cent of the exponential decay discussed in III. A.

0

0.1

0.2

 

 

(−1,0)

(−1,1)

(−1,2)

(−1,3)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

regions

 

 

5 10 15
0

0.2

0.4

 

 

(a)

(b)

FIG. 6. (Color online) Contributions from the integral regions for

ρ+(x < x′) withN =5. The values for each integral regions without

and with the multiplications of spin function overlaps are shown in

(a) and (b) respectively. Four spatial correlations are chosen at (x, x′)
as denoted in the legend of (a) along with the symbols (�,+, ◦,×)
for clarity. The inset in (b) displays 15 spin function overlaps for the

case of five bosons.

For TG bosons in the bulk with a length L in thermody-

namic limit, we can use the analytical expression of Eq. (20)

and let φni
(x) = eikix/

√
L with various eigenmodes ni →

ki. The spatial integral in Eq. (20) can then be calculated as

∫

dx

∣
∣
∣
∣

φ′ni
(x) φ′nj

(x)

φni
(x) φnj

(x)

∣
∣
∣
∣

2

=
1

L2

∫

dx

∣
∣
∣
∣

ikie
ikix ikje

ikjx

eikix eikjx

∣
∣
∣
∣

2

,

=
(ki − kj)

2

L
. (25)

In the continuous limit of (ki, kj) corresponding to the pairs

of (ni, nj) in the summation, we have ρspl,b(p → ∞) in the

bulk

ρspl,b(p→ ∞)

L
=

2

πp4

∫ kF

−kF

dki
2π

∫ ki

−kF

dkj
2π

(ki − kj)
2,

(26)

where kF = πN/L. Let ki = kFx and kj = kF y, the above

becomes

ρspl,b(p→ ∞)

L
=

k4F
2π3p4

∫ 1

−1

dx

∫ x

−1

dy(x− y)2,

=
2k4F
3π3p4

, (27)

which is the same as Eq. (67) in Ref. [45] up to a fac-

tor of 2π in our definition of Fourier transform in Eq. (19).

Our derivation is parallel to using short-distance expansions in

ρspl,b(x, x
′) [45] where its non-analytic term |x − x′|3/(9π)

after Fourier transformed gives the same result.

For large N spinless bosons in a harmonic trap, we can use

the local-density approximation (LDA) for the local chemi-

cal potential in Thomas-Fermi limit, which reads µ(x) = µ
− αx2/2 with α = Mω2. The cutoff momentum can be de-

rived as kF (x) =
√

2M(µ− αx2/2). Since the maximum
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mode in 1D hard core bosons at infinite interactions is ap-

proximately nmax ≈ N , the chemical potential can be deter-

mined as µ = nmaxω ≈ Nω. We further define the bound-

ary of xmax =
√

2Nω/α such that we re-express kF (x) as
√

(Mα)(x2max − x2). Applying LDA to Eq. (27), we have

the density matrix for spinless bosons in a harmonic trap as

ρspl,LDA(p→ ∞)=
2

3π3

∫ xmax

−xmax

dx
k4F (x)

p4
,

=
2(Mα)2

3π3p4

∫ xmax

−xmax

dx(x2max − x2)2,

=
27
√
2

45π3
N5/2 1

p4x3ho
, (28)

where the scaling of N5/2 disagrees with Ref. [9] which gave

a different scaling of N3/2. N5/2 scaling has also been re-

ported for the 1D SU(κ) Fermi gas with κ 6= 1 [22]. The coef-

ficient in Eq. (28) is the same as the TG Fermi gas in the κ→
∞ limit.

For the spinful case of our spin-1 Bose gas in largeN limit,

the asymptotic coefficient of [(E,E)±(0) + (E,P12)±(0)] be-

comes [1/3+(1/3)2] = 4/9 according to Eq. (A22), such that

the spin-dependent and total momentum distributions respec-

tively in thermodynamic limit become

ρ±(0)(p→ ∞)|N→∞=
1

2

4

9
× ρspl,LDA(p→ ∞),

=
28
√
2

405π3
N5/2 1

p4x3ho
, (29)

and

ρ(p→ ∞)|N→∞= 3× ρ±(0)(p → ∞)|N→∞,

=
28
√
2

135π3
N5/2 1

p4x3ho
, (30)

which is 2/3 of Eq. (28).

We denote the momentum distribution of spinless bosons

in high p limit as ρspl(p → ∞) which can be derived by re-

placing [(E,E)±(0) + (E,P12)±(0)] with 2 in Eq. (20). We

then define c(N) ≡ ρspl(∞)(26
√
2)−1N−5/2(45π3p4x3ho)

and c(∞) = 2 according to Eq. (28). c±(0)(N) can be also

defined in the same way for ρ±(0)(∞). These coefficients can

be calculated using Eq. (20). In Fig. 7 we plot c(N) and

c+(0)(N) respectively to show how they approach the asymp-

totic large N values. We find that Eqs. (28) and (29) al-

ready give good enough estimates for N & 20 and 30 for

spinless and spin-1 bosons respectively. The relative devia-

tions |c(N)− c(∞)|/c(∞) = 0.14% for N = 40, and for the

cases of c+(0)(40), they reach 1.9%(1.5%). In Fig. 7(b), c0
> c+, which again indicates that the spin function overlaps

(E,P12...j)0 > (E,P12...j)+ and N0 > N+.

V. CONCLUSION

In conclusion, we have investigated the spin-dependent

properties of spin-1 Bose gas in the regime of spin-incoherent

5 10 15 20 25 30 35 40

0.35

0.4

0.45

N

c
+
(N

),
 c

0
(N

)

1.8

1.9

2

c(
N

)

(a)

(b)

FIG. 7. (Color online) Comparisons of the coefficients in the mo-

mentum distributions of spinless and spin-1 Bose gas. We plot the

coefficients of (a) c(N) (⋄) and (b) c+(N) (�) and c0(N) (×), re-

spectively for spinless bosons, spin-plus and spin-0 components in

high p limit. These coefficients approach to the asymptotic values

c(∞) = 2 (dash) and c+(0)(∞) = 4/9 (dash) when N increases.

Luttinger liquid (SILL). Three components (spin-plus, zero,

and minus) of the single-particle density matrix for this uni-

versal class can be calculated by deriving respective spin func-

tion overlaps. These spin function overlaps result from the

highly degenerate spin configurations in the SILL regime.

In contrast with the spinless bosons with a power-law decay

in its spatial correlation, spin-1 bosons in TG limit show an

exponentially decaying spatial correlation, which indicates a

broadened momentum distribution and a different universal

class from Luttinger liquid. The universal 1/p4 dependence

in high p limit is also present in the spin-dependent momen-

tum distributions. This asymptotic has a scaling of N5/2 with

a reduced coefficient than the one of the spinless bosons. The

coefficients of the asymptotic are proportional to Tan’s contact

and can be observed in experiments as one of the signatures

of SILL. We compare these analytical predictions with the nu-

merical results calculated by Monte Carlo (MC) integration

with Gaussian unitary ensemble (GUE) up to sixteen bosons.

The method of MC integration implemented with GUE con-

verges faster and gives more accurate results such that we are

able to calculate higher p regions. The high momentum tails

approximately and asymptotically follow the reduced coeffi-

cients we analytically derived.

For the Sz = 0 sector, we show that the spin-0 component

always has a larger peak than the spin-plus momentum distri-

bution for finite N . This can be explained by the spin function

overlaps which are larger for the spin-0 density matrix than

the spin-plus case. While they differ for small N , they coin-

cide in the largeN limit. This indicates that highly incoherent

bosons form in this limit with each component occupying ex-

actly one third of the total number of particles. The ultracold

spinor Bose gas allows for a potential realization of this uni-

versal class of SILL, and our results offer a testable paradigm

to study quantum many-body phenomena in 1D strongly in-

teracting bosons.
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Appendix A: Spin function overlaps in large N limit

Before we derive the spin function overlaps in large N
limit, first we express them in terms of an integral function,

and then introduce the method of stationary phase or steepest

descent to solve for their asymptotic forms [59]. Consider the

following function,

f (N)(x) = (x + x−1 + 1)N ,

=

N∑

j2=0

N−j2∑

j1=0

N !

j1!j2!(N − j1 − j2)!
xj1−j2 , (A1)

where the second line above can be derived by binomial ex-

pansions. When we set k = j1 − j2 and j = j2, we have

f (N)(x) =

N∑

k=−N

N−k
2∑

j=0

N !

(k + j)!j!(N − 2j − k)!
xk,(A2)

where the upper bound of index j can be derived by solving

j2 in the equations of j1 + j2 =N and j1 − j2 = k. From Eq.

(A2), we define the coefficient of xk in f (N)(x) as f
(N)
k which

is the same as the one of x−k. f
(N)
k is defined in Eq. (22) in

the main paper. Compare with Eqs. (12), (13), (14), and (15)

in the main paper, we find that the spin function overlaps can

be expressed as Eq. (21) in the main text. These coefficients

can be calculated as follows

f
(N)
k =

1

2πi

∮

C

dzzk−1(z + z−1 + 1)N , (A3)

where the coefficient f
(N)
k (of z−k in this case) is exactly the

residue at the pole of z = 0 with a complex number z. C in

the above denotes a contour integration on a circle in a coun-

terclockwise direction around the origin.

The asymptotic behavior of the integral can be obtained in

large N limit. We let z = eiθ, the coefficient becomes

f
(N)
k =

1

2π

∫ π

−π

dθeikθ(1 + 2 cos θ)N

=
1

2π

∫ π

−π

dθeF(θ), (A4)

where F(θ) ≡ N ln(1 + 2 cos θ) + ikθ. Let θ → w in the

complex plane, using the method of steepest descent [59] for

the above highly-oscillating integrals in largeN limit, we first

find the saddle points which satisfy the first derivative F ′(w)
= 0. The integrals are then dominated by the local maxima

passing the saddle points along the integration contour.

The saddle points are therefore located at

−2 sinw +
ik

N
(1 + 2 cosw) = 0, (A5)

which, after replacing trigonometry functions with exponen-

tials, becomes

eiw =
−k/N ±

√

(k/N)2 + 4(1− k2/N2)

2(1 + k/N)
. (A6)

If k → 0, the above suggests a multiple of roots that satisfy

eiw =±1, which are w = 2nπ and ±(2n+1)π for integers n,

indicating multiple saddle points in this integral. We consider

an integration path in Fig. 8, where only three saddle points (n
= 0) are involved. Below we demonstrate why the contour is

valid and guarantees to follow the valleys of steepest descent

between these three saddle points, which can be determined

by the sign of F ′′(w).

First to calculate F ′′(w0), we define Q ≡
√

4− 3(k/N)2,

and we have from Eq. (A6) with the ”+” sign,

eiw0 =
−k/N +Q

2(1 + k/N)
, e−iw0 =

k/N +Q

2(1− k/N)
, (A7)

where w0 should be purely imaginary in general. We further

use the above to reinterpret

cosw0 =
(k/N)2 +Q

2[1− (k/N)2]
, 1 + 2 cosw0 =

1 +Q

1− (k/N)2
,

sinw0 =
i

2

k

N

1 +Q

1− (k/N)2
. (A8)

Now the second derivative of F(w0) becomes

F ′′(w0) = N

[ −2 cosw0

1 + 2 cosw0
− 4 sin2 w0

(1 + 2 cosw0)2

]

,

= −N [Q(1− (k/N)2)]

1 +Q
, (A9)

which is always less than zero. For example, F ′′(w0) =
−2N/3 and −Nǫ respectively at small and large k limit (k/N
= 1 − ǫ with ǫ & 0).

Next for F ′′(w±1) at the other two saddle points which we

denote as w±1, we have from Eq. (A6) with the ”−” sign,

eiw±1 =
−k/N −Q

2(1 + k/N)
, e−iw±1 =

k/N −Q

2(1− k/N)
, (A10)

where w±1 in general are complex. Setting w±1 = ±π + iy1
with real y1, we have e−y1 . 1 and e−y1 ≈ 1/2 respectively

when k → 0 and k → N , suggesting y1 & 0 at small k limit.

Again we can use the above to reinterpret

cosw±1 =
(k/N)2 −Q

2[1− (k/N)2]
, 1 + 2 cosw±1 =

1−Q

1− (k/N)2
,

sinw±1 =
i

2

k

N

1−Q

1− (k/N)2
. (A11)

Now the second derivative of F(w±1) becomes

F ′′(w±1) = −NQ[1− (k/N)2]

Q− 1
, (A12)
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FIG. 8. (Color online) Integration paths for calculating the asymp-

totic form of f
(N)
k traversing through three saddle points (denoted as

×). Starting from w = −π in the complex plane of w, we choose a

vertical path D−1 to reach the first saddle w−1 with increasing imag-

inary parts only. Paths C±1 traverse through the saddle points w±1

from the left tangent to the real axis, which connect to the path C0

crossing the third one w0, again tangent to the real axis. The last path

D1 reaches the end point of w = π starting from w1. Paths C±1 and

C0 follow the valleys of steepest descent while D±1 do not.

which is again always less than zero, for example, F ′′(w0) =
−2N and −2N/3 respectively for small and large k limit.

Now we have located three saddle points, which are w0 and

w±1. The asymptotic form of the integral for f
(N)
k in Eq. (A4)

can then be calculated using the contour in Fig. 8, which

traverses through these three saddle points on the paths tan-

gent to the real axis. Following the integration contour for Eq.

(A4), we have the asymptotic form f̄
(N)
k of f

(N)
k as

f̄
(N)
k =

1

2π

[
∫

D−1

+

∫

C−1

+

∫

C0

+

∫

C1

+

∫

D1

]

dθeF(θ).

(A13)

We obtain the contributions of w0 in the path C0 as

1

2π

∫

C0

dweF(w0)e
1

2
F ′′(w0)(w−w0)

2

,

=
eF(w0)

2π

∫

C0

dwe−
1

2
|F ′′(w0)|(w−w0)

2

,

=
eF(w0)

2
√
π
√

−F ′′(w0)/2
, (A14)

where its next correction term is at least O(N−1/2) smaller.

Since the integration path C0(±1) follows the valley of steep-

est descent, the integration is dominated near the region of

the saddle point w0(±1), where we are also able to allow the

boundary of w to ±∞. Similarly for the paths C±1, we have

the contributions from w±1,

eF(w1)

2π

[
∫

C−1

dwe
1

2
F ′′(w−1)(w−w−1)

2

+

∫

C1

dwe
1

2
F ′′(w1)(w−w1)

2

]

, (A15)

where F(w−1) = F(w1). Let w = w±1 + x in the paths C±1

respectively, we have

eF(w1)

2π

[∫ ∞

0

dxe−
1

2
|F ′′(w−1)|x

2

+

∫ 0

−∞

dxe−
1

2
|F ′′(w1)|x

2

]

=
eF(w1)

2π

∫ ∞

−∞

dxe−
1

2
|F ′′(w1)|x

2

,

=
eF(w1)

2
√
π
√

−F ′′(w1)/2
, (A16)

where we have used F ′′(w−1) = F ′′(w1). For the paths of

D±1, though they do not follow the valleys of steepest de-

scent, their contributions cancel with each other since F(w)
= F(w + 2π).

Finally we obtain the asymptotic form of f
(N)
k in large N

limit as

f̄
(N)
k =

1

2
√
π

[

eF(w0)

√

−F ′′(w0)/2
+

eF(w1)

√

−F ′′(w1)/2

]

.

(A17)

Before we write down the explicit form for the above, it is

useful to derive

eF(w0) =

[
1 +Q

1− (k/N)2

]N [
Q− k/N

2(1 + k/N)

]k

, (A18)

which become 3N and 1/ǫNǫ respectively for small and large

k. Also we have

eF(w±1) = (−1)N+k

[
Q− 1

1− (k/N)2

]N [
Q+ k/N

2(1 + k/N)

]k

,

(A19)

which become (−1)N+k and (3/4)N2Nǫ/(−1)Nǫ respec-

tively for small and large k. Inserting the functions of the sad-

dle points from Eqs. (A9), (A12), (A18), and (A19), we have

f̄
(N)
k =

[

(1 +Q)
N+ 1

2

(

Q− k

N

)k

+(−1)N+k(Q − 1)N+ 1

2

(

Q+
k

N

)k
]

×
[
2
(
1 + k

N

)]−k

√
2NQπ

[

1−
(

k
N

)2
]N+ 1

2

. (A20)

We note that the main contribution in Eq. (A20) comes

from the saddle point w0. To have some estimates of Eq.

(A20), we have

f̄
(N)
k→0 =

3N

2
√
π
√

N/3
, f̄

(N)
k→N =

1√
2πNǫ · ǫNǫ

. (A21)

From the above result at small k and according to Eq. (21),

we can show that

(E,P12...j+1)+(0)

(E,P12...j)+(0)

∣
∣
∣
∣
N→∞

=
1

3
,

(E,E)+
∣
∣
N→∞

= (E,E)0
∣
∣
N→∞

=
1

3
, (A22)
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FIG. 9. (Color online) Exact spin function overlaps and their relative

deviations from analytical derivations. Exact spin function overlaps,

(E,P12...j)+,0, for spin-plus and spin-0 components are plotted in

(a) and (b) respectively, top to bottom, from j/N = 1/8, 2/8, and

3/8 (solid), to j =N/2− 1 (dash). The values decrease rapidly as j
increases. The relative deviations of the exact spin function overlaps

(E,P12...j)+,0 from f̄
(N−j)
j,0 /f̄

(N)
0 are plotted for j = 1/8, 2/8, and

3/8 (solid-� and ◦), and j = N/2 − 1 (dash), bottom to top, in

(c) and (d) respectively. The deviations increase as j increases. The

relative deviations of (E,E)+,0 from f̄
(N−1)
1,0 /f̄

(N)
0 are denoted as

(+) in (c), which almost overlap with each other. (E,E)+(0) reaches

0.333(0.334) at N = 150 and should approach 1/3 for even larger

N as indicated by Eq. (A22).

which respectively indicates one third decrease for the spin

function overlaps when j increases by one, and the popula-

tions of N+ and N0 coincide in large N limit. In the large N
limit, despite the constraint Sz = 0, the probability of finding

a particle in any of the spin states, ”+”, ”0”, or ”−”, is 1/3
and is irrespective of the spins of the other particles (if j ≪
N ). This decrease in spin function overlaps also reflects on

the exponential decay in spatial correlations discussed in Sec.

III. A.

To have some estimates of the spin function overlaps and

their asymptotic forms in large N limit, in Fig. 9 we com-

pare (E,P12...j)+,0 of Eqs. (13) and (15) with f̄
(N−j)
j,0 /f̄

(N)
0

from Eq. (A20). In Figs. 9(a) and (b), the values of

spin function overlaps decrease rather fast in logarithmic

scales as j increases, while (E,P12...j)0 is always larger than

(E,P12...j)+. As a comparison, we define the relative devia-

tions as
∣
∣
∣
∣
∣

(E,P12...j)+,0 − f̄
(N−j)
j,0 /f̄

(N)
0

(E,P12...j)+,0

∣
∣
∣
∣
∣
, (A23)

which we show in Figs. 9(c) and (d), indicating of a good

asymptotic form from our derivations for small j in large

N limit. However a slow decay in the relative deviation of

(E,P12...N/2−1)+ to f̄
(N/2+1)
N/2−1 /f̄

(N)
0 in (c) shows the worst

case in the asymptotic form. It is due to a rather small F ′′(w0)
→ −Nǫ in Eq. (A9) when we set k/N = 1 − ǫ with a small

value of ǫ, which makes the method of steepest descent less

accurate unless we go to N →∞.
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