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Izabella Lovas,1 Balázs Dóra,1 Eugene Demler,2 and Gergely Zaránd1

1MTA-BME Exotic Quantum Phases “Momentum” Research Group and Department of Theoretical Physics,
Budapest University of Technology and Economics, 1111 Budapest, Hungary

2Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

Inspired by recent advances in cold atomic systems and non-equilibrium physics, we introduce
a novel characterization scheme, the time of flight full counting statistics. We benchmark this
method on an interacting one dimensional Bose gas, and show that there the time of flight image
displays several universal regimes. Finite momentum fluctuations are observed at larger distances,
where a crossover from exponential to Gamma distribution occurs upon decreasing momentum
resolution. Zero momentum particles, on the other hand, obey a Gumbel distribution in the weakly
interacting limit, characterizing the quantum fluctuations of the former quasi-condensate. Time
of flight full counting statistics is demonstrated to capture (pre-)thermalization processes after a
quantum quench, and can be useful for characterizing exotic quantum states such as many-body
localized systems or models of holography.
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I. INTRODUCTION

One of the fundamental principles of modern theory of
strongly correlated many-body systems is emergent uni-
versal behavior. For example, in the vicinity of a thermal
phase transition, one finds universal behavior of correla-
tion functions determined by the nature of the transition
but not the microscopic details [1–4]. Close to critical-
ity, the behavior of correlation functions is just deter-
mined by the dimensionless ratio of the system size and
one emergent lengthscale: the correlation length [2, 4].
This statement is expected to hold beyond two point
correlation functions. Higher order correlation functions
and distribution functions should also obey hyper-scaling
property: they are universal functions of the the system
size to the correlation length. While hyperscaling has
been well studied theoretically [2, 4], it has not been ob-
served in experiments so far.

In quantum systems we expect manifestations of emer-
gent universality to be even stronger. For example, we
expect that a broad class of one dimensional quantum
systems can be described by a universal Luttinger theory
[5–9]. This powerful approach demonstrates that long
distance correlation functions as well as low energy col-
lective modes are described by a universal theory which is
not sensitive to details of underlying microscopic Hamil-
tonians. This powerful paradigm of universality has been
commonly discussed in the context of two point correla-
tion functions, such as probed by scattering and tunnel-
ing experiments [10–15].

In principle, to fully characterize these in or out of
equilibrium quantum states at every instant, one should
reconstruct them by performing Quantum State Tomog-
raphy. In practice, however, quantum state tomography
is restricted to tiny quantum systems [67]. The most
complete information on the many-body wave function
can be obtained through investigating the full distribu-
tion of some properly chosen physical observables [16, 19–
25]. Observing universality in these distribution func-

tions would therefore be a direct and striking demon-
stration of the universal nature of the entire many-body
state and emergent universality.

Unfortunately, in traditional solid state systems, ex-
perimental studies of such distribution functions are ex-
tremely challenging. Most of experimental techniques
rely either on averaging over many 1d systems, such as
in a crystal containing many 1d systems [15, 26, 27], or on
long time averaging such as in STM experiments [28–30].
As a result, no theoretical work has been done on under-
standing universality classes of distribution functions of
observables in quantum systems.

Recent progress with ultracold atoms, however, makes
it possible to perform experiments that look like textbook
classical measurements of quantum mechanical wavefunc-
tions on individual 1d systems [31]. By collecting a his-
togram of single shot results one can obtain full distri-
bution functions. In particular, quasi-one dimensional
gases have provided an interesting test-ground to realize
and test low dimensional quantum field theories [36]. In a
peculiar setup, a pioneering series of sophisticated experi-
ments was performed [16, 17, 37] to access the probability
distribution function (PDF) [38, 40, 71] of matter-wave
interference fringes of a coherently split one-dimensional
Bose gas and to gain deeper insight into phase correla-
tions.

Here we propose that even the most wide-spread and
extensively used standard Time of Flight (ToF) images
contain a lot more precious information – never exploited
so far, which can be extracted and used to characterize
the quantum state observed. In particular, we propose to
study the full distribution function of Time of Flight im-
ages, a procedure we dubbed Time of Flight Full Count-
ing Statistics to parallel the method used in nanophysics
[19–23]. ToF imaging is in fact probably the most wide-
spread tool to investigate cold atomic systems [31–34],
and a wide range of other, more sophisticated experimen-
tal techniques like Bragg spectroscopy or matter-wave
interference are also based on ToF measurements. In a
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ToF experiment with quasi one and two dimensional sys-
tems, atoms quickly cease to interact after being released
from a trap, and therefore their position after some time
is directly proportional to their momenta in the initial
quantum state. ToF images thus picture the momentum
distribution of the atoms in the initial interacting state
(see Fig. 1). They contain, however, a lot more infor-
mation than just the average intensities or their corre-
lations [75] they contain the full probability distribution
function (PDF) of particles at each momentum, which is
expected to reflect the universal behavior of low dimen-
sional quantum systems or critical states. In this work,
we concentrate on this so far unexploited information,
accessible in a wide range of experimental settings for
many experimental groups.

To demonstrate this approach, we analyze the finger-
prints of abundant quantum fluctuations on one dimen-
sional interacting quasi-condensates, and determine the
complete distribution of the time of flight image. The
particular setup considered is sketched in Fig. 1: a one
dimensional Bose gas, confined to a tube of length L, is
suddenly released from the trap. Due to the rapid expan-
sion in the tightly confined directions (not shown in Fig.
1), the interactions become quickly negligible, and it is
enough to consider a free, one dimensional propagation
along the longitudinal axis [61]. After expansion time
t, the density profile is imaged by a laser beam at posi-
tion R, which measures the integrated density of particles
within the spotsize of the laser, ∆R,

ÎR,∆R(t) ≡
∫ ∞

−∞
dx e−(x−R)2/(2∆R2)ψ̂†(x, t)ψ̂(x, t). (1)

t = 0

t > 0

R

ΔR

Laser beam

LV(x)

V(x)=0

FIG. 1. Sketch of ToF experiment with quasi-one-dimensional
Bose gas. At t = 0 the atoms, initially confined to a tube of
length L, are released form the trap. Interactions between
the particles are typically short ranged, and become quickly
negligible due to the rapid expansion in transverse direction
(not shown here). After propagation time t, the density profile
of the expanded cloud is investigated by taking an absorption
image at position R with a laser beam of waist ∆R. Atoms
expand freely after release from the trap, and the distribution
of the measured intensity provides direct information on the
structure of the initial quantum state.

Here ψ̂(x, t) denotes the bosonic field operator, and we
assumed [41] a Gaussian laser intensity profile [42]. Since
bosons propagate freely during the ToF expansion, Eq.
(1) provides information on the correlations in the ini-
tial state of the system at time t = 0. In particular, for
R � L and ∆R � R, the measured intensity can be
interpreted as the number of particles N̂p with a given
initial momentum, p = mR/t [32]. Let us note that the
same information about momentum correlations can also
be obtained by performing another experimental proce-
dure, the focusing technique [60–62] (see Appendix C).
As we discuss later, apart from minor corrections, our
results apply for this type of measurement as well [64],
which offers, however, a more accurate approach to mea-
suring distributions in momentum space than the usual
ToF technique.

We determine the full distribution of the operator
ÎR,∆R, and show that it contains important information
on the quantum fluctuations of the condensate, leading
to the emergence of several universal distribution func-
tions. Analysing first the image of a T ≈ 0 tempera-
ture condensate, we show that intensity distributions at
finite momenta follow Gamma distribution, and reflect
squeezing. The signal of zero momentum particles is, on
the other hand, shown to follow a Gumbel distribution
in the weakly interacting limit, a characteristic univer-
sal distribution of extreme value statistics, and reflecting
large correlated particle number fluctuations of the quasi-
condensate. We also extend our calculations to finite
temperatures and show that the predicted Gumbel dis-
tribution should be observable at realistic temperatures
for typical system parameters. Then we study the image
of the condensate after a quench, and show how thermal-
ization of the condensate manifests itself as a crossover
to an - also universal - exponential distribution in the
time of flight full counting statistics.

II. THEORETICAL FRAMEWORK

To reach our main goal and to determine the full dis-
tribution of ÎR,∆R(t) for a one dimensional interacting
Bose gas, we shall make use of Luttinger-liquid theory,
[39, 40] and compute all moments of ÎR,∆R to show that
for long times of flight and large enough distances

〈ÎnR,∆R〉(t)→
∫ ∞

0

dI InWp(I) (2)

with n positive integer. The function Wp(I) can be
viewed as the probability distribution function (PDF) of
the intensity, measuring the number of particles Np ∼ I
with momentum p = mR/t. Notice that the function
Wp(I) depends implicitly on the time of flight as well as
on the momentum resolution ∆p, suppressed for clarity
in Eq. (2).

Luttinger-liquid theory describes the low energy prop-
erties of quasi-one-dimensional bosons [7] as well as a
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wide range of one-dimensional systems [5]. Long wave-
length excitations of a Luttinger liquid are collective

bosonic modes, described in terms of a phase field, φ̂(x)

[5]. For quasi-condensates, the field operator ψ̂(x) is di-
rectly related to this phase operator [5]

ψ̂(x) ≈ √ρ eiφ̂(x), (3)

with ρ the average density of the quasi-condensate. Fluc-
tuations of the density generate dynamical phase fluctu-
ations, described by a simple Gaussian action [5, 31],

S =
K

2π

∫
dt

∫
dx

(
1

c
(∂tφ)

2 − c (∇φ)
2

)
, (4)

that involves the sound velocity of bosonic excitations, c,
and the Luttinger parameter, K. The dimensionless pa-
rameter K characterizes the strength of the interactions:
for hard-core bosons K → 1, corresponding to the so-
called Tonks-Girardeau limit [43, 44], while for weaker re-
pulsive interactions K > 1, with K → ∞ corresponding
to the non-interacting limit [5]. The connection between
the parameters c and K and the microscopic parameters
is model dependent. For a weak repulsive Dirac-delta in-
teraction, V (x − x′) = g δ(x − x′), both are determined
by perturbative expressions [7]

c ∼=
√
gρ

m
, K ∼= ~πρ

mc
= ~π

√
ρ

mg
, (5)

with ~ the Planck constant.
To evaluate the moments of the operator ÎR,∆R(t), we

first observe that the interactions between the atoms be-
come quickly negligible once the confining potential is
turned off and the atoms start to expand. Therefore the

fields ψ̂(x, t) evolve almost freely in time for times t > 0,
with a time evolution described by the Feynman propa-

gator, G(x, t) ∼ eimx2/(2~t)/
√
i t,

ψ̂(x, t) =

∫
dx′G(x− x′, t)ψ̂(x′) . (6)

For large times, and points far away from the initial po-

sition of the condensate one finds that ψ̂(x, t) is approx-

imately equal to the Fourier transform of the field ψ̂p
at a momentum p = mx/t. This relation becomes ex-
act if, instead of a simple time of flight experiment, one
uses the previously mentioned focusing technique (see
Appendix C), allowing to reach much better resolutions
[60–62].

Applying the representation Eq. (3) and the Gaussian

action Eq. (4), we can evaluate 〈ÎnR,∆R(t)〉 in any mo-

ment [39, 40], and construct the intensity distribution
Wp(I). Using open boundary conditions for the phase
operator we obtain, e.g.

Wp(I) =

∫ ∫ ∞

−∞

∏

j

dτj e
−τ2

j /2

√
2π

δ

(
I − N∆p̃√

2π
g ({τj})

)
,

(7)

with j = 1, 2, . . . labeling the auxiliary variables τj and
the function g ({τj}) determined by the double integral

g ({τj}) =

∫ ∫ 1/2

−1/2

dudv e−∆p̃2(u−v)2/2+i p̃(u−v)(1− u+v
2R/L )·

exp


i
∑

j

τj
e−ξhπj/(2L)

√
K j

{
cos

(
π j u+

j π

2

)

− cos

(
π j v +

j π

2

)})
. (8)

The derivation of Eqs. (7) and (8) is detailed in Appendix
A. The healing length ξh ≡ ~/(mc) here serves as a short
distance cutoff [45], N = Lρ denotes the total number of
particles, and we introduced the dimensionless time of
flight momentum and its resolution

p̃ ≡ mR

t

L

~
, ∆p̃ ≡ m∆R

t

L

~
, (9)

both measured in units of ~/L.
We note that the intensity measured in a focusing ex-

periment also follows a distribution of the form of Eq.
(7), apart from a small change in the function g ({τj}).
As discussed in Appendix C, in a focusing experiment

Eq. (6) yields just the Fourier transform of the field ψ̂,
and the real space coordinatesR and ∆R are directly pro-
portional to the dimensionless momenta, p̃ and ∆p̃. As a
technical consequence, the term exp(−ip̃(u2−v2)L/(2R))
is absent from the integral giving g ({τj}), but for a given
p̃ and ∆p̃, the shape of distribution is hardly affected by
this minor modification in the relevant limit, R � L.
Therefore all the results presented below apply also for
intensities measured by the refocusing method.

III. EQUILIBRIUM QUANTUM
FLUCTUATIONS

We evaluated Eqs. (7) and (8) by performing classical
Monte Carlo simulations. Already the expectation val-
ues, 〈ÎR〉 carry valuable information, since they account
for the size of interaction induced quantum (or ther-
mal) fluctuations of bosons with momentum p = mR/t.

They are proportional to 〈N̂p〉 and to the correspond-
ing momentum dependent effective temperatures. The
momentum and temperature dependence of 〈N̂p〉 has
been studied theoretically [5] and experimentally [46, 47]
in detail (see also the following subsections and Ap-
pendix D). In an infinitely long Luttinger liquid, in par-

ticular, 〈N̂p〉 falls of as ∼ 1/|p|1−1/2K at T = 0 temper-
ature, while at finite temperatures its value depends on
p: For small momenta it saturates to a constant propor-
tional to 1/T 1−1/2K ≈ 1/T , while at large momenta the
power law behavior is recovered. For weak interactions,
the cross-over between these two regimes occurs through
a regime, where a power law behavior is observed with a
modified exponent (see Appendix D).
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FIG. 2. Distribution of normalized intensity Ĩ (symbols) at
T = 0 temperature, plotted for different momentum reso-
lutions, ∆p̃. We used K = 10, p̃ = 15 × 2π and ξh/L =
0.002. Solid lines are fits with the Gamma distribution from
Eq. (10). The distribution smoothly evolves from exponen-
tial to Gamma as ∆p increases, and reflects the two-mode
squeezed structure of the Bogoliubov ground state in mo-
menta p and −p. Inset: parameter of the fitted Gamma dis-
tribution α as a function of ∆p̃.

The average being well understood, here we concen-
trate on the shape of the full intensity distribution.
Therefore, we introduce the normalized intensity

Ĩ = ÎR,∆R/〈ÎR,∆R〉,

and determine the corresponding distribution function

W̃p(Ĩ). The intensity distributions for p = 0 and for typ-
ical p 6= 0 exhibit drastically different characters; the zero
momentum intensity is just associated with particles in
the quasi-condensate, while intensities corresponding to
p 6= 0 reflect quantum fluctuations to states of momen-
tum p. We shall therefore discuss these separately.

A. Zero-temperature intensity distribution of finite
momentum particles

Let us first discuss the intensity distribution of finite
momentum particles, p 6= 0, at T = 0 temperature, allow-
ing us to take a glimpse at the structure of interaction-
generated quantum fluctuations. Fig. 2 shows the typical

structure of the distribution function W̃p(Ĩ) for a moder-
ate Luttinger parameter K = 10 for various momentum

resolutions ∆p̃. The shape of W̃p(Ĩ) has a strong depen-
dence on the resolution ∆p̃, and is well described by a
Gamma distribution

W̃p 6=0(Ĩ) ≈ αα

Γ(α)
Ĩα−1 e−α Ĩ . (10)

The parameter α here incorporates the momentum res-
olution, ∆p̃, and increases linearly with it (see inset of

Fig 2). For good resolutions α ≈ 1, an exponential dis-
tribution is recovered,

W̃p 6=0(Ĩ) ≈ e−Ĩ , for ∆p̃� 2π.

These observations can be understood in terms of the
Bogoliubov approximation [48], valid for weak interac-
tions and short system sizes. For small sizes of the laser
spot, i. e. ∆p̃ � 2π, the intensity, Eq. (1) can be in-
terpreted as the number of particles with dimensionless
wave number p = mR/t. The Bogoliubov ground state
has a two-mode squeezed structure, i.e., particles with
momenta p and −p are always created in pairs, imply-
ing perfect correlations at the operator level, N̂p = N̂−p.
This two-mode squeezed structure gives rise to a geo-
metric distribution for the particle number N̂p [50], and
the exponential intensity distribution observed is just the
continuous version of this geometric distribution.

Moreover, Bogoliubov theory predicts vanishing corre-
lation between nonzero momenta |p| 6= |p′| [48]. There-
fore, the total number of particles in a given momentum
window ∆p can be viewed as the sum of ∼ ∆p̃/2π in-
dependent, exponentially distributed random variables,
with approximately equal expectation values [49]

〈N̂p〉 ≈
ρ ~π
2K|p| . (11)

The Gamma distribution with a parameter α ∝ ∆p̃ thus
arises as the weighted sum of independent exponential
variables. The precise prefactor here depends on the
shape of the intensity profile in Eq. (1). For a Gaus-
sian profile we find α ≈ 4.1 ∆p̃/(2π), while other profiles
amount in other numerical prefactors of O(1). Though
the Bogoliubov approach has only a limited range of va-
lidity, a similar crossover from exponential to Gamma
distribution persists even for strong interactions (see Ap-
pendix F).

B. Quasicondensate distribution at T = 0
temperature

Let us now turn to the zero-momentum distribution,
corresponding to the number of particles in the quasi-
condensate, and exhibiting a completely different behav-
ior, shown in Fig. 3. The distribution, plotted for dif-
ferent interaction strengths K, converges quickly to a
so-called Gumbel distribution as K increases. This dis-
tribution, arising frequently in extreme value statistics
[51], is expressed as

WGumbel(Ĩ) =
π√
6

exp

(
π√
6
Ĩ − γ − exp

{
π√
6
Ĩ − γ

})
,

(12)
with γ ≈ 0.5772 the Euler constant.

We can prove that the extreme value distribution (12)
follows from particle number conservation combined with
the fact that N̂p 6=0 display exponential distributions with
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FIG. 3. PDF of the normalized variable (Î − 〈Î〉)/δI for
p = mR/t = 0, plotted for different Luttinger parameters
K, with δI referring to standard deviation. We used peri-
odic boundary conditions to compare to analytical results.
For weak interactions (K � 1) the PDF converges to Gum-
bel distribution, Eq. (12) (solid line), also predicted by a
particle number preserving Bogoliubov approach. We used
∆p̃ = 0.1× 2π and ξh/L = 0.002.

expectation values 〈N̂p 6=0〉 ∼ 1/|p|. Particle number con-
servation relates the fluctuations of the number of parti-
cles in the condensate, N̂0 with those of p 6= 0 particles,
N̂0 = N−∑p 6=0 N̂p. This can be achieved within the par-

ticle number preserving Bogoliubov approach of Ref. [53]
by performing a second order expansion in the bosonic
fluctuations. As discussed above, all finite momentum
particle numbers N̂p 6=0 exhibit exponential distributions
with expectation values ∼ 1/|p|. Therefore, as we show in

Appendix E, the distribution of the sum
∑
p 6=0 N̂p can be

rewritten analytically, and reexpressed as the maximum
of a large number of independent, identically distributed
exponential random variables, leading to the observed
Gumbel distribution.

For strong interactions K ∼ 1, the zero-momentum
distribution starts to deviate form the Gumbel distri-
bution, Eq. (12), considerably. However, the observed
distribution is still universal in the sense that it does not
depend on the momentum cutoff, and remains unchanged
if we consider a Bogoliubov spectrum instead of the linear
dispersion relation of a Luttinger liquid.

C. Joint probability distribution

Similar to the full distribution function, Wp(I), we
can generalize usual multipoint correlation functions and
define the joint distribution Wp1,p2,...(I1, I2, . . . ), corre-

sponding to measuring the intensities
{
ÎR1

, ÎR2
, . . .

}
at

positions Ri = pit/m. More formally, in analogy with
Eq. (2), the joint distribution function W (IR1

, IR2
) can

be defined through the moments of the variables ÎR1
and
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FIG. 4. Joint PDF of signals Ĩ0 and Ĩ1, evaluated for dimen-
sionless momenta p̃0 = 0 and p̃1 = 2π, for strong (K = 2) and
weak (K = 10) interactions at T = 0 temperature. The an-
ticorrelation, observable for any interaction strength, reflects
particle number conservation. Particles with non-zero wave
numbers p1, leave holes behind in the quasi-condensate.

ÎR2 ,

〈În1

R1
În2

R2
〉(t)→

∫ ∞

0

dI In1
1 In2

2 W (I1, I2), (13)

for any positive integers n1 and n2. The previous cal-
culations can be extended to compute these probability
distributions with little effort (see Apendix B for details).
Without analysing them in detail, here we just briefly
discuss the joint distribution function of the of p = 0
and p 6= 0 modes, providing further evidence for the role
of particle number conservation behind the emergent ex-
treme value statistics.

The distribution of the normalized variables Ĩ0 and
Ĩ1, corresponding to dimensionless momenta p̃0 = 0 and
p̃1 = 2π is plotted in Fig. 4 for strong (K = 2) and weak
(K = 10) interactions. The wave number resolution was
chosen to be such that particles contributing to the sig-
nals I0 and I1 have well defined momenta. The joint
PDFs reveal strong anticorrelation between the intensi-
ties I0 and I1, interpreted as particle numbers N0 and N1,
for all interaction strengths, persisting for higher values
of p1. Anticorrelations manifest in the fact that the joint

PDF is sharply peaked around the line Ĩ0 + Ĩ1 = const.,

implying that a high intensity Ĩ0 is typically accompanied

by a low signal Ĩ1. The origin of these anticorrelations is
particle number conservation: a particle with non-zero
wave number p1, removed from the quasi-condensate,
leaves a ’hole’ behind, eventually appearing as anticor-
relation in the joint PDF of I1 and I0.
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D. Finite temperature effects and thermal
depletion of the quasi-condensate

So far we focused on the limit of T = 0 temperature.
At finite temperatures, modes with energies E = p c <∼
kBT get thermally excited and, at some point, destroy
the quasi-condensate. As we show now, this thermal de-
pletion of the quasi-condensate is controlled by the di-
mensionless temperature

T̃ =
1

K

kBT

∆
, (14)

with ∆ = h c/L the ’level spacing’, i.e. the typical sepa-
ration of sound modes in a condensate of size L.

Fig. 5 displays the intensity distribution of the zero-

mode, derived in Appendix A, as a function of T̃ for
experimentally relevant parameters [54, 65]. The PDF
retains the characteristic shape of a Gumbel distribution

for realistic but small temperatures, T̃ <∼ 1, though the
distribution broadens with increasing temperature. At

temperatures T̃ >∼ 1, however, the PDF turns quickly
into an exponential distribution.

This behavior and the crossover scale in Eq. (14) are
deeply related to the structure of correlations in a finite
temperature Luttinger liquid. At T = 0 temperature, a
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FIG. 5. Finite temperature distribution of the normalized

zero momentum intensity Ĩp=0, for different dimensionless

temperatures T̃ = kBT/(K∆). The PDF crosses over from
the zero temperature Gumbel distribution, Eq. (12), to an
exponential distribution, as a signature of the thermal deple-
tion of the quasi-condensate by the thermally populated p 6= 0
modes. The experimentally accessible temperature range,

T ∼ 30 nK − 120 nK [54], corresponds to T̃ ∼ 0.12 − 0.46.
We used N = 3500, and L = 39µm (density ρ = 90µm−1),
and a chemical potential µ/h = 1.6 kHz, implying K ≈ 77,
c ≈ 2, 7 mm/s and ξh/L ≈ 0.007 for 87Rb atoms. We assumed
∆p̃/(2π) = 0.1, corresponding to a time of flight t = 1 s, and a
real space resolution ∆R = 12µm, but shorter times of flight
can also be applied using a focusing method, yielding similar
images.

bosonic Luttinger liquid exhibits power law correlations
at distances larger than the healing length [7, 40]. At
finite temperatures, however, these power law correla-
tions turn into an exponential decay beyond the thermal
wavelength [7], where

〈ψ̂†(x)ψ̂(0)〉 ≈ ρ
(

2ξh
λT

)1/2K

e−|x|/ξT , for |x| > λT .

(15)
Notice that the thermal correlation length ξT appearing
here (often denoted by λT in the literature) is propor-
tional to but not identical with the thermal wavelength
of the sound modes, denoted here by λT = ~c/(πkBT );
being influenced by the stiffness of the condensate, ξT is
larger by a factor of 2K [55],

ξT = 2K λT ,

implying that ξT can be several orders of magnitude
larger than λT in a weakly interacting condensate. No-
tice that the product Kc ∼ ρ/m is independent of the
interaction strength by Galilean invariance [58]. Thus
the correlation length ξT ∼ ~2ρ/(mkBT ) is independent
of the strength of interaction. It is precisely this length
scale that appears in Eq (14), which can be re-expressed

as T̃ = L/(ξTπ
2). The condition T̃ <∼ 1 thus corresponds

to the inequality

L <∼ ξT π2

ensuring that the phase of the condensate remains close
to uniform for sizeable segments of gas. As shown in Ap-
pendix D, the number of particles in the p = 0 mode is
also determined by this ratio, 〈N̂0〉 ≈ N 2ξT /L. Thus

T̃ <∼ 1 also implies that at least about 20 % of the par-
ticles remain in the homogeneous condensate. As stated
earlier in this section, this condition is independent of
the interaction strength. Indeed, although the discussion
above focused on the weakly interacting limit, K � 1,
we observe a similar crossover to an exponential func-
tion even for strong interactions, for which λT ∼ ξT (see
Appendix F).

The exponential distribution emerging for T̃ >∼ 1 can
be understood as a consequence of the thermal depletion
of the condensate by low energy p 6= 0 modes. Consider-
ing the latter naively as particle reservoirs leads to

Prob(N̂p=0 = n) ∝ e−βµeffn,

with some effective chemical potential µeff , set by the
population of low energy modes.

IV. DISTRIBUTION AFTER INTERACTION
QUENCHES

So far we have focused on applying Time of Flight
Full Counting Statistics to study equilibrium correla-
tions. Even more interestingly, we can use it to study
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FIG. 6. Distribution of the normalized zero momentum in-
tensity Ĩp=0 after an interaction quench, for different hold-
ing times, τh = 1.3µs − 177µs, measured in dimensionless
units, τ̃h = τhcf/L. Distributions are plotted for two differ-
ent quenches of durations τ = 0.71µs (rapid), and τ = 71µs
(slow). We have used N = 3684, L = 39µm and a chem-
ical potential µ/h = 1.6 kHz, corresponding to K0 = 80,
c0 = 2.7mm/s, and ξ0

h = 0.27µm, and assumed an interac-
tion quench to Kf = 7, yielding cf = c0K0/Kf = 30.8 mm/s.
We assumed a modest momentum resolution, ∆p̃/(2π) = 0.1.
Similar to the finite temperature thermalization plotted in
Fig. 5, the PDF after a rapid quench crosses over from the
equilibrium Gumbel distribution, Eq. (12), to an exponential
distribution as τ̃h increases, even though the number of exci-
tations in the system remains constant after the quench. For
a slower quench, the PDF for short holding times τh is much
wider than the Gumbel distribution, showing that increasing
interactions have time to deplete the quasi-condensate during
the quench protocol, resulting in larger particle number fluc-
tuations. As in the case of rapid quench, for larger holding
times this PDF crosses over to a thermal distribution.

non-equilibrium dynamics and to gain information about
the non-equilibrium states and time evolution of a system
after a quantum quench [56, 57].

Here we demonstrate this perspective by focusing on
interaction quenches, i.e., on changing g using a Fesh-
bach resonance [31]. For the sake of simplicity, we con-
sider linear quench procedures of g, where the product
c(t)K(t) = ~πρ/m remains constant by Galilean invari-
ance [58], while c/K changes approximately linearly over
a quench time τ [63]. After the quench, the atoms are
held in the trap for an additional holding time τh, while
the final parameters cf and Kf remain constant, and the
ToF experiment is performed only afterwards.

For short enough quench times τ , the quench creates
abundant excitations. Here we focus on these excitations
and concentrate therefore on zero temperature quenches.
The initial state is then simply the Gaussian ground state
wave function corresponding to the initial parameters c0
and K0. Moreover, the wave function remains Gaussian

during the time evolution [59], and can be expressed as

Ψ ({φk}, t) ∼
∏

k>0

exp (−σk(t)φkφ−k) ,

with the parameters σk(t) obeying simple differential
equations [59]. This observation allows us to evaluate

the full distribution of the intensity Ĩp, by only slightly
modifying the derivation outlined in Appendix A.

Fig. 6 shows the intensity distribution of the zero
mode, Ĩ0, for a large quench between Luttinger parame-
ters K0 = 80 and Kf = 7, as a function of the holding
time after the quench, τh. The distributions are plotted
for two different quench times τ .

After a rapid quench, for short holding times the prob-
ability density function still resembles the Gumbel distri-
bution, Eq.(12), valid for the equilibrium case. However,
we observe a crossover to an exponential distribution
upon increasing the holding time, τh. The phenomenon
observed is similar to the finite temperature thermaliza-
tion plotted in Fig. 5, even though the number of exci-
tations in each mode k is a conserved quantity for the
Luttinger model considered here, and the final state is
definitely not thermal.

The structure of this non-thermal final state can be un-
derstood as follows. After long enough holding times, τh,
the distribution of the particle number N̂p looks thermal
for each momentum p. Based on this thermal, exponen-
tial distribution of N̂p, one can define an effective inverse
temperature βp [68],

Prob(N̂p = n) ∝ e−βpεpn,

with εp denoting the quasiparticles’ dispersion relation.
The non-thermal nature of the state is reflected by the
fact that in contrast to a thermal state characterized
by a single inverse temperature, βp strongly depend on
the momentum p [68]. Similar pre-thermalization phe-
nomena are encountered in some quench experiments on
closed, cold atomic systems, where the long-time expec-
tation value of local observables can be well described by
a thermal ensemble, despite the non-equilibrium state of
the system [69, 70].

For a slower quench, the distribution for short hold-
ing times τh gets much wider compared to the distribu-
tion after a sudden quench. This widening can be un-
derstood by noting that the interactions increase during
the quench protocol. For slower quenches these stronger
interactions have time to deplete the quasi condensate
while the quench is performed, manifesting in more pro-
nounced particle number fluctuations for short holding
times. For larger holding times, however, we observe a
crossover to a thermal distribution, similarly to the case
of a rapid quench.

For both quench procedures, the time scale of ther-
malization of the zero-mode is very fast, and for realistic
parameters it falls to the range of ∼ 0.1 ms.
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V. CONCLUSIONS

In this work we have proposed a novel approach to
analyse time of flight images, namely to measure the full
probability distribution function (PDF) of the intensities
in a series of images. Similar to full counting statis-
tics [19, 20], the PDF of the intensity contains infor-
mation on the complete distribution of the number of
particles Np with a given momentum p, beyond its ex-
pectation value and variance, and reveals the structure
of the quantum state observed and its quantum fluctua-
tions. This so far unexploited information in ToF images
reflects the emergent universal behavior of strongly cor-
related low dimensional quantum systems.

We have demonstrated the perspectives of this versa-
tile method on the specific example of an interacting one-
dimensional condensate. We have first focused on the
equilibrium signal, and have shown that the intensity
distribution of the image for p 6= 0 has an exponential
character (deformed into a Gamma distribution with de-
creasing resolution), reflecting the squeezed structure of
the superfluid ground state. The p = 0 intensity dis-
tribution, on the other hand, reveals fluctuations of the
quasi-condensate, and turns out to be a Gumbel distri-
bution in the weakly interacting limit, a familiar univer-
sal distribution from extreme value statistics. We have
shown that the Gumbel distribution derives from particle
number conservation, combined with large, interaction
induced quantum fluctuations of the small momentum
modes.

We have also shown that these intriguing fingerprints
of quantum fluctuations remain observable in a finite sys-
tem at small but finite temperatures within the experi-
mentally accessible range, but the predicted Gumbel dis-
tribution is destroyed once the small momentum thermal
modes thermalize the p = 0 quasi-condensate mode.

ToF full counting statistics can be used in a versa-
tile way to study non-equilibrium dynamics and ther-
malization. As an example, we considered an interac-
tion quench, and have shown that the intensity statis-
tics of the p = 0 mode displays clear signatures of (pre-
)thermalization as a function of the holding time after
the quench, whereby the original Gumbel distribution,
discussed above turns into a quasi-thermal exponential
(Gamma) distribution. This universal exponential dis-
tribution describes a condensate connected to a particle
reservoir, formed by the p > 0 modes.

One can also go beyond measuring the PDF of the
intensity at a given point of the ToF image by measur-
ing the complete joint distribution functions, W (Ip, Ip′),
rather than measuring just intensity correlations, 〈IpIp′〉.
As an example, we have determined this joint distribu-
tion for the p = 0 quasi-condensate intensity and the
p 6= 0 intensities, and have shown that W (I0, Ip′) exhibits
strong negative correlations, induced by particle number
conservation. Clearly, our analysis can be generalized to
multipoint distributions, W ({Ip}), still expected to re-
flect universality, though the experimental and theoret-

ical accessibility becomes less obvious for these complex
quantities.

As demonstrated here through the simplest example,
ToF full counting statistics is expected to give insight to
the exotic quantum states of various interacting quan-
tum systems. Besides investigating the emergent univer-
sal behavior of low dimensional quantum systems, Time
of Flight Full Counting Statistics could also be applied
to study exotic quantum states in higher dimensional,
fermionic or even anyonic systems where it is supposed
to reflect the quantum statistics of particles. Another
interesting direction would be the analysis of ToF full
counting statistics at quantum critical points, such as the
quantum critical points of the transverse field Ising model
or that of spinor condensates [66], e.g., where quantum
fluctuations get stronger and bare particles cease to exist.
It is also a completely open question, how ToF distribu-
tions reflect the structure of a many-body localized state,
but the images of chaotic and integrable models are also
expected to exhibit different ToF full counting statistics.
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Appendix A: Probability density function

Here we derive the probability density function of the
intensity, Wp(I), both for the zero temperature case and
for finite temperatures. First we perform the calcula-
tions at T = 0, then we generalize the results to finite
temperatures.

In order to derive the PDF at T = 0, stated in Eqs.
(7) and (8), we have to calculate the momenta 〈ÎnR,∆R〉(t)
for all n. First we express the intensity ÎR,∆R(t) in terms
of the field operators at t = 0 by substituting the free
propagator G(x, t) =

√
m

2πit exp(imx2/(2t)) into Eq. (1),
and use the density-phase representation (3) to arrive at

ÎR,∆R(t) =ρ
m∆R√

2π t

∫ L/2

−L/2
dx1

∫ L/2

−L/2
dx2 e

−m2 ∆R2

2 t2
(x1−x2)2

e
imR

t (x1−x2)− im
2 t (x2

1−x
2
2)e−i(φ̂(x1,0)−φ̂(x2,0)).

(A1)

The nth momentum of ÎR,∆R(t) involves the 2n point
correlator of the phase operator. This can be determined

by using the Fourier expansion of φ̂, for open boundary
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conditions given by

φ̂(x) =
1√
L
φ̂0+

∑

k>0

√
π

KL|k|e
−ξh|k|/2 cos(k(x+ L/2))

(
b̂k + b̂†k

)
,

(A2)

with k = πj/L, j ∈ Z+. Here b̂†k and b̂k are bosonic

creation and annihilation operators, with b̂k annihilating
the ground state of the system. The inverse of the healing
length ξh serves as a momentum cutoff. All ground state
expectation values 〈ÎnR,∆R〉(t) can be calculated by using
the normal ordering identity

eDk b̂k+D∗k b̂
†
k = eD

∗
k b̂
†
keDk b̂ke−|Dk|2/2

with Dk =
√
π/(KL|k|)e−ξh|k|/2 cos(k(x+L/2)), leading

to

〈ÎnR,∆R〉(t) =

(
Lρ∆p̃√

2π

)n ∫
...

∫ 1/2

−1/2

n∏

i=1

(duidvi C(ui, vi))·

exp


−

∑

j>0

e−ξhπj/L

2Kj

[
n∑

i=1

{
cos

(
πjui +

jπ

2

)

− cos

(
πjvi +

jπ

2

)}]2
)
, (A3)

with

C(u, v) = e−
∆p̃2

2 (u−v)2+i p̃(u−v)(1− u+v
2R/L ), (A4)

and dimensionless variables p̃ and ∆p̃ given by Eq. (9).
The quadratic sum appearing in the exponent of

Eq. (A3) can be decoupled by applying the Hubbard-
Stratonovich transformation, performed by introducing
a new integration variable τj for every index j,

exp

(
−e
−ξhπj/L

2Kj

[
n∑

i=1

{
cos

(
πjui +

jπ

2

)

− cos

(
πjvi +

jπ

2

)}]2
)

=

∫ ∞

−∞

dτj√
2π
e−τ

2
j /2 exp

(
i τj

e−ξhπj/(2L)

√
Kj

×
n∑

i=1

{
cos

(
πjui +

jπ

2

)
− cos

(
πjvi +

jπ

2

)})
.

By substituting this expression into Eq. (A3), the in-
tegrals over different pairs of variables {ui, vi} can be
performed independently, and we arrive at

〈ÎnR,∆R〉(t) =

(
Lρ∆p̃√

2π

)n ∫ ∞

−∞

∏

j>0

dτj√
2π

e−τ
2
j /2g ({τj})n ,

with g ({τj}) given by Eq. (8). Comparing this result

with Eq. (2) shows, that the distribution of ÎR,∆R(t) can
indeed be described by a PDF, given by Eqs. (7) and
(8).

Now we generalize these results to T > 0 tempera-
tures. The Fourier expansion of the phase operator, Eq.
(A2), together with the thermal occupation of the modes,

〈b̂†k b̂k〉 = 1/(eβck − 1), implies

〈eiφ̂(x)−iφ̂(y)〉 = exp


−

∑

j>0

e−ξhπj/L

2K tanh(βcπj/(2L))
×

[
cos

(
πjx+

jπ

2

)
− cos

(
πjy +

jπ

2

)]2
)
.

The only difference compared to the expectation value
at T = 0 temperature is the appearance of the ther-
mal occupation factor tanh(βcπj/(2L)). By repeating
the derivation above, we find that the distribution func-
tion still takes the form Eq. (7), but with a modified
function gT ({τj}) given by

gT ({τj}) =

∫ ∫ 1/2

−1/2

dudv C(u, v)×

exp


i
∑

j

τj
e−ξhπj/(2L)

√
K j tanh(βcπj2L )

{
cos

(
π j u+

j π

2

)

− cos

(
π j v +

j π

2

)})
.

Appendix B: Joint distribution function

In this appendix we derive a numerically tractable ex-
pression for the joint PDF at T = 0 temperature, defined
in Eq. (13), by calculating the momenta 〈În1

1 În2
2 〉(t) for

all n1 and n2. Here we introduced the shorthand nota-
tion Î1 ≡ ÎR1,∆R1

. By using Eq. (A1) and the Fourier
expansion of the phase operator, Eq. (A2), we arrive at

〈În1
1 În2

2 〉(t) =

(
Lρ√
2π

)n1+n2

∆p̃n1
1 ∆p̃n2

2

∫
...

∫ 1/2

−1/2

n1∏

i=1

(duidvi C1(ui, vi))

n2∏

l=1

(dũldṽl C2(ũl, ṽl))·

exp


−

∑

j>0

e−ξhπj/L

2Kj

[
n1∑

i=1

{
cos

(
πjui +

jπ

2

)

− cos

(
πjvi +

jπ

2

)}
+

n2∑

l=1

{
cos

(
πjũl +

jπ

2

)

− cos

(
πjṽl +

jπ

2

)}]2
)
, (B1)

with Ci(u, v) given by Eq. (A4) with parameters Ri and
∆Ri for i = 1, 2.
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Similarly to the calculation presented in Appendix A,
the quadratic sum appearing in the exponent of Eq. (B1)
can be decoupled by applying a Hubbard-Stratonovich
transformation. By introducing a new integration vari-
able τj for every index j, and performing the integrals
over different pairs of variables {ui, vi} and {ũl, ṽl} inde-
pendently, we arrive at

〈În1
1 În2

2 〉(t) =

(
Lρ√
2π

)n1+n2

∆p̃n1
1 ∆p̃n2

2

∫ ∞

−∞

∏

j>0

dτj√
2π

e−τ
2
j /2g1 ({τj})n1 g2 ({τj})n2 ,

with gi ({τj}) given by Eq. (8) with parameters Ri and
∆Ri for i = 1, 2. Comparing this expression to the defi-
nition of the joint distribution, Eq. (13), we find that

W (I1, I2) =

∫ ∫ ∞

−∞

∏

j

dτj e
−τ2

j /2

√
2π

×

δ

(
I1 −

N∆p̃1√
2π

g1 ({τj})
)
δ

(
I2 −

N∆p̃2√
2π

g2 ({τj})
)
.

The distribution can be evaluated by performing a Monte
Carlo simulation for the normal random variables τj , and
calculating the two dimensional histogram for I1 and I2.

Appendix C: Focusing technique

Besides the ToF measurements, the focusing technique
provides an alternative way to access the momentum dis-
tribution [60–62]. The strong transverse confinement of
the quasi one dimensional system is abruptly switched
off, while the weak longitudinal confinement is replaced
by a strong harmonic trap of frequency ω [63], and the gas
is imaged after a quarter time period, t = T/4 = π/(2ω).

To express the intensity (1) in this case with the field
operators at time t = 0, we have to replace the free
propagator in Eq. (6) by that of the harmonic oscil-

lator Gosc(x, y, t = T/4) = e−i x y/l
2
0/(l0

√
2π~ i), with

l0 =
√
~/(mω) the oscillator length of the strong trap-

ping potential. In this case, Eqs. (6) thus simply yields
the Fourier transform of the field at t = 0,

ψ̂(R, t = T/4) ∼ ψ̂p

at a momentum p = ~R/l20. Thus the intensity measured
at R is directly proportional to the number of particles
N̂p in this case. Performing calculations similar to those
sketched in Appendix A, we arrive at Eqs. (7) and
Eq. (8), with the weight function (A4) replaced by

C(u, v) = exp

(
−∆p̃2

osc

2
(u− v)2 + i p̃osc(u− v)

)
.

and the dimensionless momentum and momentum reso-
lution expressed as p̃osc = RL/l20 and ∆p̃osc = ∆R L/l20.

Apart from these minor corrections, all our calculations
can be performed for focusing experiments, and while
this method allows to use shorter measurement times,
the conclusions in the main text remain unaltered.

Appendix D: The expectation value of ÎR,∆R(t)

In this appendix we investigate the expectation value
of the intensity ÎR,∆R(t), scaled out from the distribution
functions calculated in the main text.

In order to investigate the temperature dependence
of the expectation value, we plotted 〈ÎR,∆R(t)〉/N as a
function of dimensionless momentum p̃/(2π) for differ-

ent dimensionless temperatures T̃ in Fig. 7. We con-
centrated on the weakly interacting regime, keeping the
Luttinger-parameter, K = 10, constant. The low tem-
perature results show pronounced oscillations, originat-
ing from the presence of the quasi-condensate due to fi-
nite size effects. For higher temperatures, the intensity
〈ÎR,∆R(t)〉 increases for non-zero momenta p̃ = O(2π),
while the zero-momentum expectation value decreases
due to the depletion of the condensate. Moreover, we can
distinguish two momentum regions, corresponding to dif-
ferent behavior of the expectation value. For momenta
much smaller than the thermal wavelength, p � ~/λT
(or p̃/(2π) � πKT̃ in dimensionless variables), the ex-
pectation value of the intensity is well approximated by
the Fourier transform of Eq. (15), yielding

〈N̂p〉 ≈ N
(

2ξh
λT

)1/2K
2ξT /L

1 + (p ξT /~)2
.

This expression predicts a power law decay 〈ÎR,∆R(t)〉 ∼
1/p2 for momenta ~/ξT � p� ~/λT . However, for even
larger momenta, p� ~/λT , the short distance behaviour

of the correlation function 〈ψ̂†(x)ψ̂(0)〉 becomes impor-
tant, and it is not appropriate to approximate it by the
simple exponential function Eq. (15). In this region the
expectation value of the intensity converges to the zero
temperature result, corresponding to a different power
law behavior 〈ÎR,∆R(t)〉 ∼ 1/p1−1/2K ≈ 1/p.

This crossover between different power law decays is
only observable in the limit of weak interactions, where
λT � ξT , thus ~/ξT � p � ~/λT is satisfied in a wide
momentum range. In this case the Bogoliubov approxi-
mation is also valid, thus the same ∼ 1/p2 decay can also
be explained by applying the Bogoliubov approach.

As expected, Bogoliubov theory is also able to account
for the cross-over discussed above. According to Eq.
(11), the zero temperature Bogoliubov calculation gives

〈N̂p〉 ∼ 1/|p|. This result can be generalized to finite
temperatures by including the appropriate Bose function,
and taking into account the low energy dispersion rela-
tion εp = c|p|, resulting in

〈N̂p〉 ∼
coth(βc|p|/2)

|p| ∼ 1/p2.
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FIG. 7. Expectation value 〈ÎR,∆R(t)〉/N plotted as a function
of dimensionless wave number p̃/(2π), for different dimension-

less temperatures T̃ , with parameters K = 10, ξh/L = 0.002
and ∆p̃ = 0.1 × 2π, using logarithmic scale on both axis.
As T increases, the expectation value develops a wide flat
region for small momenta p � ~/ξT . For larger momenta
~/ξT � p � ~/λT , the intensity shows a power law de-
cay ∼ 1/p2. This behaviour can be explained by the expo-
nential decay of two-point correlations in finite temperature
Luttinger-liquids, Eq. (15), with correlation length ξT . For
even larger momenta p� ~/λT , we get back the zero temper-
ature results, resulting in a crossover to the different power
law behavior 〈ÎR,∆R(t)〉 ∼ 1/p.

Here the last approximation is valid for p � 2kBT/c ≈
~/λT . As already mentioned, this ∼ 1/p2 decay is con-
sistent with the numerical results plotted in Fig. 7.

Appendix E: Gumbel distribution

In this appendix we show that the Gumbel distribution
(12), arising for weak interactions, can be derived from
the structure of the Bogoliubov ground state, by tak-
ing into account particle number conservation. In this
perturbative approach, the PDF (12) emerges as the dis-
tribution of the normalized operator giving the number
of particles with zero momentum,

Ñ0 =
N̂p=0 − 〈N̂p=0〉

δNp=0
.

Here 〈N̂p=0〉 denotes the expectation value, and δNp=0

is the standard deviation. For simplicity, we perform the
calculations using periodic boundary conditions.

As already noted in the main text, particle number
conservation implies

N̂p=0 = N −
∑

p6=0

N̂p, (E1)

with N denoting the total number of particles. Moreover,
the two mode squeezed structure of the ground state in

non-zero momenta p and −p, resulting in a perfect cor-
relation N̂p = N̂−p, leads to an exponential distribution

for the random variable (N̂p+N̂−p)/N , with expectation
value ~π/(KL|p|) [48] (see Eq. (11)). For PBC the mo-
mentum can only take values p = 2πn~/L, so the PDF

of the sum
∑
p 6=0 N̂p/N can be written as

P


∑

p 6=0

N̂p/N = x


 =

nc∏

i=1

(2Kn)

∫ ∞

0

dx1 e
−2K x1×

∫ ∞

0

dx2 e
−2K 2 x2 ...

∫ ∞

0

dxnc
e−2K nc xnc δ

(
x−

nc∑

i=1

xi

)
.

(E2)

Here nc ∼ L/ξh denotes a cutoff in momentum space,
restricting the momentum p to the low energy region,
described by linear dispersion relation.

The PDF (E2) can be rewritten by introducing new
integration variables z1 = xnc

, z2 = xnc
+ xnc−1, ..., and

znc
=
∑nc

i=1 xi as

P


∑

p 6=0

N̂p/N = x


 = (2K)nc nc!×

∫ ∞

0

dz1

∫ ∞

z1

dz2...

∫ ∞

znc−1

dznc
e−2K

∑nc
i=1 zi δ (x− znc

) .

This result shows, that the PDF associated to the oper-
ator

∑
p 6=0 N̂p/N is equivalent to the distribution of the

maximum of nc independent, exponentially distributed
random variables, with equal expectation values 1/(2K).
This observation follows from noting, that the inte-
grand describes independent exponential random vari-
ables, subject to the constraint z1 < z2 < ... < znc

, with
the factor nc! taking into account all possible orderings
of these nc variables. This interpretation explains the
emergence of the extreme value distribution WGumbel.

The cumulative distribution function of the maximum
of independent random variables can be easily calculated,
leading to the probability

Prob
(
Ñ0 < x

)
= Prob


∑

p6=0

N̂p
N

>
∑

p 6=0

〈N̂p〉
N
− xδNp=0

N




= 1−


1− exp



−2K


∑

p 6=0

〈N̂p〉
N
− xδNp=0

N









nc

≈ 1− exp


−nc exp



−2K


∑

p 6=0

〈N̂p〉
N
− xδNp=0

N








 ,

(E3)

with the approximation in the third line valid for large
K. Here the expectation value

∑
p 6=0〈N̂p〉/N is given by

〈N̂p〉
N

=

nc∑

n=1

1

2Kn
.
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FIG. 8. Distribution of normalized intensity Ĩ (symbols) at
T = 0 for stronger interactions, and fits with the Gamma
distribution from Eq. (10) (solid lines), plotted for different
momentum resolutions ∆p̃. We used K = 2, p̃ = 15× 2π and
ξh/L = 0.002. Similarly to the limit of weak interactions, the
distribution smoothly evolves from exponential to Gamma as
∆p increases. Inset: parameter of the fitted Gamma distribu-
tion α as a function of ∆p̃, increasing approximately linearly
with the same slope as in the weakly interacting limit.

Moreover, using the particle number conservation
(E1), and the variances the variables N̂p 6=0, the standard
deviation δNp=0/N can be calculated as

δNp=0

N
=

√√√√
nc∑

n=1

(
1

2Kn

)2

≈ π

2
√

6K
,

taking the limit of large cutoff nc in the last step. Sub-
stituting these results into (E3) allows us to take the
nc → ∞ limit, resulting in the cumulative distribution
function

Prob
(
Ñ0 < x

)
≈ 1− exp

{
− exp

(
π√
6
x− γ

)}
,

with γ denoting the Euler constant, defined by the rela-
tion

γ = lim
nc→∞

nc∑

n=1

1

n
− log nc.

By taking the derivative of this cumulative distribution
function, we arrive at the PDF of the Gumbel distribu-
tion, Eq. (12).

Appendix F: Numerical results for strong
interactions

In the figures of the main text we concentrated mostly
on the limit of weak interactions. Here we present addi-
tional numerical results, corresponding to stronger inter-
actions.
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ĨĨ
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FIG. 9. Finite temperature distribution of the normalized

zero momentum intensity Ĩp=0 for strong interactions, using

different dimensionless temperatures T̃ = kBT/(K∆). The
PDF crosses over from the zero temperature limit (deviating
from Gumbel distribution due to strong interactions) to an
exponential distribution, as a signature of the depletion of the
zero mode by the thermally populated p 6= 0 modes. As in
the limit of weak interactions, the crossover is governed by the
dimensionless temperature T̃ . We used K = 1.5, ∆p̃/(2π) =
0.1 and ξh/L ≈ 0.002.

By analyzing the equilibrium quantum fluctuations
at T = 0 temperature, we have shown in Sec. III A
that the distribution of the intensity at finite momen-
tum crosses over from exponential to Gamma distribu-
tion with increasing momentum resolution ∆p. We plot-
ted this crossover for weak interactions in Fig. 2. In Fig.
8 we show the same crossover for stronger interactions
K = 2. We find that the parameter of the fitted Gamma
distribution, Eq. (10), increases approximately linearly
with ∆p, with the same slope as in the limit of weak
interactions.

We considered the finite temperature distribution of
the zero mode in Sec. III D. In the limit of weak in-
teractions, plotted in Fig. 5 of the main text, we found
a crossover from the zero temperature Gumbel distribu-
tion to an exponential distribution, as the temperature
is increased and thermal fluctuations deplete the quasi-
condensate. We observe a similar crossover for strong
interactions K = 1.5, by plotting the zero-momentum
distributions for different dimensionless temperatures T̃
in Fig. 9. For such strong interactions, the distribution
at T = 0 deviates from the Gumbel distribution consid-
erably (see also Fig. 3 in the main text), but a clear
crossover from the T = 0 limit to an exponential dis-
tribution, governed by the dimensionless temperature T̃ ,
still persists.
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Fölling, B. Paredes and I. Bloch, Nature 444, 733 (2006).

[75] Noise correlations, extracted from time of flight images,
have already been used as a versatile tool to study
strongly correlated many-body systems, see Refs. [72–
74].


