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We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-
Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms,
not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics
of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient.
Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies
(condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where
the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass
objects and find that their dynamics are drastically different from their positive mass counterparts -
they do not undergo Brownian motion. From the exact phase space probability distribution function
(i.e. in position and velocity), we find that both the trajectory and lifetime of the soliton are altered
by friction, and the soliton can only undergo Brownian motion in the presence of friction and a
confining potential. These results agree qualitatively with experimental observations by Aycock, et.
al. (PNAS, 2017) in a similar system with bosonic impurity scatterers.

I. INTRODUCTION

Solitons are common in physical systems, from water
waves to optical pulses. These particle-like excitations
propagate without changing their shape; their remark-
able stability is related to the integrability of the under-
lying nonlinear equations describing them. Advances in
ultracold quantum gases have lead to experiments with
precise control over the manipulation and creation of soli-
tons. Dark solitons, associated with a dip in density,
and bright solitons, associated with a bump in density,
have been experimentally observed [1–5]. In the near
future, more complicated structures such as vector soli-
tons and magnetic solitons could be realized in ultracold
gases. Spinor condensates, Bose-Fermi mixtures, and
binary condensates have all been proposed as systems
for exploring exotic soliton physics [6–11]. Furthermore,
solitons in quantum gases are close relatives of magnetic
solitons in solid state systems, such as domain walls and
skyrmions, which have been proposed as candidates for
information storage [12–16]. Theoretical understanding
of how dissipation and noise affects solitons is essential
for their incorporation in future technologies.

Matter-wave dark solitons in Bose-Einstein conden-
sates (BEC) are ideal probes of both classical and quan-
tum dynamics. Their heavy mass and localized nature
allow their dynamics to be understood classically. How-
ever, they are also highly sensitive to dimensionality and
background fluctuations [17]. Recent years have seen re-
newed theoretical interest in the effects of friction and
dissipation on solitons, which can greatly affect their life-
time and stability [18–25]. Additionally, the diffusion
coefficient of a soliton was recently measured experimen-
tally for the first time [26].

In the theoretical literature, dissipation in solitonic
systems has been studied by including a trap or intro-

ducing additional dimensions [18, 27–29]. In higher di-
mensions, solitons are unstable and experimental systems
must be close to one-dimensional (1D) in order to observe
them. The friction coefficient of the soliton is related to
the reflection coefficient of excitations scattering off of
it [18, 22, 24, 30]. In isolated Bose gases at non-zero
temperature, these scatterers would be the Bogoliubov
quasiparticles of the original condensate, and their reflec-
tion coefficient can be calculated for various geometries.
However, in a 1D scattering theory and without a trap
the Bogoliubov excitations are reflectionless, and there-
fore do not cause Ohmic friction [21, 24]. It was recently
shown that non-Ohmic friction can still occur in these
systems by accounting for non-Markovian effects [21].
However, experimental system are necessarily quasi-1D,
therefore both Ohmic friction and non-Markovian fric-
tion are present.

In this work we consider an alternative way to induce
Ohmic friction in a 1D system consisting of a conden-
sate, with a dark soliton, coupled to a non-interacting
cloud of fermionic “impurity” atoms. This is similar
to the setup employed in Ref. [26]. We present three
main results: First, the system with impurities can be
tuned to have zero Ohmic friction, based only on the ra-
tio of interspecies (impurity-condensate) to intraspecies
(condensate-condensate) interaction strengths. Secondly,
in contrast to objects with positive mass, for a negative
mass object such as a dark soliton there is no diffusion in
a meaningful sense in free space. We show that the soli-
ton undergoes only ballistic motion due to the fact that
friction increases its speed, providing an anti-damping
force. Third, in the presence of Ohmic friction and an
external potential, the dark soliton can undergo diffusion
or Brownian motion, characterized by a mean squared
displacement that grows linearly in time, 〈x̄2〉 ∝ Dt. In
this case, the diffusion coefficient is D ∝ γ/ω2, where γ is



2

the friction coefficient and ω is the frequency of harmonic
confinement. The diffusion coefficient is proportional to
the amount of friction in the system, in contrast to the
usual case where D ∝ 1/γ [31]. Dark solitons provide
an ideal experimental testbed for the mechanism of trap-
induced Brownian motion.

The paper is structured as follows: In Sec. II we outline
the model of a dark soliton in quasi-1D BEC in the pres-
ence of non-interacting fermions. In Sec. III we discuss
the single-particle scattering properties of the fermions
in the presence of the soliton, which acts as a poten-
tial well for the fermions. Sec. IV is devoted to kinetic
theory, where we derive two essential equations: the mi-
croscopic expression for the friction coefficient, and the
kinetic equation for the soliton probability distribution
function (PDF), which can be calculated exactly. In
Sec. V, we use the PDF to calculate the soliton’s av-
erage position and variance in position. We show that
Brownian motion only occurs in the presence of an ex-
ternal trap and calculate the diffusion coefficient. We
use the PDF again in Sec. VI to define and calculate the
soliton lifetime. Finally, in Sec. VII we discuss possible
experimental implementations of our proposal and con-
clude. Technical details of the calculations are left to the
Appendices.

II. MODEL

We consider a quasi-1D bosonic superfluid interacting
with a Fermi gas in an external potential. The proposed
creation and manipulation of solitons requires a highly
elongated geometry with confinement frequency ωc/i,x �
ωc/i⊥, where the subscript c denotes the bosons that
make up the condensate, subscript i denotes fermionic
impurity atoms, and ωc/i,x and ωc/i⊥ denote the confine-
ment frequencies for the elongated and transverse direc-
tions, respectively.

A 1D theory is sufficient to describe the quasi-1D sys-
tem provided that the transverse confinement is tight
enough that transverse degrees of freedom can be elim-
inated, conditions which we enumerate below. Under
these conditions, the system is described by the 1D
Hamiltonian Ĥ = Ĥc + Ĥi + Ĥint,

Ĥc =

∫
dx

~2

2mc
∇ϕ̂†∇ϕ̂+ U(x)ϕ̂†ϕ̂+

g

2
ϕ̂†ϕ̂†ϕ̂ϕ̂ (1)

Ĥi =

∫
dx

~2

2mi
∇ψ̂†∇ψ̂ + U(x)ψ̂†ψ̂ (2)

Ĥint =

∫
dx g′ψ̂†ϕ̂†ϕ̂ψ̂, (3)

where U(x) is an external potential, ~ is Planck’s con-
stant and mc and mi denote the masses of the conden-
sate and impurity atoms, respectively. The field opera-

tors are denoted ϕ̂ for bosons and ψ̂ for fermions. By
integrating over transverse degrees of freedom, the 1D

interaction strengths are given by the well known ex-
pressions g = 2~ωc⊥acc and g′ = 2~√ωc⊥ωi⊥aci where
acc and aci denote the three-dimensional intraspecies
(boson-boson) and interspecies (boson-fermion) scatter-
ing lengths [32, 33].

At very low temperatures the bosons undergo Bose-
Einstein condensation. Provided that the bosons are
weakly interacting (gnc � 1 where nc is the density),
we can make the mean-field approximation 〈ϕ̂〉 → ϕ0.
The field ϕ0 denotes the macroscopic wavefunction of
the condensate, which obeys the Gross-Pitaevskii equa-
tion (GPE)

i~
∂ϕ0

∂t
= − ~2

2mc

∂2ϕ0

∂x2
+U(x)ϕ0 +g|ϕ0|2ϕ0 +g′niϕ0, (4)

where ni = 〈ψ̂†ψ̂〉 is the impurity density.
The condensate profile then appears as an external po-

tential V (x) = |ϕ0(x)|2 for the impurity atoms, which
we treat using a single-particle model. The single parti-
cle wavefunction of the fermions, denoted ψ, obeys the
Schrödinger equation

i~
∂ψ

∂t
= − ~2

2mi

∂2ψ

∂x2
+ U(x)ψ + g′|ϕ0|2ψ. (5)

Hamiltonian equations (1)-(3) apply to both bosonic
and fermionic impurities; in this work we consider the
latter. Such Bose-Fermi mixtures have been realized ex-
perimentally and have been shown to be stable in quasi-
1D [33–39]. In order for our 1D theory to be applicable,
the system must be in the quasi-1D regime. This corre-
sponds to the condition µc � ~ωc⊥ for the condensate
and µi � ~ωi⊥ for the impurity atoms, where µc,i is the
chemical potential of the condensate and impurities, re-
spectively.

In the microscopic theory, the harmonic potential U(x)
is assumed to be sufficiently shallow such that lt � ξ,
where lt =

√
~/mcωc,x is the effective length scale of

the trap and ξ is the healing length of the condensate.
Therefore, the trap only weakly affects the solutions to
equations (4) and (5) and we set U(x) = 0 in the fol-
lowing. The background (Thomas-Fermi) confining po-
tential provided by the BEC in a trap will however be
important when we consider the semiclassical dynamics
of the soliton in later sections.

Under the assumption U(x) = 0, equation (4) is known
to have dark soliton solutions of the form ϕ0(x, t) =
ϕ̃0(x− vst)e

−iµct/~, with

ϕ̃0(x− vst) =
√
nc

[
i
vs

c
+ γs tanh

(
γs
x− vst√

2ξ

)]
, (6)

where vs denotes the soliton velocity, nc is the density of
the condensate as x → ±∞, c =

√
µc/mc is the speed

of sound in the condensate with chemical potential µc =
gnc, γ2

s = 1− v2
s /c

2, and ξ = ~/
√

2mcc is the condensate
healing length. We have also neglected the last term in
equation (4), ∝ g′ni, because at very low densities the
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FIG. 1. (color online) The reflection coefficient R(k, λ) as a
function of λ where λ(λ−1) = 2mig

′/mcg. R(k, λ) is strongly
peaked at k ≈ 0 and is periodic as a function of λ. When λ
is an integer R(k, λ) is exactly zero.

impurity atoms do not impede soliton creation and it
is safe to assume the typical dark soliton profile for the
condensate wavefunction [26].

We see from equation 5 and (6) that the dark soliton
creates a potential well for the impurity atoms. First,
we analyze the single particle scattering properties of the
impurities due to the soliton well. In our further analysis
we treat the soliton as a classical particle interacting with
a bath of fermionic quantum scatterers, similar to the
problem of a heavy particle moving through a gas of much
lighter particles [40].

III. IMPURITY SCATTERING

We can rewrite equation (5) in the frame co-moving
with the soliton by making the variable transformation
z = γs(x − vst)/

√
2ξ, ψ(x, t) = e−iEt/~eikszψ(z) where

ks = mivs/~. This gives the following time-independent
Schrödinger equation for impurity atoms,

∂2ψ(z)

∂z2
+

[
λ(λ− 1)

cosh2 z
+ k2

]
ψ(z) = 0, (7)

where

λ(λ− 1) =
2mig

′

mcg
; k2 =

4miξ
2

~2γ2
s

(
E +

miv
2
s

2
− g′nc

)
.

(8)
The potential in equation (7) is known as the Pöschl-
Teller potential, whose solutions are known in closed form
and has been widely studied in the context of supersym-
metric quantum mechanics [40–46]. The reflection coef-
ficient of scattering states is

R(k, λ) =
1− cos(2πλ)

cosh(2πk)− cos(2πλ)
. (9)

R(k, λ) vs. λ is shown in Figure 1. Furthermore,
R(k, λ) = 0 when λ takes integer values, thus the soliton
can become reflectionless to the impurities. The soli-
ton potential well can also have bound states. The total
number of bound states is the largest positive integer
j < λ − 1. One or two fermionic impurities may occupy
each bound state in the soliton core, and these bound par-
ticles affect the phase shift of scattered impurities. The
effect of bound states and scattering state phase shifts
are taken into account when we calculate the chemical
potential of the fermions in Appendix A.

IV. KINETIC THEORY OF DARK SOLITONS

The energy of the soliton texture in equation (6) is
calculated by subtracting the uniform background, and
it is given by

E(vs) =
4~ncc

3

(
1− v2

s

c2

)3/2

≈ 4~ncc

3
− Mv2

s

2
. (10)

Here we expanded E(vs) under the condition vs � c.
The soliton is effectively a particle with negative mass
of magnitude M = 4~nc/c = 4

√
2ncξmc. The soliton is

heavy compared to a single atom, mc � M , with width
ξ/γs. The heavy mass and localized nature of the dark
soliton justifies the following classical treatment of its dy-
namics [47].

We note here thatM is often called the “inertial mass”,
whereas one can also define the “gravitational mass”
(Mg) of a soliton, which is also negative. Gravitational
mass is the missing mass of the atoms in the soliton core,
given by integrating over the soliton density with the uni-
form background subtracted, −Mg = mc

∫
dx(ns − nc),

where ns(x, t) = |ϕ̃0(x − vst)|2 from equation (6). For a

stationary soliton, Mg = 2
√

2ncξmc and M = 2Mg. In
the case of harmonic confinement the soliton has gravita-
tional potential energy U(xs) = −Mgω

2
c,xx

2
s/2. This dis-

tinction is important for the soliton’s classical equation
of motion, given by −Mẍ = Mgω

2
c,xx. Dark solitons are

quite stable in a harmonic trap and oscillate as a classical
particle would, with effective frequency ω = ωc,x/

√
2 [47–

49].
In order to describe the diffusive behavior of solitons,

we need to understand how a soliton will deviate from
the average trajectory computed for many solitons. Soli-
ton dynamics can be most readily examined by under-
standing their probability distribution function (PDF)
f(t, xs(t), vs(t)). The soliton PDF obeys the kinetic equa-
tion

∂f

∂t
+ vs

∂f

∂xs
+ v̇s

∂f

∂vs
= I [f ] , (11)

where the collision integral I [f ] accounts for scattering
of fermionic impurities off of the soliton. As the soli-
ton is much heavier than the fermions, M � mi, the
transferred momentum to and from the soliton due to
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collisions is small. This assumption results in a collision
integral of Fokker-Plank form

I [f ] =
∂

∂vs

(
−Avsf +

∂

∂vs
[Bvsf ]

)
, (12)

which we derive in Appendix B. The transport coeffi-
cients Avs and Bvs account for drift and diffusion of the
distribution and are given by

Avs = −2~
M

∑
k

kRk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣nF(εk+ks) [1− nF(ε−k+ks)] .

(13)

Bvs =
2~2

M2

∑
k

k2Rk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣nF(εk+ks) [1− nF(ε−k+ks)] .

(14)

Where nF(εk) is the Fermi-Dirac distribution for the im-
purity atoms, which is shifted by ks because we calculated
the reflection coefficient R(k, λ) in frame co-moving with
the soliton. The impurities have the usual dispersion re-
lation εk = ~2k2/2mi, and the last term [1− nF(ε−k)]
accounts for Pauli-blocking effects on impurity scatter-
ing.

To the lowest order in ks, we expand nF(εk+ks) to find
Avs = γvs/M and Bvs = γkBT/M

2, where γ is given by

γ =
2~2

kBT

∑
k

k2Rk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣nF(εk) [1− nF(ε−k)] . (15)

This exact expression shows that Avs and Bvs are not
independent but intrinsically connected via the relation
Avs = MvsBvs/kBT . This guarantees that the colli-
sion integral vanishes when f(vs) is given by the classical
Maxwell-Boltzmann distribution. For a positive mass ob-
ject this corresponds to thermal equilibrium, however for
negative mass particles the situation is more complicated.

The crucial difference between equation (12) and the
typical collision integral for a positive mass object is that
the drift term Avs ∝ vs is negative, indicating that over
time the distribution drifts from lower to higher veloc-
ities. Thus, equation (11) does not have a stationary
solution. We show below that this leads to the absence
of diffusion in free space, where diffusion is formally de-
fined as variance in position that grows linearly in time,
〈x̄2〉 ∝ t. The apparent unbound runaway of the distribu-
tion function is a result of the expansion of the energy in
equation (10) for vs � c, as discussed in further detail in
Appendix C. If we consider the full energy spectrum then
the system does reach equilibrium, where the dark soliton
accelerates to the speed of sound and disappears. How-
ever, to describe the initial soliton trajectory we choose
to work in the regime vs � c where the collision integral
takes the simple form given by equation (12).

We note that in the case of bosonic impurities, instead
of Pauli blocking factor, there is a Bose enhancement fac-
tor, [1 + nB(ε−k)] where nB is the Bose-Einstein distribu-
tion. This factor has been overlooked previously [18, 24],
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FIG. 2. (color online) The soliton friction coefficient γ is peri-
odic as a function of λ where λ(λ− 1) = 2mig

′/mcg. Friction
vanishes for integer λ, indicating that the soliton is reflection-
less to scatterers. A system with tunable interactions enables
tuning γ without changing the number of scatterers. γ is cal-
culated in units of µi/cξ where µi is the chemical potential of
impurities, c is the speed of sound in the condensate and ξ
is the condensate healing length. For impurities of 173Yb as
we have calculated here, γ decreases with increasing temper-
ature. Increasingly dark lines indicate higher temperatures.

but it strongly influences the magnitude of the friction
coefficient for a degenerate gas of impurities [26]. More-
over, the factor is crucial for satisfying the fundamental
relation Avs = MvsBvs/kBT , which is dictated only by
equilibrium properties and is not sensitive to the nature
of the impurities [40].

Finally, combining equations (11) and (12), we find the
following Kramer’s type equation for the soliton distribu-
tion function

∂f

∂t
+ vs

∂f

∂xs
=

∂

∂vs

(
−Γvsf −

∂xs
U

M
f + Γv2

th

∂f

∂vs

)
(16)

where Γ = γ/M and v2
th = kBT/M . This equation is

analytically solvable in the case of harmonic confinement,
U(xs) = −Mgω

2
c,xx

2
s/2. We present the full solution for

the distribution function f(t, xs, vs) in Appendix C.
The Langevin equation of motion for a single soliton

can be inferred from equation (16), and it is given by

−Mẍs = −γẋs +Mω2xs + fs(t) (17)

where ω = ωc,x/
√

2. The stochastic Langevin force is
characterized by white-noise correlations with 〈fs(t)〉 = 0
and 〈fs(t

′)fs(t)〉 = 2γkBTδ(t − t′). From this equation
we see that γ plays the role of the friction coefficient.

At fixed impurity number, γ depends on three pa-
rameters: the temperature T , the parameter λ, and
the chemical potential µ, which is itself a function of
λ and T . Figure 2 shows γ as a function of λ for
four different temperatures; γ grows over many orders
of magnitude as λ is tuned from integer to half in-
teger values. The integral over k in equation (15) is
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strongly peaked around k = 0. Therefore, approximating
nF(εk=0) [1− nF(εk=0)] ≈ e−βµi and integrating over k,
one finds the following expression for the friction coeffi-
cient,

γ ≈ 3~3e−µi/kBT

2π5mikBTξ4
sin2(πλ). (18)

Recalling that λ(λ−1) = 2mig
′/mcg, we see clearly that

the system can be tuned to the frictionless limit where
γ = 0 without changing the number of impurities. Fur-
thermore, friction provides an anti-damping force to the
soliton, while the background harmonic potential pro-
vides a confining force. The interplay of friction and
confinement lead to the emergence of Brownian motion
in the system.

V. DARK SOLITON TRAJECTORY

From the solution f(t, xs, vs) of equation (16), we can
calculate exact expectation values for the soliton posi-
tion and velocity. In experiments, it is generally easier
to measure soliton position, which we focus on in the
following. The average soliton trajectory is given by

x̄s(t, ω) =
vie

Γt/2

ω̄
sin (ω̄t) , (19)

where ω̄ =
√
ω2 − Γ2/4 and vi is the initial velocity of

the soliton. The variance in soliton position, Dx, is given
by

Dx(t, ω) =
v2

th(eΓt − 1)

ω̄2
+
v2

i e
Γt

ω̄2
sin2 (ω̄t) (20)

+
v2

thΓ2

4ω2ω̄2

[
1− eΓt

(
cos(2ω̄t) +

2ω̄

Γ
sin(2ω̄t)

)]
.

The problem has an intrinsic timescale given by Γ−1 =
M/γ. For Γt & 1, the soliton’s position grows exponen-
tially, indicative of the soliton rapidly reaching the speed
of sound and disappearing. We examine equations (19)
and (20) in the short-time limit Γt � 1. The trap fre-
quency ω also considerably affects the soliton dynam-
ics. In the limit Γ � ω, we find that diffusive behav-
ior emerges, where Dx(t, ω) ∝ D0 + D(t)t with a time-
dependent diffusion coefficient

〈D(t)〉 ≈ v2
thΓ

ω2
+
v2

i Γ

ω2
sin2 (ω̄t)− v2

thΓ2

2ω3
sin(2ω̄t), (21)

with offest D0 ≈ v2
i /2ω

2 + v2
th/4ω

4. However, in the
opposite limit of ω � Γ, the linear in t term vanishes,
giving

Dx(t, ω) ≈ v2
i t

2 + v2
i Γt3 +

2

3
v2

thΓt3 (22)

to lowest order in Γt. In the absence of the restoring
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FIG. 3. (color online) Variance in soliton position Dx(t, ω)
as a function of time from the exact expression (20) for
vi/c = 0.02 (orange/light gray line) and vi/c = 0.1 (black
line) with vth ≈ 0.1 mm/s and Γ−1 ≈ 1 s. Top: Results
for a harmonic potential with ω = 100Γ. Dx grows linearly
in time with additional oscillations due to confinement. The
amplitude of oscillation increases with increasing vi. Dotted
lines show the average value using the linear approximation
in equation (21). Bottom: Comparison with Dx(t, ω) in the
limit ω � Γ (dashed lines). In the absence of harmonic con-
finement, Dx initially grows like t3 for Γt � 1, then grows
exponentially. There is no diffusive regime.

force provided by background potential, the soliton un-
dergoes ballistic transport ∝ t3, followed by the exponen-
tial growth of Dx. The exact expression for Dx(t, ω) is
shown in Figure 3. The mechanism of diffusion for dark
solitons is thus inherently different than Brownian mo-
tion for positive mass objects. Friction forces cause the
soliton to speed up, therefore the only restoring force in
the problem is due to the background confining potential,
which leads to the emergence of diffusive behavior. Fi-
nally, we see that in the frictionless limit, Γ→ 0, we have
D → 0, and there is no diffusion. For quantitative agree-
ment with experiment, the initial velocity of the soliton
vi also plays a crucial role [26].

VI. SOLITON LIFETIME

Integrating the distribution function f(t, xs, vs) over
the spatial coordinate xs, we find the distribution of soli-
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ton velocities

fv(t, vs) =
1√

4πg3(t, ω)
exp

(
− (vs − v̄s(t))

2

4g3(t, ω)

)
, (23)

parametrized by functions g3(t, ω) and v̄s(t). The func-
tion g3(t, ω) is given by

g3 =

[
4ω̄2(eΓt − 1) + eΓt

(
Γ2 + 2Γω̄ sin(2ω̄t)− Γ2 cos(2ω̄t)

)]
8ω̄2

(24)
The average velocity is given by v̄s(t), which captures
oscillations in the trap as well as exponential growth of
the soliton velocity,

v̄s(t) =
vie

Γt/2

ω̄

[
ω̄ cos (ω̄t) +

Γ

2
sin (ω̄t)

]
. (25)

Starting from the velocity distribution function in equa-
tion (23), we impose a perfectly absorbing boundary con-
dition at vs = ±c, reflecting that the soliton disappears
once it reaches the speed of sound. This can be done
using the method of images as discussed in detail in Ap-
pendix D. The total survival probability is defined by
integrating over fv from −c to c. The final expression for
survival probability is given by

P(|vs| < c; τ) =

∫ c

−c
dvsf

Img
v (t, vs), (26)

where f Img
v (t, vs) is the distribution function that obeys

the boundary condition f Img
v (t,±c) = 0 for all t. The full

expression for P(|vs| < c; τ) can be found in Appendix
D. From the method of images construction, the soliton
survival probability is exactly zero when |v̄s(t)| = c. Us-
ing the maximum value of v̄s(t) over one period, given by
v̄∗s (t) = viωe

Γt/2/ω̄, we define the soliton lifetime as the
time τs where P(|vs| < c; τs) = 0 and |v̄∗s (τs)| = c. This
gives a simple expression for the lifetime,

τs =
2M

γ
log

(
c ω̄

viω

)
. (27)

The soliton lifetime from equation (27) is shown in Fig-
ure 4. The lifetime decreases as initial velocity increases,
however it is only weakly dependent on the trapping fre-
quency ω. Furthermore, soliton lifetime is simply in-
versely proportional to the friction coefficient γ, and di-
verges as γ → 0. Tuning the friction coefficient therefore
should have a measurable effect in experiments, where
soliton lifetime increases as γ decreases.

VII. DISCUSSION AND CONCLUSION

We calculated the friction coefficient γ and the diffu-
sion coefficient D(t) of a dark soliton in the presence of a
non-interacting Fermi gas. We have shown that the soli-
ton acts as a potential well for the fermionic impurities,

0 0. 2 0. 4 0. 6 0. 8 1

vi/c

0

2

4

6

8

10

τ s
 (
s)

FIG. 4. Soliton lifetime as a function of initial velocity vi,
with ω = 100Γ and where c is the condensate speed of sound.
Solitons that start at higher initial velocities have a shorter
lifetime, which one would intuitively expect. Soliton lifetime
is only weakly dependent on trapping frequency ω.

and the scattering states and reflection coefficient of the
impurities can be calculated exactly.

In this section we estimate properties of a Bose-Fermi
mixture of 174Yb−173 Yb, however the theory is general
and applicable to other Bose-Fermi mixtures. We chose
174Yb−173 Yb as a lab-realized example with scattering
properties giving mig

′/mcg ≈ 1.3 [50, 51].
We consider a quasi-1D BEC of 174Yb atoms with

ncξ ≈ 100 and speed of sound c ≈ 1 mm/s, corresponding
to a soliton mass of M ≈ 600mc and chemical potential
µc ≈ ~ × 2 kHz. For T = 150 nK, the thermal veloc-
ity of the soliton is vth =

√
kBT/M ≈ 0.1 mm/s. The

chemical potential requires a radial trapping frequency
of ωc⊥ & 2π × 10 kHz for the quasi-1D criterion to be
satisfied, and the shallow trapping direction should have
ωc,x . 2π × 100 Hz. We set the number of 173Yb impu-
rity atoms to Ni = 1000. We choose the system length
L = 250 µm, long enough that the continuum descrip-
tion of the impurity scattering states is appropriate. We
find the chemical potential of fermions to be on the order
of kBT , which requires a transverse trapping frequency
ωi⊥ & 2π × 10 kHz for the fermions to be considered
one-dimensional. For lower frequencies ωi⊥ it is possible
to obtain an accurate theory by summing over quantized
transverse modes for the impurities [26].

Changing the magnitude of friction for the soliton re-
quires tunable interactions. The most straightforward
way of tuning interactions in the Yb system is by chang-
ing the overlap of the transverse wavefunctions of the
impurities and condensate atoms. This can be done by
applying optical forces to either the bosonic or fermionic
species which change the overlap of the atomic clouds.
The narrow linewidths in the Yb spectra are ideal for this
type of selective addressing, which can be done with high
precision [52]. Bose-Fermi mixtures with different atomic
species allow for other ways of tuning interactions by us-
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ing Feshbach resonances or magnetic field gradients [53].
For the Yb s-wave scattering lengths that have already
been measured, we find λ ≈ 2.2 [50]. Such a system
would only need to be tuned to slightly weaker interac-
tions such that λ ≈ 2 to see a decrease in friction coef-
ficient and corresponding measurable increase in soliton
lifetime. For attractive interspecies interactions (g′ < 0)
such as in 87Rb−40 K the soliton appears as a potential
barrier rather than a well. The theory is still applicable
in this case; the form of the reflection coefficient R(k) is
slightly different but still periodic in λ and the physics is
nominally unchanged [45].

We developed a general theory for the stochastic dy-
namics of negative mass objects using a kinetic equation
approach. We find that the dynamics are drastically dif-
ferent from their positive mass counterparts - they do not
undergo Brownian motion in free space. The proposed
dark soliton-Fermi gas system provides an ideal exper-
imental testbed in which to further study how friction
and dissipation affects and object with negative mass.

We presented an analytical expression for the friction
coefficient based on fermion scattering properties, includ-
ing a term accounting for Pauli blocking, which is impor-
tant to satisfy the equilibrium conditions on the trans-
port coefficients. Using this result, we found exact ex-
pressions for the soliton position and position variance
over time. We classified soliton trajectories at short times
as diffusive and ballistic, and the diffusive regime can
only be seen in the presence of a confining potential. The
crossover timescale is given by Γ−1 = M/γ, which we find
to be on the order of a second. The intrinsic frequency
Γ ∼ 1Hz is very low. Thus, the timescale over which
diffusive behavior occurs is on the order of seconds and
the diffusion coefficient can be directly measured [26].
Furthermore, the limit Γ � ω is justified for a reason-
ably shallow trapping potential which still preserves the
soliton shape. Experiments with tunable interspecies in-
teraction strength present the ability to tune the amount
of friction at fixed impurity number, providing a simple
way to manipulate the lifetime and trajectory of dark

solitons in a laboratory setting.
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APPENDIX A: CHEMICAL POTENTIAL OF
FERMIONS

In addition to the obvious dependence on R(k, λ), the
friction coefficient γ is highly sensitive to the chemical
potential of the fermionic atoms through the distribution
function nF(εk) in equation (15). Although the number
of fermions in the system is fixed, the chemical potential
is sensitive to the bound states in the soliton well, the
phase shift of the scattering states, and the density of
states at the Fermi level. In this Appendix we present the
full calculation of the chemical potential of 1D fermions
in the presence of a dark soliton potential well.

The total number of impurities is given by Ni =
Ns(µi) + Nb(µi) + δN(µi), where Ns indicates scatter-
ing (continuum) states, Nb indicates bound states, and
δN is a correction due to the phase shift of scattering
states. All three quantities are a function of the chemi-
cal potential µi. We can define the following equation for
the 1D impurity density,

Ni

L
= −

√
mikBT

2π~2
Li 1

2

(
e−βµi

)
+

2

L

floor(λ−1)∑
j=0

1

eβ(εj−µi) + 1
+

1

L

∫
dk

2π

1

eβ(εk−µi) + 1

∂δ(k, λ)

∂k
; β =

1

kBT
(28)

The first term in equation (28) comes from integrat-
ing over k for the continuum states, where Li1/2(x)
is the polylogarithm function. The continuum disper-
sion is εk ∝ ~2k2/2mi. The second term accounts for
the bound states, which have quantized energies εj =
−~2/2miξ

2(λ− 1− j)2 for integer j < λ− 1. The factor
of two accounts for Pauli degeneracy. Finally, the third
term in equation (28) is a correction due to the phase
shift of the scattering states. The phase shift is given by

δ(k, λ) = Arg [t(k, λ)] with transmission amplitude

t =
Γ(λ− ik)Γ(1− λ− ik)

Γ(1− ik)Γ(−ik)
, (29)

from the scattering matrix of equation (7). The correc-
tion δN is proportional to ∂kδ(k, λ), which takes the form

∂δ(k, λ)

∂k
= Re

[
ψ0(−ik) + ψ0(1− ik)

−ψ0(λ− ik)− ψ0(1− ik − λ)
]
, (30)
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FIG. 5. (color online) Top: The chemical potential µi of
fermionic impurities, from solving equation (28) numerically
for Ni = 1000 173Yb atoms with L = 250 µm. µi decreases
slightly as λ is increased and there are more bound states
in the soliton well. Increasingly dark lines indicate higher
temperatures. Bottom: Chemical potential for T = 150 nK.
The steps at each integer indicate an additional bound state
in the soliton well. The chemical potential including the phase
shift (solid line) is increased slightly from the result without
it (dotted line).

where ψ0(z) = Γ′(z)/Γ(z) is the digamma function.
We solve for µi numerically for 173Yb atoms with
Ni = 1000 and L = 250 µm for temperatures T =
{50, 100, 150, 200} nK.

The results of the calculation are shown in Figure 5.
The chemical potential of the fermion atoms decreases
slightly as the interaction strengths are tuned and the
soliton well becomes deeper, and we find µi ≈ kBT for
all temperatures considered. In the bottom panel of Fig-
ure 5 we show the result with and without accounting for
the phase shift term. The phase shift of the scattering
states slightly increases the chemical potential. These
results are used in calculating γ in equation (15) and
Fig. 2 of the main text.

APPENDIX B: DERIVATION OF COLLISION
INTEGRAL AND TRANSPORT COEFFICIENTS

The collision integral for a heavy object interacting
with a gas of lighter objects can be derived in quite
a general way, as has been done in many textbooks

(e.g.[40, 54]). The essential assumption is that the mo-
mentum transferred in each collision is small. Treating
the soliton as a heavy classical object, we assume that
it has some probability distribution f(t, xs, p) which de-
pends on momentum p, time t, and position xs. Let
P (p, q)dq denote the probability per unit time of a change
p → p − q in the momentum of the soliton in a collision
with a fermionic impurity atom, where q is the momen-
tum transferred. The transport equation for f is then
given by

df

dt
=

∫
dq P (p+ q, q)f(t, p+ q)− P (p, q)f(t, p) (31)

which measures the difference between the soliton scat-
tering into a state with momentum p and out of a state
with momentum p. We assume that the transferred mo-
mentum in each collision is small, i.e. q � p and that
P (p, q) is a smooth function. We then make the following
expansion,

P (p+ q, q)f(t, p+ q) ≈ P (p, q)f(t, p) (32)

+ q
∂

∂p
(P (p, q)f(t, p)) +

1

2
q2 ∂2

∂p∂p
(P (p, q)f(t, p)) .

This gives a transport equation for f with a collision
integral in Fokker-Planck form

df

dt
= I [f ] ; I [f ] =

∂

∂p

(
Apf +

∂

∂p
[Bpf ]

)
. (33)

The transport coefficients are given by

Ap =
∑
q

qP (p, q) ; Bp =
1

2

∑
q

q2P (p, q), (34)

where q is the momentum transferred between the heavy
object and the light one in a single collision.

For the dark soliton we write the momentum p =
−Mvs, giving the collision integral as a function of ve-
locity

I [f ] =
∂

∂vs

(
−Ap
M
f +

∂

∂vs

[
Bp
M2

f

])
(35)

=
∂

∂vs

(
−Avsf +

∂

∂vs
[Bvsf ]

)
. (36)

The transport coefficients presented in equation (13)
and (14) of the main text are related to Ap and Bp as
Avs = Ap/M and Bvs = Bp/M

2; we present the rest of
the calculation in terms of vs.

Coefficients Avs and Bvs are not independent. When
f = exp(−E(vs)/kBT ) is the Maxwell-Boltzmann distri-
bution the collision integral I [f ] must vanish. For the
soliton, we have f(E(vs)) ≈ exp(Mv2

s /2kBT ). Plugging
this into I [f ], we find the relation(

−Avs +
∂Bvs
∂vs

)
f +

vsMBvs
kBT

f = 0. (37)
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To first order, ∂vsBvs = 0, giving

Avs =
MvsBvs
kBT

. (38)

We emphasize that this relation relies only on the con-
dition that f(E(vs)) is Maxwell-Boltzmann and not on
the microscopic properties of the scatterers, and the mi-
croscopic expressions for Avs and Bvs must satisfy this
relation [40].

The probability per unit time that the heavy object
will undergo a scattering event is P (p, q) = Rq|vq|s(k, ks),
where Rq is the reflection coefficient, |vq| is the velocity
and s(k, ks) is a statistical factor which gives the occupa-
tion number of scatterers. In the case of bosonic impuri-
ties, s(k, ks) = nB(1+nB), where nB is the Bose-Einstein
distribution. This term accounts for bosonic enhance-
ment.

In the case of fermionic impurities, which we consider
here, s(k, ks) = nF(1 − nF) where nF is the Fermi-
Dirac distribution. This term accounts for Pauli block-
ing, which means that a fermion with momentum k is
unable to scatter into a state with momentum −k if that
state is already filled. An incoming particle with mo-
mentum pi = ~k is reflected with momentum pf = −~k,
giving q = pf − pi = −2~k. Now, we have the following
expressions for Avs and Bvs

Avs = −2~
M

∑
k

kRk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣nF(εk+ks) [1− nF(ε−k+ks)] .

(39)

Bvs =
2~2

M2

∑
k

k2Rk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣nF(εk+ks) [1− nF(ε−k+ks)] .

(40)

Given these relations, we can check that equation (38) is
satisfied to first order in ks = mivs/~. The Fermi-Dirac
distribution can be expanded as

nF(ε±k+ks) ≈ nF(ε±k)± ~kvs
∂nF

∂ε±k
, (41)

where we have used the relation ε±k+ks ≈ ε±k ± ~kvs.
Plugging into equation (39), we find

Avs ≈ −
2~2vs

M

∑
k

k2Rk,λ

∣∣∣∣ ∂εk~∂k

∣∣∣∣ ∂nF∂εk

=
MvsBvs
kBT

(42)

We note that the zeroth-order term of Avs vanishes be-
cause

∑
k k is an odd function of k. Similarly, for Bvs

the first order in ks is B ∝
∑
k k

3 = 0. Equation (38)
is satisfied only if the Pauli-blocking term is included in
the microscopic expressions for Avs and Bvs .

APPENDIX C: SOLUTION OF THE KINETIC
EQUATION FOR A SOLITON IN HARMONIC

TRAP

Here we present an analytical solution of equation (16)
for a soliton in harmonic trap with potential U(x) =
−Mω2x2/2. In the following it is instructive to introduce
dimensionless units as follows t → t/Γ, ω → ωΓ, vs →
vthvs, x→ vthx/Γ. The kinetic equation is given by

∂f

∂t
+ vs

∂f

∂xs
− ω2xs

∂f

∂vs
=

∂

∂vs

(
−vsf +

∂f

∂vs

)
, (43)

where Γ = γ/M and v2
th = kBT/M can be interpreted

as the thermal velocity. Equation (43) needs to be sup-
plemented by the initial conditions. We assume that the
soliton is created in the trap center with initial velocity
vi, resulting in f(0, xs, vs) = δ(xs)δ(vs−vi). This second-
order partial differential equation (PDE) can be reduced
to first-order by Fourier transform. Setting

f(t, xs, vs) =
∑
p,q

f̄(t, p, q)eipxs+iqvs , (44)

we find the following first-order PDE

∂f̄

∂t
− (p+ q)

∂f̄

∂q
+ ω2q

∂f̄

∂p
= −q2f̄ (45)

with the transformed initial condition f̃(0, p, q) = e−iqvi .
Equation (45) can be solved analytically using the
method of characteristics. According to the method,
the PDE can be transformed to a system of ordinary
differential equations (ODE) along characteristic lines,
parametrized by s and defined as follows

df̄ ′

ds
= −q2(s)f̄ ,

dt

ds
= 1

dq

ds
= − [p(s) + q(s)]

dp

ds
= ω2q(s) (46)

f̄ ′(0) = f̄(0, p0, q0), t(0) = 0, q(0) = q0, p(0) = p0, (47)
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where we introduced f̄ ′(s) = f(t(s), p(s), q(s)) and equa-
tions (47) are the initial conditions written in a general
form. Integration of (46) results in

f̄(s) = exp (Z) (48)

Z =
e−s

8ω2ω̄2

[
4ω2p0(p0 + q0) + 4q2

0ω
4 − (p2

0 + 4p0q0ω
2 + q2

0ω
2) cos(2ω̄s) + 2ω̄(p2

0 − q2
0ω

2) sin(2ω̄s)
]
− q0ω

2 + p2
0

2ω2
− iq0vi

t(s) = s p(s) =
e−s/2

ω̄

[
p0ω̄ cos (ω̄s) +

p0 + 2q0ω
2

2
sin (ω̄s)

]
q(s) =

e−s/2

ω̄

[
q0ω̄ cos (ω̄s)− 2p0 + q0

2
sin (ω̄s)

]
(49)

Where ω̄ =
√
ω2 − 1/4. For each initial point q0, p0

and the parameter s we have the corresponding point
t(s, q0, p0), q(s, q0, p0), p(s, q0, p0) on the characteristic
line along with f ′(s). After inversion of these relations

s(t, q, p), q0(t, q, p), p0(t, q, p) the general form of solution
of the kinetic equation in the Fourier space is f̄(t, q, p) =
f̄ ′(s(t, q, p)). The inversion of equations (49) leads to

s = t, p0 =
et/2

ω̄

[
pω̄ cos (ω̄t)− p+ 2qω2

2
sin (ω̄t)

]
, q0 =

et/2

ω̄

[
qω̄ cos (ω̄t) +

2p+ q

2
sin (ω̄t)

]
. (50)

Where equations (50) satisfy initial conditions (47). Fi-
nally, the general solution in Fourier space is given by

f̃(t, p, q) = exp
{
−g1(t, ω)p2 + g2(t, ω)pq − g3(t, ω)q2 − ivi (g4(t, ω)p+ g5(t, ω)q)

}
(51)

parametrized by the functions gi(t, ω), where

g1(t, ω) =
4ω̄2(et − 1)− et [cos(2ω̄t) + 2ω̄ sin(2ω̄t)− 1]

8ω2ω̄2

(52)

g2(t, ω) =
et

2ω̄2
[cos(2ω̄t)− 1] (53)

g3(t, ω) =
4ω̄2(et − 1) + et [2ω̄ sin(2ω̄t)− cos(ω̄t) + 1]

8ω̄2

(54)

g4(t, ω) =
et/2

ω̄
sin (ω̄t) (55)

g5(t, ω) =
et/2

ω̄

[
ω̄ cos (ω̄t) +

1

2
sin (ω̄t)

]
. (56)

Equation (45) does not have a stationary solution where

∂f̃/∂t → 0, due to negative drift term, which causes
the distribution to drift to higher velocities. Equa-
tion (51) grows exponentially at long times; this is an
artifact of the linear approximation for soliton momen-
tum, p ≈ −Mv. The approach is equally valid for the
full soliton spectrum in equation (10), which is bounded,
but does not admit an exact analytical solution. Finally,
transforming equation (51) back to real space we find the
full distribution function f(t, xs, vs) with Gaussian form

f(t, xs, vs) =
1

2π
√

4g1g3 − g2
2

exp

{
− 1

4g1g3 − g2
2

[
g1v

2
s + g3x

2
s + g2vsxs

−vivs(g2g4 + 2g1g5)− vixs(g2g5 + 2g3g4) + v2
i (g3g

2
4 + g1g

2
5 + g2g4g5)

]}
.

(57)
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The distribution contains all information about the
stochastic dynamics of a dark soliton. The time depen-

dence of the average soliton position and variance in po-
sition are given by

x̄s(t) =

∫ ∞
−∞

dvs

∫ ∞
−∞

dxs xs f(t, xs, vs) = vig4(t, ω)→ vie
Γt/2

ω̄
sin (ω̄t) (58)

Dx(t) =

∫ ∞
−∞

dvs

∫ ∞
−∞

dxs x
2
s f(t, xs, vs) = 2g1(t, ω) + v2

i g
2
4(t, ω)→

→ v2
i e

Γt

ω̄2
sin2 (ω̄t) +

v2
th(eΓt − 1)

ω̄2
− v2

thΓ2eΓt

4ω2ω̄2

(
cos(2ω̄t) +

2ω̄

Γ
sin(2ω̄t)− 1

)
. (59)

Where ω̄ =
√
ω2 − Γ2/4 in real units. Similarly, the

average velocity and variance in velocity are given by

v̄s(t) =

∫ ∞
−∞

dvs

∫ ∞
−∞

dxs vs f(t, xs, vs) = vig5(t, ω)→ vie
Γt/2

ω̄

[
ω̄ cos (ω̄t) +

Γ

2
sin (ω̄t)

]
, (60)

Dv(t) =

∫ ∞
−∞

dvs

∫ ∞
−∞

dxs v
2
s f(t, xs, vs) = 2g3(t, ω) + v2

i g5(t, ω)2 →

→ v2
i e

Γt

ω̄2

[
ω̄ cos (ω̄t) +

Γ

2
sin (ω̄t)

]2

+ v2
th(eΓt − 1) +

Γ2v2
the

Γt

4ω̄2

(
2ω̄

Γ
sin(2ω̄t)− cos(2ω̄t) + 1

)
. (61)

APPENDIX D: CALCULATION OF SOLITON
LIFETIME

The lifetime of a dark soliton depends on it’s veloc-
ity; when the soliton reaches the condensate speed of
sound c, its depth is zero and it disappears. Integrat-
ing equation (57) over spatial coordinate xs, we find the
distribution function only in terms of velocity.

fv(t, vs) =
1√

4πg3(t, ω)
exp

(
− (vs − v̄s(t))

2

4g3(t, ω)

)
(62)

Where g3(t, ω) is given by equation (54) and v̄s(t) is equa-
tion (60) in Appendix C.

We consider a perfectly absorbing boundary condition
at vs = ±c which accounts for the soliton disappear-
ance. The boundary condition imposed is fv(±c, t) = 0
for all times t. We construct a distribution that obeys
this boundary condition using the method of images. The

distribution function is reflected about the boundaries,
vs = ±c in our case, with “image distributions” placed
at vn = 2cn for n = ±1,±2, .... The distribution which
obeys the boundary condition is then described by the
general formula

f Img
v (t, vs) = fv(t, vs) +

∞∑
n=1

(−1)n [fv(t, vn − v)

+fv(t,−vn − v)] ; vn = 2cn. (63)

We find the total survival probability of the soliton by
integrating over vs from −c to c,

P(|vs| < c; t) =

∫ c

−c
dvs f

Img
vs (vs, t). (64)

Since each term in f Img
vs (vs, t) is a Gaussian, we integrate

and find the following expression for the survival proba-
bility:

P(|vs| < c; t) =
1

2

(
Erf

[
c− v̄s(t)

2
√
g3(t, ω)

]
+ Erf

[
c+ v̄s(t)

2
√
g3(t, ω)

])
+

1

2

∞∑
n=1

(−1)n

(
Erf

[
c+ vn − v̄s(t)

2
√
g3(t, ω)

]

+Erf

[
c− vn + v̄s(t)

2
√
g3(t, ω)

]
+ Erf

[
c− vn − v̄s(t)

2
√
g3(t, ω)

]
+ Erf

[
c+ vn + v̄s(t)

2
√
g3(t, ω)

])
(65)
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FIG. 6. (color online) Left: Survival probability as defined by the exact expression in equation (65) (gray line) is highly
oscillatory due to the dynamics in the trap. The lower bound is given by replacing v̄s(t) with equation (66) (black line). Soliton
lifetime is marked by τs on the horizontal axis. Calculated for vi = 0.1c and ω = 50Γ. Right: Survival probability for different
soliton initial velocities with ω = 50Γ. Survival probability falls off more quickly for faster initial velocities, with the fastest
initial velocity indicated by the red (dark gray) line.

The exact expression in equation (65) is oscillatory, be-
cause v̄s(t) and g3(t, ω) capture oscillations in the trap
as well as the long-time acceleration of the soliton. How-
ever, if the soliton velocity reaches c at any point in it’s
oscillation it will not survive, so we focus on the lower
bound of P(|vs| < c; t), which can be found by replacing
v̄s(t)→ v̄∗s (t) where v̄∗s (t) is the maximum value over one

oscillation period,

v̄∗s (t) =
vie

Γt/2

ω̄

√
ω̄2 + Γ2/4 =

viωe
Γt/2

ω̄
. (66)

Making this substitution, we can plot a smooth survival
probability curve. When |v̄∗s (τs)| = c, P(|vs| < c; τs) = 0,
and we define τs as the soliton lifetime. The exact oscil-
latory expression and the lower envelope of the survival
probability are shown in Figure 6.
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K. Sengstock, “Oscillations and interactions of dark and
dark-bright solitons in Bose-Einstein condensates,” Na-
ture Phys. 4, 496–501 (2008).

[7] J. Ieda, T. Miyakawa, and M. Wadati, “Exact analysis
of soliton dynamics in spinor Bose-Einstein condensates,”
Phys. Rev. Lett. 93, 194102 (2004).

[8] T. Karpiuk, K. Brewczyk, S. Ospelkaus-Schwarzer,
K. Bongs, M. Gajda, and K. Rzażewski, “Soliton trains
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[45] D. Çevik, M. Gadella, Ş. Kuru, and J. Negro, “Reso-
nances and antibound states for the Pöschl–Teller poten-
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