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We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of
unpolarized spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure
properties behave over the BEC-BCS crossover. We calculate the vortex excitation energy, density
profiles, and vortex core properties related to the current. We find a density suppression at the
vortex core on the BCS side of the crossover, and a depleted core on the BEC limit. Size-effect
dependencies in the disk geometry were carefully studied.

I. INTRODUCTION

The study of cold Fermi gases has proven to be a
very rich research field, and the investigation of low-
dimensional systems has become an active area in this
context [1, 2]. Particularly, the two-dimensional (2D)
Fermi gas has attracted much interest recently. It was the
object of several theoretical investigations [3–8], but its
experimental realization, using a highly anisotropic po-
tential, was a milestone in the study of these systems [9].
Many other studies have been carried out since [10, 11].
Quantum Monte Carlo (QMC) methods were successfully
employed to compute several properties of the BEC-BCS
crossover. These methods include diffusion Monte Carlo
(DMC) [12, 13], auxiliary-field quantum Monte Carlo
[14], and lattice Monte Carlo [15–17]. The fact that a
fully attractive potential in 2D always support a bound-
state, and the ability to vary the interaction strength over
the entire BEC-BCS crossover regime offers rich possibil-
ities for the study of these systems.

The presence of quantized vortices is an indication of
a superfluid state in both Bose and Fermi systems. In
3D, much progress has been made [18–21], including the
observation of vortex lattices in a strongly interacting
rotating Fermi gas of 6Li [22]. With the recent progress
on the 2D Fermi gases, it seems natural to also extend
the theoretical study of vortices to these systems. In-
terest is further augmented in 2D, where a Berezinksii-
Kosterlitz-Thouless transition [23, 24] could take place at
finite temperatures, and pairs of vortices and antivortices
would eventually condense to form a square lattice [25].

We are interested on how the properties of a vortex
change over the BEC-BCS crossover. In this work we
focus on ultracold atomic Fermi gases, but it is notewor-
thy that a duality is expected between neutron-matter
and superfluid atomic Fermi gases. In 3D, both ul-
tracold atomic gases and low-density neutron matter
exhibit pairing gaps of the order of the Fermi energy
[26]. Neutron-matter properties depend on the interac-
tion strength and, unlike the Fermi atom gases, the pos-
sibility of microscopically tuning interactions of neutron-
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matter is not available. However, we can study neu-
tron pairing by looking at the BCS side of the crossover
[27, 28]. Vortex properties are also of significant interest
in neutron matter [29, 30] because a significant part of
the matter in rotating neutron stars is superfluid, and
vortices are expected to appear. Moreover, phases called
nuclear pasta, where neutrons are restricted to 1D or 2D
configurations, are predicted in neutron stars [30, 31].

We report properties of a single vortex in a 2D Fermi
gas. We considered the ground-state to be a disk with
hard walls and total angular momentum zero, and the
vortex excitation corresponds to each fermion pair hav-
ing angular momentum ~. Hopefully, our results will
motivate experiments to increase our understanding of
vortices in 2D Fermi gases.

This work is structured as it follows. In Sec. II we in-
troduce the methodology employed. In Sec. II A we dis-
cuss aspects of finite-size fermionic systems, we briefly
introduce 2D scattering in Sec. II B, Sec. II C is devoted
to the wave functions employed for the bulk, disk, and
vortex systems, and we summarize the employed QMC
methods in Sec. II D. The results are presented in Sec. III.
Sec. III A contains the ground-state energies in the disk
geometry and discussions on size-effects. In Sec. III B we
present the vortex excitation energy. The determination
of the crossover region is done in Sec. III C. Density pro-
files of the vortex and ground-state systems are shown in
Sec. III D. Properties of the vortex core are discussed in
Sec. III E. Finally, a summary of the work is presented in
Sec. IV.

II. METHODS

Previous simulations of vortices in 3D bosonic systems,
such as 4He, have often employed a periodic array of
counter-rotating vortices, which enables the usage of pe-
riodic boundary conditions. In the 4He calculations of
Ref. 32, the simulation cell consisted of 300 particles in
four counter-rotating vortices. If we had employed a sim-
ilar methodology, we would need the same number of
fermion pairs, i.e., a system with 600 fermions. There
are simulations of fermionic systems that have been per-
formed with this number of particles, but the variance
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required for a detailed optimization is beyond the scope
of this work. Instead, we considered a disk geometry,
similar to the one used in Ref. [33] for DMC simulations
of the vortex core structure properties in 4He.

A. Finite-size systems

We are interested in the interacting many-body prob-
lem, but it is useful to first consider the non-interacting
case. In this section we compare the energy of finite-size
2D systems to the results in the thermodynamic-limit.

First let us consider the case of N fermions in a square
of side L with periodic boundary conditions. The single-
particle states are plane waves ψkn(r) = eikn·r/L, with
wave vector

kn =
2π

L
(nxx̂ + nyŷ). (1)

The eigenenergies are En = ~2k2
n/2m, where m is the

mass of the fermion. At T = 0, all states with en-
ergy up to the Fermi energy εF = ~2k2

F /2m, where
kF is the Fermi wave number, are occupied. A shell
structure arises from the fact that different combina-
tions of nx and ny in Eq. (1) yield the same |kn|.
The closed shells occur at total particle number N =
(2, 10, 18, 26, 42, 50, 58, · · · ). The free gas energy of a fi-
nite system with N fermions, Ebulk

FG (N), is readily cal-
culated by filling the lowest energy states described by
Eq. (1). In the thermodynamic-limit, which corresponds
to N,L → ∞ and n = N/L2 held constant, the en-
ergy per particle of the free gas is EFG = εF /2 and

kF =
√

2πn.
Now let us consider the case of N fermions in a disk

of radius R with a hard wall boundary condition, i.e.,
the wave function must vanish at R. The single-particle
states are

ψνp(ρ, ϕ) = NνpJν
(
jνp
R
ρ

)
eiνϕ, (2)

where (ρ, ϕ) are the usual polar coordinates, Nνp is a nor-
malization constant, Jν are Bessel functions of the first-
kind, and jνp is the p-th zero of Jν . The quantum number
ν can take the values 0,±1,±2, · · · and p = 1, 2, · · · . The
corresponding eigenenergies are

Eνp =
~2

2m

(
jνp
R

)2

. (3)

This system also presents a shell structure, due to the en-
ergy degeneracy of single-particles states with the same
|ν|, with shell closures at total particle number N =
(2, 6, 10, 12, 16, 20, 24, 28, 30, 34, · · · ). Notice that the en-
ergy levels of the bulk system are much more degenerate
than the ones of the disk. In practice this means that
more shells are needed to describe a disk with a given
N . The free gas energy for the disk, Edisk

FG (N), can be
calculated analogously to the bulk case using the energy

levels of Eq. (3). The thermodynamic-limit for this case
corresponds toR →∞ with n = N/(πR2) held constant,
and EFG and kF go to the same expressions as the bulk
ones.

The comparison between the free gas energy of finite
systems in the bulk case and in the disk geometry is not
immediate, due to the presence of hard walls in the lat-
ter. In order to compare the free gas energy in both
geometries, we define

Edisk
0 (N) = Edisk

FG (N)− λs
2

√
n

πN
, (4)

in which we separated the total energy Edisk
FG (N) into

a bulk component, Edisk
0 (N), and a surface term, the

second term on the RHS. For further discussions on the
functional form of the surface term, see Sec. III A. Fig. 1
shows Ebulk

FG (N) and Edisk
0 (N), with λs = 17.5 EFGk

−1
F ,

at the same density. The value of λs, within a 0.2% error,
was determined by fitting the data for 10 6 N 6 226 to
the functional form of Eq. (4).

The disk presents a considerably higher free gas energy,
if compared to the bulk system, due to the presence of
hard walls, but the difference between them is rapidly
suppressed as we increase the particle number.
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FIG. 1. (Color online) Free-gas energy for finite-size systems
as a function of the number of particles N , where the dotted
lines are drawn to guide the eye. The (red) closed circles de-
note the energy of the bulk system, Ebulk

FG (N), and the (green)
open circles indicate the bulk energy component in the disk
geometry, Edisk

0 (N), as defined in Eq. (4). Local minima in
Ebulk

FG (N) correspond to shell closures.

B. Scattering in 2D

Two-body scattering by a finite-range potential V (r)
in 2D is described by the Schrödinger equation. We sep-
arate the solutions into radial R(r) and angular P (φ)
parts, the latter being a constant for s-wave scattering.
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The two-body equation for an azimuthally symmetric (s-
wave) solution is[

−~2∇2

2mr
+ V (r)

]
u(r) =

~2k2

2mr
u(r), (5)

where mr is the reduced mass of the system, and
~2k2/2mr is the scattering energy. The scattering length
a and effective range reff can be easily determined from
the k → 0 solution of Eq. (5), u0(r), and its asymptotic
form y0. We choose the solution

y0(r) = − ln
( r
a

)
, (6)

and we match u0 and y0, and their derivatives, outside
the range of the potential.

In 2D, the low-energy phase shifts δ(k), a, and effective
range reff , are related by [34]

cot δ(k) ≈ 2

π

[
ln

(
ka

2

)
+ γ

]
+
k2r2

eff

4
, (7)

where γ = 0.577 . . . is the Euler-Mascheroni constant,
and the effective range is defined as [35]

r2
eff = 4

∫ ∞
0

(y2
0(r)− u2

0(r))r dr. (8)

Eq. (7) is often called the shape-independent approxima-
tion because it guarantees that a broad range of well-
chosen potentials can be constructed to describe low-
energy scattering. We consider the modified Poschl-
Teller potential

V (r) = −v0
~2

mr

µ2

cosh2(µr)
, (9)

where v0 and µ can be tuned to reproduce the desired a
and reff .

Bound-states occur for purely attractive potentials for
any strength in 2D. If we continually increase the depth
of V (r), a will eventually reach zero, then it diverges to
+∞ when a new bound-state is created. The binding
energy of the pair is given by

εb = − 4~2

ma2e2γ
. (10)

We chose values of v0 and µ such that only one bound-
state is present, and kF reff is held constant at 0.006 [13].
This choice guarantees that the systems studied in this
work are in the dilute regime, since r0 � reff , where
r0 = 1/

√
πn is of order of the interparticle spacing.

C. Wave functions

The BCS wave function, which describes pairing ex-
plicitly, has been successfully used in a variety of strongly
interacting Fermi gases systems, such as: 3D [36] and 2D
[13] bulk systems, vortices in the unitary regime [21],

two-components mixtures [37, 38], and many other sys-
tems. This wave function, projected to a fixed number of
particles N (half with spin-up and half with spin-down),
can be written as the antisymmetrized product [39]

ψBCS(R, S) = A[φ(r1, s1, r2, s2)φ(r3, s3, r4, s4) . . .

φ(rN−1, sN−1, rN , sN )], (11)

where R is a vector containing the particle positions ri,
S stands for the spins si, and φ is the pairing function,
which is given by

φ(r, s, r′, s′) = φ̃(r, r′) [〈s s′| ↑ ↓〉 − 〈s s′| ↓ ↑〉] , (12)

where we have explicitly included the spin part to impose
singlet pairing. The assumed expressions for φ̃ depend
on the system being studied, see Secs. II C 1, II C 2, and
II C 3. Since neither the Hamiltonian or any operators in
the quantities we calculate flip the spins, we adopt here-
after the convention of primed indexes to denote spin-
down particles and unprimed ones to refer to spin-up
particles. Eq. (11) reduces to

ψBCS(R, S) = A[φ(r1, s1, r1′ , s1′)

φ(r2, s2, r2′ , s2′) . . . φ(rN/2, sN/2, rN/2′ , sN/2′)], (13)

where the antisymmetrization is over spin-up and/or
spin-down particles only. This wave function can be cal-
culated efficiently as a determinant [40].

In addition to fully paired systems, it is also possible to
simulate systems with unpaired particles [36], described
by single particle states Φ(r). For q pairs, u spin-up,
and d spin-down unpaired single particles states, N =
2q + u+ d, we can rewrite Eq. (13) as

ψBCS(R, S) = A[φ(r1, s1, r1′ , s1′) · · ·
φ(rq, sq, rq′ , sq′)Φ1↑(rq+1) · · ·Φu↑(rq+u)

Φ1↓(r(q+1)′) · · ·Φd↓(r(q+d)′)]. (14)

We also included a two-body Jastrow factor f(rij′),
rij′ = |ri − rj′ |, which accounts for correlations between
antiparallel spins. It is obtained from solutions of the
two-body Schrödinger’s equation[

−~2∇2

2mr
+ V (r)

]
f(r < d) = λf(r < d), (15)

with the boundary conditions f(r > d) = 1 and f ′(r =
d) = 0, where d is a variational parameter, and λ is
adjusted so that f(r) is nodeless. The total trial wave
function is written as

ψT(R, S) =
∏
i,j′

f(rij′)ψBCS(R, S). (16)

1. Bulk system

The assumed form of the pairing function for the bulk
case is the same as Ref. [36],

φ̃bulk(r, r′) =

nc∑
n=1

αne
ikn·(r−r′) + β̃(|r− r′|), (17)
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where αn are variational parameters, and contributions
from momentum states up to a level nc are included.
Contributions with n > nc are included through the β̃
function given by

β̃(r) =

{
β(r) + β(L− r)− 2β(L/2) for r 6 L/2

0 for r > L/2

(18)
with

β(r) = [1 + cbr][1− e−dbr]e
−br

dbr
, (19)

where r = |r− r′| and b, c, and d are variational param-
eters. This functional form of β(r) describes the short-
distance correlation of particles with antiparallel spins.
We consider b = 0.5 kF , d = 5, and c is adjusted so that
∂β̃/∂r = 0 at r = 0.

2. Disk

The pairing function for the disk geometry is con-
structed using the single-particle orbitals of Eq. (2). Each
pair consists of one single-particle orbital coupled with
its time-reversed state. This ansatz has been used before
in the 3D system [21], a cylinder with hard walls, and
the form presented here is analogous to that one if we
disregard the z components. We supposed the pairing
function to be

φ̃disk(r, r′) =

nc∑
n=1

α̃nN 2
νpJν

(
jνp
R
ρ

)
Jν

(
jνp
R
ρ′
)
eiν(ϕ−ϕ′)

+β̄(r, r′),
(20)

where the α̃n are variational parameters, and n is a la-
bel for the disk shells, such that different states with the
same energy are associated with the same variational pa-
rameter. The β̄ function is similar to β̃ employed in the
bulk system, but we modify it to ensure the hard wall
boundary condition is met,

β̄(r, r′) =


N 2

01J0

(
j01ρ
R
)
J0

(
j01ρ

′

R

)
×

[β(r) + β(2R− r)− 2β(R)] for r 6 R
0 for r > R

(21)
and β has the same expression as the bulk case, Eq. (19).

3. Vortex

The vortex excitation is accomplished by considering
pairing orbitals which are eigenstates of Lz with eigen-
values ±~. This is achieved by coupling single-particle
states with angular quantum numbers differing by one.

In this case we used pairing orbitals of the form

φ̃vortex(r, r′) =

nc∑
n=1

ᾱnNνpNν−1;p×{
Jν

(
jνp
R
ρ

)
Jν−1

(
jν−1;p

R
ρ′
)
ei(νϕ−(ν−1)ϕ′)

+ Jν

(
jνp
R
ρ′
)
Jν−1

(
jν−1;p

R
ρ

)
ei(νϕ

′−(ν−1)ϕ)

}
, (22)

where n is a label for the vortex shells, and ᾱ are varia-
tional parameters. The largest contribution is assumed to
be from states with the same quantum number p for the
radial part [21]. Eq. (22) is symmetric under interchange
of the prime and unprimed coordinates, as required for
singlet pairing.

The β̄ function of Eq. (21) is not suited to describe the
vortex state because it is an eigenstate of Lz with angular
momentum zero. We tried different functional forms that
had the desired angular momentum eigenvalue, but none
of them resulted in a significant lower total energy. Thus,
we chose to employ only the terms in Eq. (22).

D. Quantum Monte Carlo

The Hamiltonian of the two-component Fermi gas is
given by

H = − ~2

2m

 N↑∑
i=1

∇2
i +

N↓∑
i=j′

∇2
j′

+
∑
i,j′

V (rij′), (23)

with N = N↑ + N↓, and V (rij′) given by Eq. (9). The
DMC method projects the lowest energy state of H from
an initial state ψT , obtained from variational Monte
Carlo (VMC) simulations. The propagation, which is
carried out in imaginary time τ , can be written as

ψ(τ) = e−(H−ET )τψT , (24)

where ET is an energy offset. In the τ → ∞ limit, only
the lowest energy component Φ0 survives

lim
τ→∞

ψ(τ) = Φ0. (25)

The imaginary time evolution is given by

ψ(R, τ) =

∫
dR′G(R,R′, τ)ψT (R′), (26)

where G(R,R′, τ) is the Green’s function associated with
H. The Green’s function contains two pieces, a diffusion
term related to the kinetic operator, and a branching
term related to the potential. We solve an importance
sampled version of Eq. (26) iteratively, using the Trotter-
Suzuki approximation to evaluate G(R,R′, τ), which re-
quires the time steps ∆τ to be small. We circumvent the
fermion-sign problem by using the fixed-node approxi-
mation, which restricts transitions across a chosen nodal
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surface [41]. Hence our estimates of energy expectation
values are upper bounds.

We carefully optimized the trial wave function ψT ,
since it is used in three ways: an approximation of the
ground-state in the VMC calculations, as an importance
function, and to give the nodal surface for the fixed-
node approximation. The variational parameters [42]
in Eqs. (17), (20), and (22) were determined using the
stochastic reconfiguration method [43].

Expectation values of operators that do not commute
with the Hamiltonian, for example the current and den-
sity, were calculated using extrapolated estimators [44]

〈Φ|Ŝ|Φ〉 ≈ 2〈Φ|Ŝ|ψT 〉−〈ψT |Ŝ|ψT 〉+O[(Ψ−ψT )2], (27)

where we combine the results of VMC and DMC runs.

III. RESULTS

We define the interaction strength η ≡ ln(kFa). Large
values of η correspond to the BCS side of the crossover,
while small η are on the BEC side. We probed 0.0 6
η 6 1.5, which encompasses the crossover region, see
Sec. III C. For all systems the number density is n =
N/(πR2), and kF =

√
2N/R.

A. Ground-state energy and size-effects

We used the pairing function of Eq. (17), and N = 26,
to calculate the ground-state energy per particle of the
bulk systems. Our results, Table I, are in agreement with
previous DMC calculations [13].

TABLE I. Comparison between the ground-state energy per
particle of the bulk (Ebulk) and disk systems as a function of
the interaction strength η. The parameters E0 and λs, see
Eq. (28), are related to our assumption of the functional form
of the ground-state energy per particle in the disk geometry.

η Ebulk [EFG] E0 [EFG] λs [EFGk
−1
F ]

0.00 -2.3740(3) -2.32(3) 6(2)
0.25 -1.3316(3) -1.31(3) 8(2)
0.50 -0.6766(2) -0.65(2) 8(1)
0.75 -0.2562(2) -0.25(2) 11(1)
1.00 0.0233(2) 0.03(1) 11(1)
1.25 0.2149(2) 0.22(2) 12(1)
1.50 0.3523(2) 0.34(1) 13(1)

Previous DMC simulations of 2D Fermi gases found
that N = 26 is well suited to simulate bulk properties of
systems in the region studied here [13]. However, the disk
geometry presents more intricate size-dependent effects.
We investigated how the ground-state energy depends on
the disk radius R. In the thermodynamic-limit, R →∞,
the energy per particle should go to the bulk value. Since
our system has hard walls, the energy has a dependence

on the “surface” of the disk. Including this surface term,
the energy per particle can be fit to

Edisk(R) = E0 +
λs

2πR
, (28)

where E0 and λs are constants related to the bulk and
surface terms, and λs/(2πR) can be viewed as a surface
tension.

A few words about Eq. (28) are in order. The relation
between the thermodynamic properties of a confined fluid
and the shape of the container where it is confined has
been an active field of study. Our choice was inspired by
functional forms, see for example Ref. [45], where, aside
from the constant term, thermodynamical properties are
expressed as functions of the various curvatures of the
container. The next correction to this functional form of
the energy per particle would include a term proportional
to R−2. We found that the inclusion of such term does
not improve significantly our description of the ground-
state energy.

In order to determine the number of particles nec-
essary to simulate systems in the disk geometry, with
controllable size effects, we performed simulations with
26 6 N 6 70, and all particles paired, i.e., only even val-
ues of N . The dependence of E0 with the system size was
investigated by fitting our data using Eq. (28) for differ-
ent intervals of R or, equivalently, different intervals of
N .

We found that fitting the data for 58 6 N 6 70 re-
sulted in a good agreement between Ebulk and E0, that
is, we were able to separate the bulk portion of the en-
ergy from the hard wall contribution in the disk geome-
try. The resulting parameters of the fitting procedure are
summarized in Table I, and Fig. 2 shows the energy per
particle as a function of R for all interaction strengths
studied in this work.

The E0 values agree with the bulk energies within the
error bars, except for η = 0 and η = 0.5 (however the
differences between the values are less than 2% and 4%,
respectively). As it can be seen in Table I, the typical
uncertainty in E0 is of order 0.01 EF , independent of the
interaction strength. Thus the relative error can be quite
large for systems where the absolute value of the bulk
energy is small, as it is observed for η = 1.0. This is an
improvement if compared to a similar DMC calculation
in 3D [21] which used the same procedure to calculate
the ground-state energy per particle of a unitary Fermi
gas, where the discrepancy between the result and the
known bulk value was ≈ 30%.

We point out that this method is not intended to be
a precise calculation of the bulk energy of these systems.
Instead, it is a way for us to determine the minimum
number of particles needed to simulate systems in the
disk geometry with controllable size effects. If we had
naively assumed that the same number of particles used
in bulk calculations would suffice, N = 26, then we sim-
ply could not rely on the results. In our simulations
with 26 6 N 6 38 the discrepancies between E0 and
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FIG. 2. (Color online) Ground-state energy per particle Edisk

as a function of the disk radius R for several interaction
strengths. The curves correspond to the assumed functional
form of Eq. (28), with the parameters given in Table I. Error
bars are smaller than the symbols.

Ebulk were as large as 50%, and in some cases the uncer-
tainty in λs was bigger than the value itself. Results with
58 6 N 6 70 are much more well-behaved, and they are
within computational capabilities.

It is also noteworthy to mention that the energy con-
tribution of the surface term, due to the presence of hard
walls, is more significant for the BCS side than in the
BEC limit, see the λs values in Table I. This is expected,
since the largest energy contribution in the BEC side
should be from the binding energy of the pairs, Eq. (10),
and they are smaller than the BCS pairs so that surface
effects are smaller. One of our goals is to obtain the vor-
tex excitation energy, which is the difference between the
vortex and the ground-state energies. Since both systems
have hard walls, we expect that the surface effects will
tend to cancel.

B. Vortex excitation energy

The energy per particle of the vortex system is ob-
tained using the pairing functions of Eq. (22). The vor-
tex excitation energy is given by the difference between
the energy of the vortex and ground-state systems, for
the same number of particles. We performed simulations
with 58 6 N 6 70 and averaged the results.

In Fig. 3 we show the vortex excitation energy per par-

ticle as a function of the interaction strength. The energy
necessary to excite the system to a vortex state increases
as we move from the BCS to the BEC limit. The inset
shows the vortex and ground-state energies per particle
for η = 1.5, although the other interaction strengths dis-
play the same qualitative behavior.
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FIG. 3. (Color online) Vortex excitation energy per particle
Eexc as a function of the interaction strength η. The inset
shows the ground-state (squares) and vortex (triangles) ener-
gies per particle as a function of the number of particles N
for η = 1.5.

C. Crossover region

In 2D, the BCS limit corresponds to kFa � 1 and
the BEC limit to kFa � 1, however unlike 3D where
the unitarity is signaled by the addition of a two-body
bound state, there is no equivalent effect with two-body
sector in 2D. Nevertheless, we can determine the interac-
tion strength for which we can add a pair to the system
with zero energy cost. The chemical potential µ can be
estimated as

µ =
∂E

∂N

∣∣∣∣∣
Even N

, (29)

for each interaction strength, where the even number
condition implies that all particles are paired. For each
value of η we used a finite difference formula to evaluate
Eq. (29), for 58 6 N 6 70.

We found that µ = 0 at η ≈ 0.90 for the ground-state of
the disk. Previous DMC simulations of 2D bulk systems
[13] found that the chemical potential changes sign at
η ≈ 0.65. Although the results differ, most probably
due to the different geometry employed in this work, it
is safe to assume that the interaction strength interval
0 6 η 6 1.5 encompasses the BEC-BCS crossover region.
The chemical potential of the vortex state is higher than
the ground-state, as expect, thus µ = 0 is at a smaller
interaction strength, η ≈ 0.85.



7

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0.0 0.5 1.0 1.5

µ
 [

u
n

it
s
 o

f 
E

F
G

]

η=ln(kFa)

Vortex
Ground-state

30.0

32.0

34.0

36.0

58 60 62 64 66 68 70
E

 [
u

n
it
s
 o

f 
E

F
G

]
N

FIG. 4. (Color online) Chemical potential of the ground-state
(triangles) and vortex (circles) as a function of the interaction
strength. The chemical potential changes sign at η ≈ 0.90 for
the ground-state, and η ≈ 0.85 for the vortex state. In the
inset we show the total energy as a function of the number of
particles for the ground-state of η = 1.5. Other interaction
strengths with positive (negative) µ have positive (negative)
slopes.

D. Density profile

We calculated the density profile D(ρ) along the radial
direction ρ for both the vortex and ground-state systems.
The normalization is such that∫

D(ρ)d2r = 1, (30)

where the integral is performed over the area of the disk.
The results are obtained using the extrapolation proce-
dure of Eq. (27), which combines both VMC and DMC
runs. It is noteworthy to point out that, although the
densities observed in VMC and DMC simulations differ,
they are much closer than previous results in 3D [21]. In
that calculation it was needed to explicitly include a one-
body term in the wave function to maximize the density
overlap between DMC and VMC runs, whereas in this
work no such term was employed.

Fig. 5 shows the density profile of both the vortex and
ground-state systems for N = 70 and η = 1.5. The oscil-
lations in the density profiles are much more pronounced
than in a similar DMC calculation of a unitary Fermi gas
in 3D [21]. In this 3D calculation a cylindrical geometry
was employed, with hard walls and periodic boundary
conditions along the axis of the cylinder. The density
profiles were obtained by averaging the results over the z
direction of the axis of the cylinder, we therefore expect
more fluctuations in 2D where the particles are confined
to a plane. For the ground-state, the density oscillations
are surface effects. They are present in both the inter-
acting and non-interacting systems, as it can be seen in
Fig. 5.

In Fig. 6 we show the density profiles of the other in-
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FIG. 5. (Color online) Density profile along the radial di-
rection ρ of the vortex (red squares) and ground-state (green
circles) for N = 70 and η = 1.5. Although there is a den-
sity suppression at the vortex core of ≈ 30%, the density is
non-zero at the center of the disk. We also plot the analytical
result for the ground-state density of the free- gas in a disk
(blue curve), which presents oscillations due to the presence
of hard-walls.

teraction strengths studied in this work, 0 6 η 6 1.25.
We found that the density depletion at the vortex core
goes from ≈ 30% at η = 1.5 to a completely depleted
core at η 6 0.25.
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FIG. 6. (Color online) Density profile along the radial di-
rection ρ of the vortex (red squares) and ground-state (green
circles) for N = 70 and 0 6 η 6 1.25. It is interesting to
observe that the density at the vortex core diminishes as we
go from the BCS to the BEC limit, and at η 6 0.25 the core
is completely depleted.

The regions close to the walls exhibit a characteristic
behavior due to the hard wall condition we imposed, as
it can be seen in Figs. (5) and (6). In order to estimate
the number of particles outside this region, we can define
the particle number a distance R from the center of the
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disk as

N (R) = N

∫ 2π

0

dϕ

∫ R

0

dρ ρ D(ρ). (31)

For the case of Figs. (5) and (6) where N = 70, if we set
R ∼ 8 k−1

F , N is approximately between 40 and 45 for
the ground-state, and between 35 and 40 for the vortex
systems. Hence the number of particles in this regime is
larger than the usual value of N = 26 employed in bulk
systems [13].

Additionally, we performed simulations of the vor-
tex systems with an odd number of particles, i.e., one
unpaired particle was added to a fully paired system,
Eq. (14) with q = 34, u = 1, and d = 0. We set its an-
gular momentum to zero, Eq. (2) with ν = 0 and p = 1.
In the BEC limit we observed a non-vanishing density at
the center of the disk, which suggests that the unpaired
particle fills the empty vortex core region. On the other
hand, in the BCS limit the density close to the wall in-
creased, while the density at the origin was unchanged.
We chose a qualitative discussion of this phenomenon
because the required variance for a detailed optimization
is beyond the scope of this work. Future calculations
should include quantities such as the one-body density
matrix, which may contribute to an accurate quantita-
tive approach.

E. Vortex core size

The probability current density operator can be writ-
ten as

J(r) =
1

2N

N∑
j=1

[
vjδ

2(r− rj) + δ2(r− rj)vj
]
, (32)

where the velocity operator is vj = pj/m → −i~∇j/m.
We are interested in the angular component as a function
of the radial coordinate, Jϕ(ρ), because the position of
its maximum can be used as an estimate of the vortex
core size, Jmax ≡ Jϕ(ρ = ξ).

We followed the extrapolation procedure of Eq. (27).
Fig. 7 shows Jϕ(ρ) for N = 70 and 0 6 η 6 1.5. The
maximum of the current increases as we go from the BCS
to the BEC limit, its value at the BEC side, η = 0, being
more than twice Jmax at the BCS side, η = 1.5. The
position of the maximum is between ξ = 1.7 and 1.8 k−1

F
at the BCS side of the crossover, i.e., 0.75 6 η 6 1.5; at
the BEC side, η = 0.25 and 0.5, ξ ∼ 1.6 k−1

F . The case
η = 0 moves away from the trend of a smaller core as we
go from the BCS to the BEC limit, with ξ = 2.0 k−1

F . It is
unclear if ξ or Jmax depend on the disk radius R, because
the R values are closely spaced for 58 6 N 6 70, and no
significant difference was observed on the maximum as we
varied N . Nevertheless, the relative results contribute to
understanding how the vortex core evolves over the BEC-
BCS crossover.
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FIG. 7. (Color online) Angular component of the probability
current Jϕ as a function of the radial coordinate ρ for several
interaction strengths η. The position of its maximum provides
an estimate of the vortex core size.

The wave function that we employed for the vortex
state is an eigenstate of the total angular momentum op-
erator. Since this operator commutes with the Hamilto-
nian, the diffusion procedure does not change the eigen-
value of the state. In addition, the calculation of the
probability current density operator allowed us to ver-
ify that the vortex corresponds to a N~/2 total angular
momentum state in a straightforward way. The angular
momentum can be written as

L = m

∫
(r× J)d2r, (33)

and the component of interest is

Lz = 2πm

∫
ρ2Jϕ(ρ)dρ. (34)

In our definition of the probability current density opera-
tor, we divide by the number of particles N , see Eq. (32).
Thus, the evaluation of Lz using Eq. (34) should yield
~/2. We verified that, for all interaction strengths, this
is in agreement with our simulations.

IV. SUMMARY

We have investigated several properties of vortices in
2D Fermi gases over the BEC-BCS crossover region. We
dedicated a considerable portion of this work to carefully
understand and control size effects in the disk geometry,
since it is very convenient to simulating a single vortex.
Given that we were interested in the evolution of the
properties in the BEC-BCS crossover, determining the
crossover region was important to verify that the inter-
action strengths studied in this work span the crossover.

The vortex excitation energies and the density profiles
are quantities that can be compared with experiments,
once they become available. Interestingly, the observed



9

density depletion of the vortex core goes from ≈ 30%
at the BCS side, η = 1.5, to an empty core for η 6
0.25, at the BEC limit. In 3D, Bogoliubov-de Gennes
theory has been used to calculate the density suppression
at the vortex core throughout the BEC-BCS crossover
[18–20]. Similar calculations in 2D could be compared
to our findings [46]. Also, determining the probability
current was essential to investigate the changes in the
vortex core throughout the crossover region.

In 3D the interplay between experiments, theory, and
simulations led to rapid advances in our comprehension
of cold Fermi gases. Hopefully, our results will motivate
experiments to increase our understanding of vortices in
2D Fermi gases.
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