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This article investigates the properties of a few interacting particles trapped in a few wells and
how these properties change under adiabatic tuning of interaction strength and inter-well tunneling.
While some system properties are dependent on the specific shapes of the traps and the interactions,
this article applies symmetry analysis to identify generic features in the spectrum of stationary
states of few-particle, few-well systems. Extended attention is given to a simple but flexible three-
parameter model of two particles in two wells in one dimension. A key insight is that two limiting
cases, hard-core repulsion and no inter-well tunneling, can both be treated as emergent symmetries
of the few-particle Hamiltonian. These symmetries are the mathematical consequences of infinite
barriers in configuration space. They are necessary to explain the pattern of degeneracies in the
energy spectrum, to understand how degeneracies are broken for models away from limiting cases,
and to explain separability and integrability. These symmetry methods are extendable to more
complicated models and the results have practical consequences for stable state control in few-
particle, few-well systems with ultracold atoms in optical traps.

PACS numbers: 03.65.Fd, 31.15.xh, 03.65.Ge

I. INTRODUCTION

One motivation for the symmetry analysis of few-
body, few-well models is experiments with a few ultra-
cold atoms trapped in an optical potential, either a single
well or an arrangement of wells like a lattice or crystal.
In some recent experiments [1–6], a deterministic number
of atoms are loaded into a trap, and then the shape and
arrangement of the wells and the strength of the inter-
particle interaction are changed.

These experiments, with the already-exquisite and
always-improving control they offer, present an irre-
sistible playground for pure and applied quantum the-
orists for at least three reasons:

• Starting with a few particles and a few wells, we
can take a ‘bottom-up’ approach to studying many-
body physics and emergent phenomena. Models
with strong interactions and multiple competing
length scales and energy scales can be difficult to
characterize and solve, especially identical parti-
cles with internal degrees of freedom. However,
these kinds of models are important in condensed
matter physics and their dynamical and thermo-
dynamical properties are rich and varied. For ex-
ample, few-body and effectively one-dimensional
single-well and few-well systems have already been
used to investigate magnetism and quantum phase
transitions in Heisenberg spin chain models [7–13]
and to check the consistency of the approximations
used to solve Hubbard-type models [14–17].

• The control possible over a few atoms in a few
wells allows unprecedented possibilities for quan-
tum state preparation and manipulation. For ex-
ample, there are protocols to construct highly-
entangled NOON states from a few particles in a

double-well [14, 18]. This kind of multiparticle co-
herence has been demonstrated to be a resource
for application in quantum sensing and measure-
ment and for other quantum information processing
tasks [19–21]. This article provides an specific ex-
ample of a quantum state control mechanism that
generates superpositions using cyclic adiabatic tun-
ing. Also, a speculative proposal explored below
uses the large but controllable degrees of freedom
of a few-well, few-body system to embody combi-
natoric problems in a quantum systems.

• Finally, generalizing the previous two reasons, sys-
tems of ultracold atoms in tunable traps with tun-
able interactions allow us to explore and test quan-
tum dynamics like never before. The consequences
of integrability and chaos, the interrelations among
interaction, indistinguishability, and entanglement,
and other questions at the boundaries of quantum
mechanics can be directly interrogated in the cold-
atom laboratory.

As the number of particles and wells increase, the de-
grees of freedom and complexity of the problem grow
exponentially. This makes analytical and even numerical
progress difficult for the bottom-up approach except in
certain limiting cases with enhanced solvability, such as
contact interactions in harmonic traps or infinite square
well. This motivates the need for generating solvable
few-atom, few-well models, and for identifying universal
features on non-solvable models. Symmetry analysis is
key to both of these tasks.

The primary focus of this article is one-dimensional,
double-well models. As a motivating example, con-
sider the experiment described in Ref. [4]: two fermions
are loaded into an effectively one-dimensional a double
well with tunable shape and interaction strength. Even
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though such systems have just two degrees of freedom,
they have been a testing ground for quantum dynamics
since the beginning of the subject. Some recent rele-
vant investigations on the dynamics of two (or a few)
particles in a double well include analyses of interaction-
influenced tunneling [17, 22], spatial state superposi-
tions [14], quantum integrability [23–25], state control
and logic gates [26], phase measurements [27], interfer-
ence dynamics [3, 28], fermionic quantum number pin-
ning [29] and entanglement and quantum information
theory [6, 29–32]. Some of these references are moti-
vated by applications to many-atom gases in arrays of
double-well optical traps (for example, see [33–35]). One-
dimensional double-well models also have applications as
effective theories for systems with more degrees of free-
dom (e.g. ion chains in Paul traps [36], Josephson junc-
tions, spontaneous symmetry breaking, etc.) and are ex-
tensively used as pedagogical examples [37, 38].

This article attempts to organize this double-well phe-
nomenology using symmetry methods. Particle exchange
and parity are familiar symmetries and certainly useful,
but this article goes beyond these and describes how the
special cases of (1) no interactions, (2) no tunneling, and
(3) hard core interactions can be formulated as kinematic
symmetries of the Hamiltonian. These symmetries are
used to characterize the spectrum of double-well, inter-
acting particle Hamiltonians and to make spectral maps
among models related by symmetry-breaking. This anal-
ysis reveals what dynamical effects are particular to spe-
cific trap or interaction, and what are generic. These
symmetries can be exploited to enhance analytical meth-
ods like exact diagonalization, perturbation theory and
variational methods. Finally, this article shows how the
symmetries that are preserved under parametric varia-
tion between two models can be exploited for adiabatic
state control.

A. The Model

This article considers a three-parameter model for two
interacting particles in two wells:

Hτ
γ = − ~2

2m

(
∂2

∂x21
+

∂2

∂x22

)
+ V (x1) + V (x2)

+ τ (δ(x1 − a) + δ(x2 − a)) + γδ(x1 − x2). (1)

This Hamiltonian describes a symmetric trap V (x) =
V (−x) that is split by a delta-function barrier with
strength τ a distance a from the middle (see [39, 40] for
general analysis of traps split by delta-barriers). The two
particles experience a contact interaction with strength
γ. Fig. 1 schematically depicts the potential energy of
Hamiltonian (1) as a contour plot in configuration space
for a purely quartic trap when a = 0. The corners of
Fig. 1 represent the four limiting cases of Hτ

γ : no interac-

tions and no barrier H0
0 ; no interactions and no tunneling

(infinite barriers) H∞0 ; unitary limit of contact interac-
tions and no barrier H0

∞; and unitary interactions and

FIG. 1. The potential energy of Hamiltonian (1) for a quartic
trap with a = 0. Black lines represent impenetrable barriers;
gray lines are finite barriers that allow tunneling. The first
column depicts H0

0 , Hτ
0 , and H∞0 ; these three Hamiltonians

are integrable for any trap shape and for any number of iden-
tical particles. The last column depicts the unitary limit of
contact interactions H0

∞, Hτ
∞, and H∞∞ ; these three Hamilto-

nians are also integrable for any trap shape or number of par-
ticles. The middle column with arbitrary interaction strength
are H0

γ , Hτ
γ , and H∞γ . Generally, these Hamiltonians are not

integrable, but H0
γ and H∞γ are integrable for two particles

in a harmonic trap or any number of particles in the infinite
square well trap.

no tunneling H∞∞ . Tab. I summarizes the degeneracies
in the energy spectrum of some of these limiting cases of
(1).

In principle, how spectral properties change as the
Hamiltonian Hτ

γ is tuned can be inferred from symme-
try. For the Hamiltonian (1) many systematic degenera-
cies (as opposed to accidental degeneracies, a distinction
clarified below) are independent of the specific trap shape
V (x); see Tab. I. These degeneracies can be explained
using the extra symmetries that arise from impenetra-
ble barriers. Further, how these levels map to one an-
other under adiabatic changes of parameters sometimes
can be established from symmetry alone. Other times,
such energy level mappings must be completed with the
assistance of perturbation theory, exact diagonalization,
variational methods, or other numerical approximation
schemes, all of which are simplified using symmetry. Adi-
abatic mappings can then provide pathways for coher-
ent state control, especially when combined with spin or
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Hamiltonians Parameters Degeneracies
a 6= 0 a = 0

H0
0 , Hτ

0 τ ≥ 0, γ = 0 1, 2 1, 2
H0
γ , Hτ

γ τ ≥ 0, γ 6= 0 1 1
H0
∞, Hτ

∞ τ ≥ 0, γ →∞ 2 2
H∞0 τ →∞, γ = 0 1, 2 4, 8
H∞γ τ →∞, γ 6= 0 1, 2 2, 6
H∞∞ τ →∞, γ →∞ 2 2, 8

TABLE I. Systematic degeneracies of Hamiltonian for various
values of the parameters of the barrier location a, zero-range
barrier strength τ , and zero-range interaction strength γ.

other internal states that affect the allowed state space
of identical particles through bosonic or fermionic sym-
metrization. In full disclosure, many of these tasks can
be efficiently accomplished numerically without exploit-
ing all the symmetries of a Hamiltonian for two particles
in two wells. However, as we build up from the bottom,
using group theory to turn combinatorics into algebraic
observables on the Hilbert space may allow us to push
deeper into the emergence of many-body phenomena.

B. Kinematic Symmetries

The kinematic symmetry group of the Hamiltonian
(i.e. the set of all unitary operators that map all energy
eigenstates into energy eigenstates with the same energy)
can be used to classify states, categorize types of degen-
eracies, and select useful observables [41]. In principle, if
the correct kinematic symmetry is found, then every de-
generate energy subspace of the will carry an irreducible
representation (irrep) of this symmetry. This article de-
scribes and exploits the following three kinematic sym-
metries:

• The symmetry of separability : Identical non-
interacting particles have independent time evolu-
tions. In particular, when the Hamiltonian splits
into a sum of identical sub-Hamiltonians, then this
symmetry can be described by the wreath product
Tt oSN , where SN is the symmetric group on N par-
ticles, Tt is the time-translation subgroup for each
independent particle, and o is the wreath product
that interweaves SN with N copies of Tt (described
in more detail below). Interactions break this sym-
metry into the subgroup Tt × SN [42, 43].

• Well permutation symmetry : When there is no tun-
neling, then each well has independent dynamics. If
there are M identical wells, then there is a symme-
try isomorphic to SM oTt that corresponds to per-
muting the the individual, disconnected wells. Tun-
neling breaks this local symmetry in a manner that
depends on the global structure of the wells [44].

• Ordering permutation symmetry : N particles in a
one-dimensional single well with hard-core interac-
tions cannot tunnel past each other. Therefore,

there are N ! identical N -dimensional wells corre-
sponding to each dynamically-stable possible order-
ing and the symmetry has the form Tt × SN ! [44].
In the near unitary limit, this symmetry is broken
in a way that can be calculated exactly for contact
interactions [9, 10, 43].

The second and third of these symmetries depend on
the presence of infinite barriers in space or configuration
space. To understand the importance of infinite barriers
for symmetry in few-atom, few-well system, consider the
following one-particle, one-dimensional harmonic Hamil-
tonian:

H = − 1

2m

∂2

∂x2
+

1

2
mω2x2 + τδ(x). (2)

Analytic solutions for the eigensystem of this Hamil-
tonian are calculable for any value of τ to arbitrary
accuracy by solving a transcendental equation for en-
ergy [45, 46]. However, in the limit τ →∞, the harmonic
trap splits into two identical wells with no tunneling al-
lowed. Each side of the barrier is dynamically decoupled
from the other and their relative phases have no physical
meaning; i.e. the two sides cannot compare clocks. The
stationary states when τ → ∞ can be found by patch-
ing together the odd solutions of (2) with τ = 0 into
two solutions (one with even parity, one with odd). Ev-
ery energy level in the spectrum is doubly-degenerate.
The singularity at x = 0 severs the configuration space
by forcing a node onto every wave function with finite
energy, and this invalidates the standard proof that all
bound-state energy eigenfunctions in one-dimension are
non-degenerate [47].

Degeneracies must be consistent with the dimensions
of irreps kinematic symmetry group of the Hamiltonian.
In the case τ → ∞ the double-degeneracy can be un-
derstood as arising from the dynamical decoupling of the
two domains x > 0 and x < 0. In each domain, time
evolution by an amount t is represented by a unitary op-
erator Ux>0(t) or Ux<0(t) that rotates the phase of the
wave function only on one side of the barrier. These two
operators commute with the total Hamiltonian and with
each other. This doubling of time evolution symmetry
can explain the doubling of the spectrum.

Well permutation symmetry manifests whenever iden-
tical traps are dynamically decoupled, and it occurs
in any dimension. In the limit of impenetrable one-
dimensional particles, the Hamiltonian similarly decou-
ples into independent subsystems. The few-particle con-
figuration space is sectioned into fixed orderings by the
interactions, and these sections are equivalent and ex-
changeable for identical particles. Each ordering is a
‘subsystem’ that is decoupled from all the other order-
ings. If the particles are totally or partially indistin-
guishable, then there are phase relations among differ-
ent orderings that are induced by particle exchange sym-
metries. In the case of totally indistinguishable bosons
and fermions, these phase relations lift the degeneracy
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completely (i.e. the famous Bose-Fermi mapping of Gi-
rardeau [48]), otherwise it is more complicated for more
than two particles [42, 43, 49, 50].

C. Outline of Paper

The outline of this paper is as follows. Sect. II goes
‘beneath the bottom’ and looks at symmetries for one
particle in double-well scenarios. Besides the familiar
global symmetries of parity and particle exchange, in-
finite barriers induce piecewise-linear local symmetries.
Local symmetries have been shown to be useful for wave
propagation and scattering in one-dimensional systems
with partial symmetry [51, 52]. This section also clari-
fies how this article makes the distinction between sys-
tematic and accidental symmetries (following the defini-
tions in [53]). Sect. III describes symmetries and sym-
metry breaking for two interacting particles in an arbi-
trary double-well system. Both Sect. II and III focus on
the puzzle of identifying sufficient kinematic symmetries
to explain spectral degeneracies. Readers less interested
in the structural analysis of symmetries and irreps may
want to skim these sections and start in Sect. IV, which
applies these symmetries to analyze the three parame-
ter model (1). For this model, the zero-range nature of
the barrier and interaction provides additional symmetry,
leading to integrability and solvability for a variety of lim-
iting cases. In Sect. V, the additional symmetry provided
when the trap potential V (x) is the infinite square well
or the harmonic trap is exploited to construct explicit
adiabatic maps between limiting cases. Sect. VI briefly
indicates how these ideas can be extended to a few par-
ticles in a few wells, and the concluding section provides
an outlook on possible extensions and applications of this
work.

II. SYMMETRIES FOR ONE PARTICLE IN
TWO WELLS

From the perspective of kinematic symmetries, there
are six kinds of impenetrable double wells in one-
dimension. They are distinguished depending on whether
the wells have the same shape, whether the wells are in-
dividually symmetric under reflection, and whether the
pair of wells is symmetric under a global reflection. The
six distinct possibilities are depicted schematically in Fig.
2. In the top three, the two wells are different and have
different energy spectra. For the bottom three, wells are
identical (or mirror images, as in case V).

A. Configuration space symmetries

Consider the configuration space symmetry group for
one particle in a double well. Configuration space sym-
metries are transformations of one-particle configuration

FIG. 2. Schematic representation of six symmetry cases of
double wells in one dimension with different configuration
space and kinematic symmetries, described in the text.

space X ∼ R that commute with the Hamiltonian and
are a subgroup of the kinematic symmetry. Equivalently,
configuration space symmetry transformations map sta-
tionary state wave functions into other stationary state
wave functions with the same energy. Following [51], we
further distinguish global and local configuration space
symmetries. An example of a global symmetry transfor-
mation is a linear transformation of the entire space X
that commutes with the Hamiltonian. Generally in one
dimension, any global linear transformation is a transla-
tion, reflection, or glide reflection. For double wells, only
the global reflection is possible. Local symmetry trans-
formations include piecewise linear transformations. For
example, a transformation like “apply a reflection to well
a but leave well b alone”. Local symmetries are only
possible when there are infinite barriers and the configu-
ration space wave functions have nodes at the boundaries
between the different domains of the piecewise transfor-
mations. The one-particle configuration space X can be
divided into three domains: the left well Xa, the barrier
Xτ , and the right well Xb.

Using these definitions, consider the six cases, also
summarized in Tab. II:

• Case I: There is no global or local symmetry, so the
configuration space symmetry group is the trivial
group E of just the identity transformation on X ,
whether or not there is tunneling.

• Case II: There is a single local symmetry transfor-
mation, a parity reflection πa in domain Xa. The
configuration space symmetry is denoted O(1)a and
has order 2. When tunneling occurs, this local sym-
metry is broken.

• Case III: Each well is parity symmetric, so with-
out tunneling there are two local reflections πa and
πb, giving O(1)a × O(1)b ∼ Z4, where Z4 is the
abstract cyclic group of order 4. Again, tunneling
breaks the local symmetry and there are no global
configuration space symmetries.

• Case IV: There are no single-domain local symme-
tries, but domain Xa can be translated right and
domain Xb can be translated left. Call this piece-
wise linear transformation wab and call the order-2
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Type C∞1 |C∞1 | Cτ1 |Cτ1 |
I E 1 E 1
II O(1)a 2 E 1
III O(1)a ×O(1)b 4 E 1
IV W2 2 E 1
V W′2 2 O(1) 2
VI O(1) oW2 8 O(1) 2

TABLE II. This table lists the configuration space symmetry
for one particle in two well for the case of no tunneling C∞1
and tunneling Cτ1 . The groups are expressed using notation
explained in the text. The order of the groups (i.e. number of
elements including the identity) is listed in the column after
each group. In each case, Cτ1 is the subgroup of C∞1 preserved
when the no-tunneling symmetry is broken.

group it generates W2 ∼ Z2. If there is tunnel-
ing, then this discontinuous transformation will not
map stationary states into stationary states, and
there is no global symmetry.

• Case V: The domains can be flipped and then ex-
changed, i.e. the transformation πaπbwab. This is
the same abstract group as case IV, but denote it
by W′2 to signify that it is a different realization.
The transformation πaπbwab is equivalent to the
total parity transformation π. This global symme-
try transformation is preserved in the presence of
tunneling.

• Case VI: Counting the identity e, there are eight
configuration space symmetry transformations for
impenetrable wells: πa, πb, πaπb, wab, πawab,
πbwab, πaπbwab. This group is isomorphic to D4,
the dihedral group with four reflections, also real-
ized as the two-dimensional point symmetries of a
square. Unlike the other five cases, this group is not
abelian, for example πawab = wabπb. As with case
V, tunneling breaks almost all of these symmetries,
leaving only global parity.

One way to describe the symmetry of case VI is using
the wreath product o, a kind of semidirect product that is
used in combinatorics to describe the permutations of ob-
jects with structure. In case VI, the configuration space
symmetry group can be expressed as O(1) o W2. The
first term in the wreath product is the symmetry of the
well; the second term is the exchange symmetry of the
wells. Generally, in the wreath product G o SN between
a finite group G with order g and a permutation group
SN with order N !, the order of the wreath product is
(gN · N !). A well-known example of a wreath product
is the hyperoctahedral group Z2 o SN , the symmetry of
an N -dimensional cube. Other examples of wreath prod-
ucts include the lamplighter group Z2 oZ and the group of
transformations of a Rubik’s cube [54]. In the next sec-
tion, the wreath product structure is used to generalize
local symmetries to the few-body case.

B. Degeneracies and kinematic symmetries

In the limit of no tunneling, each well is assumed
have a discrete and singly-degenerate spectrum: σa =
{α0, α1, α2, . . .} for the left well and σb = {β0, β1, . . .} for
the right well. For cases IV, V, and VI, the spectra are
the same σa = σb. When wells are not the same shape,
they may have energy levels that line up ‘on accident’,
but in general this requires highly specific fine-tuning.
For example, the depth, width, or other shape param-
eters are tuned ‘just right’ so that one or more levels
line up perfectly. Counterexamples of different-shaped
wells with many overlapping levels are wells that are su-
persymmetric pairs, or infinite square wells with rational
ratios, but these seemingly ‘accidental’ degeneracies de-
rive from dynamical or spectrum-generating symmetries,
and are in fact systematic.

So when there is no tunneling, and barring accidental
degeneracies, the double-well energy spectra σ1 = σa∪σb
for cases I-III are singly-degenerate and for cases IV-VI
the spectra σ1 = σa = σb is doubly-degenerate. System-
atic degeneracies like these should be explained by the
kinematic symmetry group of the Hamiltonian. When
the correct kinematic symmetry group has been identi-
fied, the degeneracies of the energy levels correspond to
the dimensions of the unitary irreducible representations
(irreps) of the symmetry group [55]. Configuration space
symmetries alone cannot explain the two-fold degener-
acy for cases IV-VI. The configuration space symmetry
groups for cases IV and V only have one-dimensional ir-
reps. The configuration space symmetry group for case
VI is isomorphic to the symmetry of a square and does
have a two-dimensional irrep, but explicit construction
of wave functions shows that not all double-degenerate
energy levels correspond to that irrep [42].

So what symmetry group gives the correct two-fold
systematic degeneracies for cases IV-VI when there is no
tunneling? As mentioned in the introduction, the solu-
tion to this puzzle lies in the observation that in the ab-
sence of tunneling the two wells are dynamically indepen-

dent. The one-particle Hamiltonian ĥ can be decomposed

into a sum of sub-Hamiltonians ĥa and ĥb by restricting
the position representation [56] of the Hamiltonian h(x)

〈x|ĥ|x′〉 = h(x)δ(x− x′) (3)

to the well regions Xa and Xb:

ha(x) = h(x)|Xa ⇒ ĥa

hb(x) = h(x)|Xb ⇒ ĥb. (4)

These sub-Hamiltonians are defined on disjoint domains
and they commute with each other and the total Hamil-
tonian. They each generate a time translation operator

Ûa(t) = exp(−iĥat/~). As unitary operators that com-

mute with ĥ, they generate a subgroup of the kinematic
symmetry group. For case I (which has the least sym-
metry), the kinematic symmetry group is the product
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of each well’s time translation group Ta × Tb [57]. For
cases II and III, the kinematic symmetry groups for no-
tunneling are O(1)a×Ta×Tb and O(1)a×O(1)b×Ta×Tb,
respectively. In all three cases, these groups only have ir-
reps that are one-dimensional, and spectra that are there-
fore non-degenerate except for ‘accidents’.

For cases IV and V, the time translation group ir-
reps are the same Ta = Tb and the kinematic symmetry
group can be expressed as Ta oW2 and Ta oW′2, respec-
tively. Case VI is (Ta × O(1)) oW2. These groups have
two-dimensional irreps that correspond to the familiar
energy eigenspaces spanned by left-right localized basis
states [18].

When tunneling is present, coupling of the wells breaks
local time-translation symmetry. The kinematic sym-
metry for cases I-IV is just time translation T and
for cases V-VI it is global time translation and parity
T×O(1). These groups only have one-dimensional irreps,
and therefore tunneling splits the the doubly-degenerate
levels for cases IV-VI. The splitting energy cannot be in-
ferred from symmetry, although the familiar result that
the parity symmetric states for cases V and VI have lower
energy can be derived from symmetry alone.

III. SYMMETRIES FOR TWO PARTICLES IN
TWO WELLS

It is mathematically equivalent, and sometimes con-
ceptually convenient, to treat a system with two particles
in one dimension as though it were a system with one par-
ticle in two dimensions. When the barrier between the
wells prevents tunneling, then the system is equivalent to
one particle trapped four (not necessarily identical) two-
dimensional wells. Fig. 3 depicts sample two-dimensional
potential energies V (x1)+V (x2), where V (xi) one of the
six cases of single-particle double-wells. Fig. 4 depicts
the same six potentials with the addition finite-range,
repulsive interactions g exp(−λ|xi − x2|). The local and
global configuration space symmetries can be classified,
and these symmetries depend on the nature of the wells
and the nature of the interactions. The cases of non-
interacting, finite-range interactions, zero-range interac-
tions, and the unitary limit of contact interactions have
different symmetries, and these are listed for the six cases
in Tab. III. When there is tunneling, all the parity-
symmetric and parity-asymmetric cases collapse and the
analysis is much simpler, as shown in Tab. IV.

Most of the configuration space analysis summarized in
Tabs. III and IV can be inferred directly from Figs. 3 and
4. The groups represent all the piecewise-linear trans-
formations that map the configuration space onto itself.
Despite the rich symmetry structures possible, the de-
generacy of states for two particles in two wells generally
cannot be explained by the irreps of the configuration
space symmetry group. Like the one-particle case, the
full kinematic symmetry group of the Hamiltonian is re-
quired. Subsection III A describes the kinematic symme-

FIG. 3. Contour plots of the potentials for two particles in
each of the six double-well traps types in Fig. 1 without in-
teractions. In each subfigure, sector in the upper right corner
is the domain XA, where both particle are in the right well
b, and the upper right corner is domain XC , both particles
in left well a. The off-diagonal domains XB and XD corre-
spond to the particles in different wells. Note that without
interactions, all four sectors are separable in all six cases.

FIG. 4. Contour plots of the potentials for two particles in
each of the six double-well traps types in Fig. 2 with a re-
pulsive two-body interaction with a strength that decreases
exponentially. Note when the range of interactions is further
than the barrier width, then no sectors are separable in any
of the six cases. For zero range interactions, sectors XB and
XD remain separable.

try group for any separable system and subsections III B
and III C describe how well permutation symmetry and
ordering permutation symmetry manifest for two parti-
cles.

A. Symmetry of Separability

First, consider two non-interacting particles in a single
one-dimensional well with one-particle energy spectrum
σ1 = {ε0, ε1, ε2, . . .}. The two-particle energy spectrum Σ
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Type No interactions Finite-range interactions Contact interactions Unitary limit
I D1 ×W2 ×D1 D1 ×W2 ×D1 D1 ×W2 ×D1 O2 ×W2 ×O2

II D4 ×D1 oW2 ×D1 D2 ×W2 ×D1 D2 ×D1 oW2 ×D1 D1 oO2 ×D1 oW2 ×O2

III D4 ×D2 oW2 ×D4 D2 ×W2 ×D2 D2 ×D2 oW2 ×D1 D1 oO2 ×D2 oW2 ×D1 oO2

IV D1 oW4 D1 oW2 ×W2 D1 oW2 ×D1 oW2 O2 oW2 ×D1 oW2

V D1 oW4 D1 oW2 ×D1 oW2 D1 oW2 ×D1 oW2 O2 oW2 ×D1 oW2

VI D4 oW4 D2 oW2 ×D1 oW2 D2 oW2 ×D4 oW2 D1 oO2 oW2 ×D4 oW2

TABLE III. For each of the six types of impenetrable double-wells depicted in Figs. 3 and 4, the configuration space symmetries
for two particles that are non-interacting, interacting via an interaction with range wider than the barrier domain, interacting
via a contact interaction, and the unitary limit of the contact interaction. The group Dj is the two-dimensional dihedral
point group with j reflections and j − 1 rotations. The group Wj is the well permutation group and is isomorphic to the
symmetric group Sj . The ordering permutation group Oj is also isomorphic to the symmetric group Sj . In these expressions,
the wreath product is taken before the direct product in the order of operations, and the wreath product is associative so
(D1 oO2) oW2 = D1 o (O2 oW2).

Type No interactions Interactions Unitary limit
I-IV P2 ∼ D1 P2 ∼ D1 O2 ∼ P2 ∼ D1

V-VI O(1) o P2 ∼ D4 O(1)× P2 ∼ D2 D1 oO2

TABLE IV. This table lists the configuration space symme-
tries for each of the six types of double-wells depicted in
Figs. 3 and 4 when there is tunneling for two particles that
are non-interacting, interacting, and interacting via a contact
interaction at the unitary limit. The group Pj is the particle
permutation group and is isomorphic to the symmetric group
Sj . See the caption of Tab. III for additional notation.

is just the sum of two copies of σ1, and each energy level is
either singly-degenerate like the ground state with energy
2ε0 or doubly-degenerate like the first excited state ε0+ε1.
The group that describes this kinematic symmetry is T o
P2. This group is isomorphic to the one-particle, double-
well kinematic group Ta oW2 for cases IV and V, but the
correspondence between energy levels and irreps is not
the same. The difference is that T oP2 is the symmetry of
a system with two identical separable degrees of freedom.
The Hamiltonian can be written in terms of an operator
like

Ĥ = ĥ1 ⊗ Î + Î⊗ ĥ2 (5)

acting on a tensor product structure like

L2(X1)⊗ L2(X2) ∼ L2(R2), (6)

where Xi is the one-dimensional configuration space for
each particle. On the other hand, the one-particle, identi-
cal double-well kinematic group Ta oW2 is the symmetry
for a system with a single degree of freedom segmented
into disjoint intervals. The Hilbert space for that prob-
lem is

L2(Xa)⊕ L2(Xb) ∼ C2 ⊗ L2(Xa). (7)

So, although the groups are isomorphic and have the
same irreps, for Ta o W2 not all of those irreps occur
in the reduction of the Hilbert space (7).

For non-interacting identical two particle systems, the
kinematic group always has T oP2 as a subgroup [42]. Its

subgroup T1 × T2 ⊂ T o P2 is the product of two com-
muting continuous symmetry transformations in phase
space. Since there are two degrees of freedom, in this
case separability symmetry is enough to guarantee Liou-
ville integrability for two non-interacting particles.

Interactions break the symmetry of separability but
preserve the subgroup of total time translations and
particle exchange T × P2 for cases I-IV. Total parity
is additionally preserved for cases V and VI, giving
T × O(1) × P2. This is not enough symmetry to pre-
serve integrability for general traps since there is only
one continuous symmetry transformation. Additionally,
these groups only have one-dimensional representations,
so interactions split the degeneracies created by the sym-
metry of separability.

B. Well permutation symmetry

When there is no tunneling, the two particle configura-
tion space X 2 is split into four, decoupled sectors. Start-
ing from the upper right corner in any subfigure of Fig. 3
and moving counterclockwise, label these sectors A (both
particles in well b), B (particle one in well b, particle two
in well a), C (both particles in well a) and D (particle one
in well a, particle two in well b). Piecewise linear trans-
formations of configuration space X 2 ∼ R2 that shuffle
similar sectors and commute with the Hamiltonian are
local symmetries.

For all six cases of double wells, sectors B and D
are mirror images whether there are interactions or not.
These are the sectors corresponding to one particle in
each well, and their similarity is a consequence of par-
ticle permutation symmetry. However, global particle
permutation symmetry does not just exchange sectors B
and D; it also reflects sectors A and C about the line
x1 = x2. However, when the double-wells are impenetra-
ble, the operator wBD that exchanges wells B and D can
be (in principle) implemented as a local symmetry inde-
pendent of the operators σA and σC that reflect sectors
A and C along the line x1 = x2. The global action of the
particle exchange operator p12 can be decomposed into a
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product of three operators:

p12 = σAσCwBD.

Well permutations like wBD and ‘well-local’ operators
like σA do not need to be physically feasible. The physical
protocol that σA represents “exchange particle 1 and 2
if they are both in the right well, otherwise leave them
alone” does not need to have an active realization. Well
permutations are still valid symmetries even if they are
only passive transformations of coordinate systems.

To explain the degeneracies in the non-tunneling limit,
the configuration space symmetry must be combined
with independent time translations for each well. With-
out interactions, the Hamiltonian restricted to each of
the four sectors is still separable. As an example, con-
sider, case I with no tunneling and no interactions. The
total kinematic symmetry can be written as

(Ta o P2)× ((Ta × Tb) oW2)× (Tb o P2). (8)

The first factor Ta o P2 and third factor Tb o P2 are the
symmetry of separability combined with particle permu-
tation for the cases when both particles in the same wells
A and C. The second factor is the symmetry of separa-
bility combined with well permutation symmetry for the
two cases of one particle in each well B and D. Assuming
no accidental degeneracies, irreps for the first and third
factor subgroup are one- and two-dimensional, and the
relevant irreps for the second factor subgroup are two-
dimensional.

When interactions are turned on for case I, separability
is broken and the kinematic symmetry that remains is

(TA × P2)× (TBD oW2)× (TC × P2). (9)

Now the first and third factor subgroups only have one-
dimensional irreps. The well permutation symmetry for
sectors B and D continues to hold, and so there are still
irreps corresponding two-fold degenerate energy levels.
Note that if the interaction is zero-range (or of a range
shorter than the barrier width) then the sectors B and
D retain their separability symmetry. This distinction
does not change the symmetry for case I, but it becomes
relevant for cases II-VI, and it is necessary to explain the
degeneracy pattern found for Hamiltonian (1) in Table I
with a 6= 0.

The other cases that are important for subsequent
examples with Hamiltonian (1) are cases V and VI.
For these cases, all four two-particle sectors are equiv-
alent when there are no interactions, so the configura-
tion space symmetry has a larger well permutation sub-
group W4 ∼ S4. Additionally, each well in case V has
D1 ∼ O(1) symmetry (one reflection) and each well in
case VI has O(1) o P2 ∼ D4 symmetry (four reflections,
three rotations). So without interactions, the configura-
tion space symmetries are D1 oW4 for case V and D4 oW4

for case VI. Each well is separable, and therefore by
including the kinematic symmetries this is extended to
(T oP2) oW4 for case V and ((T×O(1)) oP2) oW4 for case

VI. Both these groups have four-fold and eight-fold de-
generate irreps that correspond to two-particle, two-well
infinite barrier energy levels.

Adding interactions distinguishes wells A and C from
wells B and D and breaks separability. For finite range
interactions, the remaining kinematic symmetries are

(TAC × P2) oW2 × (TBD ×D1) oW2 (10)

(TAC ×D1 × P2) oW2 × (TBD ×D1) oW2 (11)

for cases V and VI, respectively. Both factor subgroups
have two-dimensional irreps that correspond to physical
states. For contact interactions, the remaining kinematic
symmetries are

(TAC × P2) oW2 × (TBD oD1) oW2 (12)

(TAC ×D1 × P2) oW2 × (TBD ×D1 o P2 oW2. (13)

The second subgroup factor has two-dimensional irreps
and four-dimensional irreps, and the four-dimensional ir-
rep has the same energy as the two-dimensional irrep of
the first subgroup factor. Therefore, there are six-fold
degenerate energy levels in addition to two-fold degener-
ate levels. See Section IV for examples with Hamiltonian
(1).

C. Ordering permutation symmetry

The final two-particle, two-well symmetry to be dis-
cussed here occurs in the unitary limit of the contact
interaction, or more generally when strong, finite-range
repulsive interactions effectively split configuration space
X 2 into two identical sections, XI for x1 < x2 and XII for
x2 < x1. See Fig. 1 for a depiction. Then each of these
sectors can again be thought of as a one-particle, two-
dimensional wells and piecewise linear transformations of
X 2 that commute with the Hamiltonian are configuration
space symmetries. Denote the group by O2. One might
think this would be equivalent to particle exchange, and
for asymmetric wells and asymmetric double wells like
cases I-IV, one would be right. However, for symmetric
traps (including double wells like cases V and VI), each
section also allows an independent reflection. The total
configuration space symmetry group is therefore at least
as large as D1 oO2.

When there is a global parity-symmetric double-well
with no transmission like cases V and VI, then there are
two wells A and C that have ordering permutation sym-
metry. Therefore case V has total configuration space
symmetry of

(O2 oW2)× (D1 oW2), (14)

where the first factor subgroup is for sectors A and C
and the second is for sectors B and D. For case VI the
configuration space symmetry is

(D1 oO2 oW2)× (D4 oW2). (15)
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The final step is to include the kinematic symmetries,
which enlarge (14) and (15) into

(TAC oO2 oW2)× (TBD oD1 oW2) (16)

and

((TAC ×D1) oO2 oW2)× ((TBD ×D1) o P2 oW2). (17)

For both cases the physical irreps for the first factors have
dimension four and for the second factor dimension two
or four. Because the spectrum of sectors A and C shares
energy levels with the spectrum of sectors B and D, the
energy levels are either two-fold or eight-fold degenerate.

Note that for more than two particles, ordering permu-
tation symmetry has a richer structure [43, 44] because
the number of orders N ! is greater than the number of
particles N .

IV. SPLIT WELL HAMILTONIAN

This section applies kinematic symmetries to analyze
the model Hamiltonian (1). Physically, one can imagine
this Hamiltonian is a good model for a highly-elongated,
effectively one-dimensional trap that has been severed
in two pieces by a sheet of repulsively-tuned light. For
a 6= 0 the Hamiltonian has the well pattern of case I and
for a = 0 it is case V generally and case VI for the infinite
square well.

Two observations are worth emphasizing:

• The Hamiltonian with no interactions but any bar-
rier strength Hτ

0 is integrable in the Liouvillian
sense. The Hamiltonian is separable into two one-
particle systems and the energy of each particle is
an independent integrable of the motion.

• In the unitary limit of contact interactions γ →∞,
the Hamiltonian Hτ

∞ is again integrable, now in
the Bethe-ansatz sense. The infinite barrier along
x1 = x2 provides diffractionless scattering and so-
lutions in each sector are constructed by superpo-
sitions of separable solutions. This is the essence of
the famous observation of fermionization of trapped
hard-core bosons by Girardeau [48].

For any other value of interaction strength, the Hamil-
tonian generally is not integrable in either sense. The
notable exceptions of the infinite square well and har-
monic trap are treated in the next section. For other
trap shapes, the interacting region of model space can
be interrogated by perturbation expansions, exact diag-
onalization, or variational methods using eigenstates of
the non-interacting limit Hτ

0 . One can also do perturba-
tion expansions (or other methods) from the unitary limit
Hτ
∞, but some caution is required because wave functions

for the finite energy eigenstates of Hτ
∞ necessarily have

nodes along the line x1 = x2. No superposition of Hτ
∞

eigenstates will ever have a non-zero wave functions along

the line x1 = x2. Equivalently, the operator Hτ
∞ is not

self-adjoint on L2(R2), but only on the subdomain

L2(R2/{x|x1 = x2}) = L2(XI)⊕L2(XII) ∼ C2⊗L2(XI).

As a consequence, the first order perturbed state and sec-
ond order perturbed energy require renormalization [39,
58, 59]. Note that a similar difficulty would also ex-
ist when using perturbation theory to extrapolate from
the solutions of H∞γ (which is solvable for certain traps
shapes) to Hτ

γ . Another idea is to use variational meth-
ods to interpolate between the ground state of Hτ

0 and
the ground state of Hτ

∞ (or the lowest state in a sym-
metrized sector, see below) to approximate the ground
state as a function of γ [60].

A. Asymmetric case a 6= 0

For the asymmetric case, the only symmetry valid for
all τ and γ is particle permutation P2. This means the
Hilbert space can be reduced into permutation symmetric
and antisymmetric sectors:

H = H[2] ⊕H[12], (18)

where we use the notation [2] for symmetric and [12] for
antisymmetric. There are no matrix elements of Hτ

γ (or
any operator that has P2 symmetry) between vectors in
different sectors. Note that in Fig. 5, which schemati-
cally depicts the potentials for a harmonic trap split by
an off-center barrier, all subfigures have reflection sym-
metry across the line x1 = x2. When τ = 0, parity is
restored and so the potentials for the Hamiltonians de-
picted in the top line of Fig. 5 all have at least D2 sym-
metry, which includes two reflections and one π rotation.
The left column depicts the limit γ = 0 where the sym-
metry of separability applies; the bottom row depicts the
limit τ → ∞ where well permutation symmetry applies;
and the right column depicts the limit γ →∞ where or-
dering permutation symmetry applies. When there are
additional symmetries, there are additional reductions of
the Hilbert space into ‘smaller’ sectors.

For an arbitrary a 6= 0, any one-particle energy degen-
eracies between the left and right sides of the barrier are
accidental. For example, such a degeneracy would occur
if the zero-range barrier was raised exactly at the nodal
point of single-particle energy eigenfunction. Neglecting
this kind of idealization, then the degeneracies of Hτ

γ for
a 6= 0 should follow the analysis for case I of the previous
section and summarized in the first column of Tab. I.

Denote the energy spectrum and energy eigenstates for

the single-particle Hamiltonian ĥ1 by σ1 = {ε0, ε1, . . .}
and {|0〉, |1〉, . . .}. The familiar solutions for H0

0 that
transform irreducibly under P2 are algebraically con-
structed from the single particle solutions using super-
positions of tensor product states |n1n2〉 = |n1〉 ⊗ |n2〉:
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FIG. 5. Potential energy of Hamiltonian (1) for a harmonic
trap with a 6= 0. Same ordering of subfigures as in Fig. 1.
Note that the left column and right column are integrable
and are analytically solvable to arbitrary precision in terms of
transcendental equations with parabolic cylindrical functions.

|(n1n2)+〉 =

{
|n1n2〉 n1 = n2

1√
2

(|n1n2〉+ |n2n1〉) n1 6= n2
(19a)

|(n1n2)−〉 =
1√
2

(|n1n2〉 − |n2n1〉) . (19b)

In this expression and in subsequent notations, without
loss of generality the composition (n1n2) of two quantum
numbers is ordered so that n1 ≤ n2. The spectrum of H0

0

is the sumset (or Minkowski sum) Σ0
0 = σ1 + σ1 with el-

ements like En1n2 = εn1 + εn2 . As expected from the
kinematic symmetry of separability, energies En1n2 are
one-fold or two-fold degenerate depending on whether n1
equals n2. Note that without more information about
the set σ1, only a partial order can be placed on Σ0

0. For
example, E00 < E01 < E11, but without more informa-
tion about the progression of energies in σ1 we cannot
know whether E11 or E02 is greater.

Adding a permeable barrier, the Hamiltonian Hτ
0 is

separable for any τ and denote the single-particle energy
eigenstates of h1 + τδ(x−a) by |n〉τ with energy ετn ∈ στ1
for n a non-negative integer. Denote the eigenvectors of
Hτ

0 by |n1n2〉τ = |n1〉τ ⊗ |n2〉τ ; they can be permutation
symmetrized as in (19) to form |(n1n2)τ+〉 ∈ H[2] and

|(n1n2)τ−〉 ∈ H[12]. In addition to the Hilbert space

reduction (18), for the Hamiltonian Hτ
0 and alternate

reduction that exploits separability is

Hτ0 =
⊕

(n1n2)

H(n1n2)
τ
0 , (20)

where the sum is over all compositions of two non-
negative integers. Because the Hamiltonian Hτ

0 is sep-
arable for any τ , the quantum numbers n1 and n2 are
conserved as τ is varied adiabatically, even though the
state |n1n2〉τ and the energy Eτn1n2

= ετn1
+ ετn2

change.
In contrast, when interactions are turned on, the sym-

metry of separability is broken and the two-fold degen-
erate levels of Στ0 = στ1 + στ1 split into singly-degenerate
levels. The states |(n1n2)τ−〉 have nodes along x1 = x2
and so they do not feel the zero-range contact interac-
tion, whereas the symmetric states |(n1n2)τ+〉 shift up-
wards in energy in a fashion that generally depends on
the shape of the trap, strength of the barrier, and the
quantum numbers in the composition.

The eigensolutions at the unitary limit Hτ
∞ can be al-

gebraically constructed from the eigensolutions of Hτ
0 by

restricting the particle permutation antisymmetric states
(19b) to the domains XI and XII , also called the ‘snippet’
basis [42, 43, 49, 50, 61]:

ψI(n1n2)τ
(x) =

{ √
2ψ(n1n2)τ−(x) x ∈ XI

0 x ∈ XII
(21)

ψIIn1n2
(x) =

{
−
√

2ψ(n1n2)τ−(x) x ∈ XII
0 x ∈ XI

, (22)

where

ψ(n1n2)τ−(x) = 〈x|(n1n2)τ−〉

and

ψI(n1n2)τ
(x) = 〈x|(n1n2)τ ; I〉.

For every energy level of the non-interacting spectrum
Στ0 , there is a two-fold degenerate level in the spectrum
of Hτ

∞, denoted Στ∞. From the degenerate eigenvectors
(21), the simultaneous eigenvectors of energy and particle
permutation can be constructed:

|(n1n2)τ∞; [2]〉 =
1√
2

(|(n1n2)τ ; I〉+ |(n1n2)τ ; II〉)(23)

|(n1n2)τ∞; [12]〉 =
1√
2

(|(n1n2)τ ; I〉 − |(n1n2)τ ; II〉)

≡ |(n1n2)τ [12]〉.
This is an example of bosonic fermionization a la Gi-
rardeau for the unitary limit of the contact interac-
tion [18]. These two wave functions have the same energy
and configuration space density, although they have dif-
ferent momentum distributions.

A final comment before moving to the symmetric
case: just like Hτ

0 , the integrability of Hτ
∞ means that

the quantum number composition (n1n2) of the states
|(n1n2)τ∞; [2]〉 and |(n1n2)τ∞; [12]〉 do not change as τ is
adiabatically varied, even though the states and energies
do.
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B. Symmetric case a = 0

When the barrier is erected in the middle of the sym-
metric trap, then parity and permutation symmetry are
preserved for all values of τ and γ. This means that all
states can be reduced into one of four irreps of P2×O(2):
[2]+, [2]−, [12]+ and [12]−. In other words, the total
Hilbert space for the system is broken into four sectors

Hτγ = H[2]+ ⊕H[2]− ⊕H[12]+ ⊕H[12]− (24)

and there are no matrix elements of the Hamiltonian Hτ
γ

for vectors in different sectors. The parity of Hτ
0 eigen-

states |(n1n2)τ+〉 and |(n1n2)τ−〉 are (−1)n1+n2 . For
the Hτ

∞ eigenstates, the permutation symmetric state
|(n1n2)τ∞; [2]〉 has parity −(−1)n1+n2 , whereas for the an-
tisymmetric state |(n1n2)τ∞; [12]〉 the parity has the nor-
mal form (−1)n1+n2 .

Another consequence of the centered barrier is that so-
lutions for H∞0 (which has well permutation symmetry)
and H∞∞ (which has well and ordering permutation sym-
metry) can also be constructed from the eigensolutions
of H0

0 . This occurs because the barrier is raised exactly
where every negative parity single-particle eigenstate |ni〉
of ĥi has a node. The spectrum Σ∞0 is the subset of Σ0

0

derived from compositions of odd positive integers. Fol-
lowing the same argument as the algebraic construction
of the unitary limit solutions of Hτ

∞, the odd-parity sin-
gle particle sates can be used to form a snippet basis for
H∞0 . Each composition (n1n2) of two odd states leads to
a four-fold (n1 = n2) or an eight-fold (n1 6= n2) degener-
ate energy level (assuming no additional symmetries or
accidental degeneracies), in agreement with the analysis
of the kinematic symmetries and degeneracies for cases V
and VI. To see this, define the quadrants in configuration
space x = (x1, x2) ∈ X :

XA = {x|x1 > 0, x2 > 0},XB = {x|x1 < 0, x2 > 0},
XC = {x|x1 < 0, x2 < 0},XD = {x|x1 > 0, x2 < 0}.

Then for a composition (nn) with n odd there are four
‘snippet’ basis vectors, one for each quadrant. The snip-
pet basis vector ψA(nn)(x) = 〈x|nn;A〉 for the XA quadrant

is defined using the position representation ψ(nn)(x) =
〈x|nn〉, i.e.

ψA(nn)(x) =

{
2ψnn(x) x ∈ XA
0 x /∈ XA

. (25)

The same definition holds for |nn;C〉. For |nn;B〉 and
|nn;D〉, the phase convention

ψB(nn)(x) =

{
−2ψnn(x) x ∈ XB
0 x /∈ XB

(26)

is convenient because all quadrants have the same phase.
Similarly, the following eight degenerate energy eigen-

vectors can be defined when n1 6= n2 using restrictions

to quadrants and the same phase convention:

|n1n2;A〉, |n2n1;A〉, |n1n2;B〉, |n2n1;B〉,
|n1n2;C〉, |n2n1;C〉, |n1n2;D〉, |n2n1;D〉.

Simultaneous eigenvectors of energy, particle exchange,
and parity can be constructed from these snippet vectors.
For compositions of a single odd quantum number, they
are

|(nn)∞0 ;[2]+;1〉 =
1√
2

(|nn;A〉+ |nn;C〉) (27a)

|(nn)∞0 ;[2]+;2〉 =
1√
2

(|nn;B〉+ |nn;D〉) (27b)

|(nn)∞0 ;[2]−〉 =
1√
2

(|nn;A〉 − |nn;C〉) (27c)

|(nn)∞0 ;[12]−〉 =
1√
2

(|nn;B〉 − |nn;D〉) . (27d)

Note that the two states (27a) and (27b) have the same
energy, parity and exchange symmetry, so any linear com-
bination of them is also a simultaneous eigenvector of the
three symmetry operators. For compositions of two odd
numbers (n1n2) are

|(n1n2)∞0 ;[2]+;1〉 =
1√
2

(|(n1n2)+;A〉+ |(n1n2)+;C〉)

|(n1n2)∞0 ;[2]+;2〉 =
1√
2

(|(n1n2)+;B〉+ |(n1n2)+;D〉)

|(n1n2)∞0 ;[2]−;1〉 =
1√
2

(|(n1n2)+;A〉 − |(n1n2)+;C〉)

|(n1n2)∞0 ;[2]−;2〉 =
1√
2

(|(n1n2)−;B〉 − |(n1n2)−;D〉)

|(n1n2)∞0 ;[12]+;1〉 =
1√
2

(|(n1n2)−;A〉+ |(n1n2)−;C〉)

|(n1n2)∞0 ;[12]+;2〉 =
1√
2

(|(n1n2)−;B〉+ |(n1n2)−;D〉)

|(n1n2)∞0 ;[12]−;1〉 =
1√
2

(|(n1n2)−;A〉 − |(n1n2)−;C〉)

|(n1n2)∞0 ;[12]−;2〉 =
1√
2

(|(n1n2)+;B〉 − |(n1n2)+;D〉) .

Every simultaneous eigenvector of O(1) × P2 is two-fold
degenerate for these levels. Note that six of these vec-
tors have no support along the line x1 = x2, either be-
cause they have no support in quadrants XA and XC ,
or because they have nodes due to particle permutation
antisymmetrization. These six states form an invariant
subspace under variations of γ because they do not feel
the zero-range contact interaction. If a small finite range
were included, this six-fold degeneracy would break into
three two-fold degenerate levels.

Finally, these results are combined with the previous
subsection to find the spectrum of H∞∞ . Now there are
six regions of configuration space, denoted XAI , XAII ,
XB , XCI , XCII , and XD. The spectrum of this Hamilto-
nian is the same as H∞0 , i.e. energies for every composi-
tion (n1n2) of two odd positive integers. Compositions
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with n1 = n2 are two-fold degenerate, and compositions
n1 6= n2 are eight-fold degenerate. Without presenting
all the definitions but relying on the notation to carry the
semantic load, the simultaneous eigenvectors for energy,
particle permutation and parity for n1 = n2 = n an odd
positive integer are

|(nn)∞∞;[2]+〉 =
1√
2

(|nn;B〉+ |nn;D〉) (28)

|(nn)∞∞;[12]−〉 =
1√
2

(|nn;B〉 − |nn;D〉) ,

For n1 6= n2 odd positive integers, the definitions are

|(n1n2)∞∞;[2]+;1〉 =
1

2
(|(n1n2)−;AI〉+ |(n1n2)−;AII〉

+|(n1n2)−;CI〉+ |(n1n2)−;CII〉)

|(n1n2)∞∞;[2]+;2〉 =
1√
2

(|(n1n2)+;B〉+ |(n1n2)+;D〉)

|(n1n2)∞∞;[2]−;1〉 =
1

2
(|(n1n2)−;AI〉+ |(n1n2)−;AII〉

−|(n1n2)−;CI〉 − |(n1n2)−;CII〉)

|(n1n2)∞∞;[2]−;2〉 =
1√
2

(|(n1n2)−;B〉 − |(n1n2)−;D〉)

|(n1n2)∞∞;[12]+;1〉 =
1

2
(|(n1n2)−;AI〉 − |(n1n2)−;AII〉

−|(n1n2)−;CI〉+ |(n1n2)−;CII〉)

|(n1n2)∞∞;[12]+;2〉 =
1√
2

(|(n1n2)−;B〉+ |(n1n2)−;D〉)

|(n1n2)∞∞;[12]−;1〉 =
1

2
(|(n1n2)−;AI〉 − |(n1n2)−;AII〉

+|(n1n2)−;CI〉 − |(n1n2)−;CII〉)

|(n1n2)∞∞;[12]−;2〉 =
1√
2

(|(n1n2)+;B〉 − |(n1n2)+;D〉) .

If there were a finite range to the interaction, these eight
levels would break into two two-fold degenerate levels for
the states with two particles in the same well, and two
two-fold degenerate levels for the particles in different
wells.

V. EXAMPLES OF SOLVABLE MODELS

The analysis of the limiting cases of Hτ
γ described

above holds for any symmetric external trap potential
V (x) = V (−x). The summary insights are:

• For any a, the limiting cases of no interaction Hτ
0

and infinite contact interactions Hτ
∞ are integrable

for every τ .

• When a 6= 0, the energy spectrum (energies, degen-
eracies, and eigenstates) of Hτ

∞ can be determined
from the spectrum of H0

τ using algebraic methods
and all states are classified by irreps of P2.

• When a = 0, the energy spectrum of H0
∞, H∞0 and

H∞∞ can be determined from the spectrum of H0
0

using algebraic methods and all states are classified
by irreps of O(1)× P2.

To make these results more clear, and to show how the
spectra map onto each other as parameters are varied, the
next two subsections provide examples for two familiar
traps with extra solvability (and therefore extra symme-
try): infinite square well and harmonic trap. For these
wells the Hamiltonians H0

γ and Hτ
γ are also solvable.

A. Infinite square well

For the infinite square well potential

V (x) =

{
0 0 < x < L
∞ else

(29)

(the x origin has been shifted by a/2 for convenience of
notation) has the familiar sinusoidal solutions

〈x|n1n2〉 ≡ ψn1n2
(x) (30)

=
2

L
sin

(
(n1 + 1)πx1

L

)
sin

(
(n2 + 1)πx2

L

)
with energies

En1n2
=

~2
(
(n1 + 1)2 + (n2 + 1)2

)
π2

2mL2
(31)

≡
(
(n1 + 1)2 + (n2 + 1)2

)
ε0.

The stationary states provide the energy eigenbases of
H0

0 , H∞0 , H0
∞ and H∞∞ with suitable superpositions and

restrictions defined above. The properties of the lowest
energy states for these four cases are summarized in Table
V.

For the infinite square well potential, the Hamiltoni-
ans Hτ

0 , Hτ
∞, H0

γ , and H∞γ are also solvable in terms of
simple transcendental equations for any value of τ or γ.
As a result, the spectra at the four limiting cases H0

0 ,
H∞0 , H0

∞ and H∞∞ can be mapped to each other using
explicit solutions. Although for any potential Hτ

0 and
Hτ
∞ are integrable, the integrability of H0

γ and H∞γ is
special to homogeneous potentials and an example of a
system where the Bethe ansatz works [62, 63]. In Figs. 6
and 7, the variation of the lowest energy levels are de-
picted. Summarizing observations about level mapping
from these exact solutions:

• As τ increases from 0 to∞, the H0
0 eigenstates with

energy E(n1−1)(n2−1), En1(n2−1), and E(n1−1)n2
are

mapped to H∞0 eigenstates in the energy level
En1n2 for n1 and n2 both odd. This holds for both
four-fold and eight-fold degenerate levels of H∞0 .

• As γ increases from 0 to ∞, the H0
0 eigenstates

|(n1n2)+〉 are mapped to H0
∞ eigenstates |n1(n2 +

1)0∞;[2]π〉, where the parity is the same as the orig-
inal state π = (−1)n1+n2 .
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Energy Wave functions Degeneracy pattern
(Composition) Sym. Antisym. H0

0 H0
∞ H∞0 H∞∞

2ε0
(00)

1 0
0 0

5ε0
(01)

0 1
0 1

1 0
0 1

8ε0
(11)

1 0
0 0

2 1
0 1

1 0
0 1

10ε0
(02)

1 0
1 0

0 1
1 0

13ε0
(12)

0 1
0 1

1 0
0 1

16ε0
(03)

0 1
0 1

1 0
0 1

18ε0
(22)

1 0
0 0

20ε0
(13)

1 0
1 0

0 1
1 0

2 2
2 2

2 2
2 2

TABLE V. This table describes the lowest energy levels for
H0

0 , H∞0 , H0
∞ and H∞∞ with the infinite square well poten-

tial. The composition tells what single-particle states make
up the energy level. The inset figures for each energy are
contour plots of 〈x|(n1n2)+〉 (for n1 = n2 or n1 6= n2) and
〈x|(n1n2)−〉 (only for n1 6= n2). The two-by-two arrays for
each energy and each Hamiltonian show the degeneracy of
the four types of irreducible representations of particle ex-
change symmetry and parity symmetry. The top row of each
array is for [2]+ and [2]−, symmetric states with positive and
negative parity. The bottom row is [12]+ and [12]− for the
antisymmetric states of both parities.

• As τ increases from 0 to∞, the H0
∞ eigenstates fol-

low the same rules for mapping to H∞∞ eigenstates
as the H0

0 eigenstates followed for mapping to H∞0
eigenstates.

• As γ increases from 0 to ∞, for H∞0 energy levels
with n1 = n2 = n, the eigenstates |(nn)∞0 ; [2]+;1〉
and |(nn)∞0 ;[2]−〉 representing two particles in the
same well and they are mapped to H∞∞ eigenstates
|(n(n+ 2))∞∞;[2]+;1〉 and |(n(n+ 2))∞∞;[2]−;1〉. The
two states |(nn)∞0 ;[2]+;2〉 and |(nn)∞0 ;[12]−〉 corre-
sponding to particles in separate wells are invariant
as γ is changed. Similarly, for H∞0 energy levels
with n1 6= n2, the two states |(n1n2)∞0 ;[2]+;1〉 and
|(n1n2)∞0 ;[2]−;1〉 shift to |(n1(n2+2))∞∞;[2]+;1〉 and
|(n1(n2+2))∞∞; [2]−;1〉, and the other six remain in-
variant.

What is the point of all this detailed analysis of level
mapping? One consequence is that the order in which
trap and interaction parameters are adiabatically tuned
matters for state control. For example, start at τ = 0
and γ = 0 in the ground state |00〉. Slowly tune τ → ∞

Energy ~ω 2~ω 3~ω 4~ω 5~ω 6~ω 7~ω

H0
0

1 0
0 0

0 1
0 1

2 0
1 0

0 2
0 2

3 0
2 0

0 3
0 3

4 0
3 0

H0
∞ · · · 1 0

0 1
0 1
1 0

2 0
0 2

0 2
2 0

3 0
0 3

0 3
3 0

H∞0 · · · · · · 2 1
0 1

· · · 2 2
2 2

· · · 4 3
2 3

H∞∞ · · · · · · 1 0
0 1

· · · 2 2
2 2

· · · 3 2
2 3

TABLE VI. This table describes the lowest energy levels for
H0

0 , H∞0 , H0
∞ and H∞∞ with the harmonic potential. The two-

by-two arrays for each energy and each Hamiltonian show the
degeneracy of the four types of irreducible representations of
particle exchange symmetry and parity symmetry. The top
row of each array is for [2]+ and [2]−, the symmetric states
with positive and negative parity. The bottom row is [12]+

and [12]− for the antisymmetric states of both parities.

and then γ →∞, and the state transforms as

|00〉 τ→∞−−−−→ 1√
2

(
|(11)∞0 ;[2]+;1〉+ |(11)∞0 ;[2]+;2〉

)
γ→∞−−−−→ 1√

2

(
|(13)∞∞;[2]+;1〉+ |(11)∞∞;[2]+〉

)
(32)

which is a superposition of energy eigenstates. On the
other hand, if the interactions are adiabatically ramped
to the unitary limit and then the tunneling is quenched,
the state transforms as

|00〉 γ→∞−−−−→ |(01)0∞;[2]+〉 τ→∞−−−−→ |(11)∞∞;[2]+〉 (33)

into an energy eigenstate. If additionally, spin con-
trol were accessible and could change the effective sym-
metrization of a state, then it seems state control schemes
that exploit these degeneracies are possible. However, an
infinite square well with a zero-range barrier and interac-
tions, tunable to extreme limits can only ever be an ap-
proximation. Then the question becomes, how sensitive
is this kind of control to the vagaries of real experiments,
where multiple assumptions may fail by a little or a lot?
That is a question for further work.

B. Harmonic Trap

For the harmonic oscillator trap, U(2) symmetry in
phase space provides for additional systematic degen-
eracies, as well as renders the four limiting cases H0

0 ,
H∞0 , H0

∞ and H∞∞ algebraically solvable. In fact there is
enough additional symmetry so that those cases are su-
perintegrable and solvable in both rectangular and polar
coordinates. The N -th energy level of H0

0 has (N + 1)-
fold degeneracy because of the equal energy level spacing,
and then this degeneracy has consequences for the other
three limiting cases; see Tab. VI.

As always, Hτ
0 and Hτ

∞ are integrable. Further, H0
γ

and H∞γ are also solvable [45, 46, 62] (but not alge-
braically solvable). The additional U(2) symmetry pro-
vided by the underlying isotropic harmonic trap allows
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FIG. 6. Exact energy levels for Hτ
0 , H∞γ , H0

γ , and Hτ
∞ for two particles in the infinite square well potential. Energy is measured

in units of ε0. Parameters τ and γ are measured in units of ε0L. Solid (red) lines indicate a non-degenerate energy level, dashed
(blue) lines are two-fold degenerate, and the thicker (brown) line with longer dashes is six-fold degenerate.

FIG. 7. Same as Fig. 6, but with four figures are combined
into a three-dimensional representation that aligns with the
edges in Fig. 1. The gray vertical lines represent a break
before the infinite limits. The splitting and merging of energy
levels and the asymmetry between to two solvable paths from
H0

0 to H∞∞ can be seen.

separability in center-of-mass and relative coordinates for
H0
γ . The Hamiltonian H∞γ can be solved by defining an

extension of the Hamiltonian in sectors A and C into sec-
tors B and D, and then forming suitable superpositions
of separable solutions that solve the nodal boundary con-
ditions at x1 = 0 and x2 = 0. The energy levels for all
four limiting case Hamiltonians are depicted in Fig. 8.
Numerical evidence from the exact solutions, confirmed
by perturbation theory, shows that the additional degen-
eracies found for H0

0 , H∞0 , H0
∞ and H∞∞ with the har-

monic oscillator trap do not exist for the non-algebraic
solutions of Hτ

0 , Hτ
∞, H0

γ , and H∞γ .

VI. MORE PARTICLES, MORE WELLS

The detailed symmetry analysis presented above may
seem like overkill for finding the particular spectrum of
a model with two-particles in one dimension since nu-
merical methods converge speedily. Even for more com-
plicated traps and interactions, many numerical approx-
imation schemes can generate spectral results that are
more accurate than the effective model and experimen-
tal control of any real experiment with ultracold atoms.
What the symmetry analysis does provide is an analysis
of what spectral features are universal for any trap and
two-body interaction, and what is particular to specific
traps, barriers and interactions. It also provides a mech-
anism for generating relations between models through
symmetry breaking that can be used to track how states
change under adiabatic tuning of model parameters. For
systems with more degrees of freedom, where numeri-
cal methods are more difficult, symmetry methods may
therefore provide a boost to model analysis.

The most important general results are:

• For non-interacting particles, no matter how many
wells and how many particles, no matter the trap
and the tunneling, the system is separable and Li-
ouville integrable. It may of course be quite dif-
ficult to extract the spectrum for a strange trap
shape, but in principle it is solvable with arbitrary
accuracy.

• At the unitary limit of contact interactions, the sys-
tem is Bethe-ansatz integrable and solutions are
constructed via the Girardeau mapping for any
trap, barriers, and particle number.

• Finally, for the infinite square well trap, for any
number of particles and contact interactions of any
strength, the system is integrable for no barriers
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FIG. 8. Exact energy levels for Hτ
0 , H∞γ , H0

γ , and Hτ
∞ for two particles in the harmonic potential. Energy is measured in units

of ~ω. Parameters and τ and γ are measured in units of ~ωσ, where σ is the harmonic oscillator length scale. Solid thin (red)
lines indicate a non-degenerate energy level, dashed thin (blue) lines are two-fold degenerate, and dotted thin (green) lines are
three-fold degenerate. In the H∞γ graph only, the thick solid (purple) line is four-fold degenerate, the thick dashed (brown) line
is six-fold degenerate, and the thick dot-dashed black line is eight-fold degenerate.

FIG. 9. Potentials in configuration space for a harmonic trap
split by thin barriers into well and sectioned by barriers in
black and contact interactions in gray (red online). The three
cases are: (left) two particles in three wells with contact in-
teractions; (center) three particles in two wells; (right) three
particles in three wells.

and for infinite delta-barriers (or Heaviside step
barriers). The Bethe ansatz solution for the finite
interval works in each multiparticle square well.

As an example of the minimal case of an underfilled
lattice with interacting particles, the first subfigure in
Fig. 9 depicts the configuration space for two particles
in a harmonic well that is split symmetrically by two
barriers into three wells. In the limit of infinite bar-
riers, there are nine two-particle sectors. The central
sector, corresponding to both particles in the middle is
non-degenerate, but the rest break into two quartets of
exchangeable sectors. When there are no interactions,
combining the separability with well permutation gives
singly- or doubly-degenerate energy levels for both parti-
cles in the central well, and four- or eight-fold degenerate
for one particle in middle well and one in edge well or
both in edge wells. If the contact interaction is tuned to
the unitary limit, the three sectors with particles in the

same well split into subsectors, and the degeneracy is re-
arranged. There are two four-fold and two two-fold well
permutation symmetries, with one of each being separa-
ble.

The simplest overfilling is realized by three parti-
cles in two wells, depicted in the middle subfigure in
Fig. 9. Without interactions, there is eight-fold well-
permutation symmetry for a symmetrically-placed bar-
rier in a symmetric trap. Contact interactions of finite
strength break that symmetry into two-fold and six-fold
exchangeable sectors, but the unitary limit increases it
back up to two twelve-fold degenerate sectors. That
means that the symmetry group has order (12!)2, and
that huge number make evident both the power and the
limitations of exploiting this symmetry.

As a final comment on extensions, the three-particle,
three-well case depicted in the right subfigure of Fig. 9
has a symmetry group (in the case of no interactions
or tunneling) that contains the Rubik’s cube group as a
subgroup [64].

VII. CONCLUSIONS

The group structure provided by impenetrable barri-
ers, whether they are ‘real’ barriers that partition traps
into wells or ‘interaction’ barriers that trap particles into
specific orderings, is surprisingly rich, especially when
parity is preserved. Even for two interacting particles
in two wells, the possible symmetry structures are varied
and complicated. Building up from the bottom, the order
of finite symmetry group grows exponentially with the
number of particles and impenetrable wells, even when
the interactions are intermediate. This is promising, be-
cause the degrees of freedom are also growing rapidly,
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but it is also a challenge because working through the
configuration space combinatorics is a non-trivial task
and should only be undertaken if there is a meaningful
pay-off. ‘Digitizing’ the system by erecting impenetrable
barriers seems to offer both promise and peril.

One avenue that looks productive is using these sym-
metries to induce degeneracies (and near-degeneracies)
which can then be exploited for state control. One ex-
ample for such an idea was presented in the section on the
infinite square well, where it was shown that state evolu-
tion under adiabatic tuning of the interaction parameter
and the tunneling parameter from zero to infinity de-
pended on the order in which the tuning was performed.
This is perhaps not surprising, but does open the pos-
sibility of using loops in parametrized ‘model space’ to
generate novel and useful quantum superpositions.

Another, more speculative idea is to see whether the
symmetries of the few-body, few-well problems with uni-
tary interactions and infinite barriers could be harnessed
as an ‘analog quantum computer’ for combinatorics prob-
lems. Akin to the boson sampling problem [65] for cal-
culating matrix permanents, perhaps there are combina-
torics problems that (in the near future) would take fewer

resources to embody in a few-body, few-well ultracold
atomic system than to solve with traditional computers.

A final question is whether and how few-body, few-well
models limit to the many-body, infinite lattice problem.
Is it really practically to explore many-body physics from
the bottom up? In particular, can the favorable growth
of combinatoric symmetries for the strongly-interacting,
weakly-tunneling be useful? This question and the pre-
vious ideas are worth further investigation.
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56003 (2016).
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