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We renormalize the two-body contact interaction based on the exact solution of two interacting
particles in a harmonic trap. This renormalization extends the validity of the contact interaction
to large scattering lengths. We apply this renormalized interaction to a degenerate unitary Bose
gas to study its stationary properties and elementary excitations using the mean-field theory and
the hyperspherical method. Since the scattering length is no longer a relevant length scale at
unitarity, universal properties are obtained that depend only on the average particle density. Our
treatment shows that the universal relations for the total energy and for the two-body contact are
E/N = 12.67~2〈n2/3〉/2m and C2/N = 11.8〈n1/3〉 respectively.

I. INTRODUCTION

Strongly correlated systems near quantum degeneracy
exhibit a wide range of intriguing phenomena. Paradig-
matic examples include helium superfluidity and the frac-
tional quantum Hall effect. In the atomic physics realm,
the ultracold quantum gas, due to its simplicity, purity
and high controllability, is an excellent candidate to be
used to study strongly correlated systems. The interac-
tion between cold atoms, which is typically characterized
by the s-wave scattering length, can be readily controlled
through Feshbach resonances[1].
The Bose Einstein condensate (BEC) is a highly de-

generate quantum system in which the interparticle in-
teraction can also be tuned via a magnetic or other types
of Feshbach resonance[2]. When the scattering length in
a BEC is much larger than any length scale of the system,
the gas has reached the so-called unitary regime[3]. How-
ever, creating a BEC in the strongly interacting regime
or even all the way to unitarity is extremely difficult.
The major reason is that the three-body recombination
rate at zero temperature in dilute gases is proportional
to a4[4–7], which results in a very short lifetime of the
strongly interacting Bose gas. This phenomenon con-
trasts sharply with the strongly interacting Fermi gas,
for which the three-body recombination is suppressed
by the Pauli exclusion principle[8]. Because of the pro-
hibitively high atom loss rate, it has been considered
nearly impossible to access the unitary Bose gas adia-
batically. However, a nonadiabatic approach to unitarity
has been developed by the JILA group[9]. In their exper-
imental work, they studied the nonequilibrium dynamics
of a degenerate unitary Bose gas and observed important
universal properties of the system.
Although a few theories have been proposed to treat

the degenerate unitary Bose gas[10–15], no existing the-
ories so far are capable of completely describing this sys-
tem. Some theories involve complex derivations such as
the renormlization group theory[14] or extensive compu-
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tations like Monte Carlo simulation[13]. Shortly after
the JILA experiment on the unitary Bose gas, various
theoretical descriptions were proposed in an effort to ex-
plain the experimental results, especially the momentum
distribution[16–20].
In this article, we introduce a renormalized contact

potential similar to that in Ref. [21], to extend the va-
lidity of the zero-range potential to the strongly inter-
acting regime. Then we employ this renormalized poten-
tial in company with traditional many-body theories to
study the degenerate unitary Bose gas at zero tempera-
ture. The structure of this article is as follows: In section
II, we elaborate the renormalization procedure and the
physical ideas behind it. After that, we apply this renor-
malized potential to a few many-body theories and show
how they are modified with the inclusion of the renormal-
ization. In section III, we discuss the stationary proper-
ties and elementary excitations of a degenerate unitary
Bose gas using our renormalization theory, and compare
our results with other theoretical predictions. We par-
ticularly focus on a few important physical observables
of the system. Finally, in section IV, we summarize our
work and the most significant findings.

II. THEORY OF RENORMALIZATION

Our renormalization is similar to that in a two-
component Fermi gas[21]. Here we summarize the pro-
cedure and the physical origin of this renormalization.
For a uniform gas system, when the range of the two-
body interaction is much smaller than both the scatter-
ing length a and the average interparticle distance de-
termined by the particle density n, the behavior of the
system is characterized by the dimensionless parameter
na3. This is also equivalent to the dimensionless parame-
ter kFa, where kF = (6π2n)1/3 is defined for the Bosonic
system in a manner akin to the Fermi momentum. Our
idea is to design an effective scattering length aeff that
can replace the bare scattering length a to describe the
properties of the system. In this case, the dimensionless
parameter becomes kFaeff . Therefore, there must be a
correspondence between kFaeff and kF a characterized
by a renormalization function kFaeff = ζ(kF a). The
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effective scattering length is designed specifically for a
system of two interacting particles in a harmonic trap
such that it can exactly describe the atomic ground state
energy.
For two particles in a harmonic trap with a circular

frequency ωho interacting with a regularized pseudo po-
tential

V (r) =
4π~2a

m
δ(r)

∂

∂r
r, (1)

the Hamiltonian is given by

H2b = − ~
2

2m
(∇2

r1
+∇2

r2
)+

1

2
mω2

ho(r
2
1+r

2
2)+V (r12), (2)

where r12 = r1 − r2 is the relative coordinate between
two particles. The wave function is separable in the
center of mass motion and the relative motion, that is,
Ψ = ψcm(Rcm)ψrel(r12), where Rcm = (r1 + r2)/2 is
the center of mass coordinate. The exact solution to the
corresponding Schrödinger equation H2bΨ = Eexact(a)Ψ
has been discussed in Ref. [22]. The eigen-energy
can be written as Eexact(a) = Ecm + Erel(a), where
Ecm = (ncm + 3/2)~ωho corresponds to the center of
mass motion in the harmonic trap. The eigen-energy for
the relative motion satisfies the following condition:

√
2
Γ (−Erel(a)/2~ωho + 3/4)

Γ (−Erel(a)/2~ωho + 1/4)
=
lho
a
, (3)

where lho =
√

~/mωho is the harmonic trap length.
On the other hand, when the two particles interact

with the renormalized contact potential given by

Ṽ (r) =
4π~2aeff

m
δ(r) =

4π~2ζ(kF a)

mkF
δ(r), (4)

we assume the total wave function has a Hartree-Fock
(HF) expression Ψ̃ = ψ(r1)ψ(r2). Consequently, the en-
ergy expectation value of the system is given by

ξ{ψ} =

∫
[

2ψ

(

− ~
2

2m
∇2 +

1

2
mω2

hor
2

)

ψ

+
4π~2aeff

m
ψ4

]

d3r. (5)

Since there is no Fermi momentum in few body systems,
it is natural to replace kF in Eq. (4) by its average
value 〈kF 〉 =

∫

[6π22ψ(r)2]1/3ψ(r)2d3r in this two body
case. Minimizing ξ{ψ} with the normalization constraint
〈ψ|ψ〉 = 1 yields the ground state energy that depends
on the effective scattering length:

EHF (aeff ) = ξ{ψ}|δξ/δψ=0. (6)

In order to make the effective scattering length and the
bare scattering length equivalent for this trapped two-
particle system, we match the HF energy to the exact
energy:

EHF (aeff ) = Eexact(a). (7)

Before matching these two energies, we should note that
the exact energy has many branches including a molec-
ular branch for a > 0. Because the HF approximation
describes the lowest atomic gas state, which corresponds
to the branch with ncm = 0 and (1/2)~ωho < Erel <
(5/2)~ωho, we match the HF energy to the exact en-
ergy in this particular branch. Since Eq. (7) yields a
pointwise correspondence between 〈kF 〉aeff and 〈kF 〉a,
we can numerically interpolate the renormalization func-
tion 〈kF 〉aeff = ζ(〈kF a〉a). This interpolation can be
excellently fitted by an analytical expression

ζ(x) = 0.395− 1.138 arctan(0.362− 0.994x), (8)

which satisfies the asymptotic conditions ζ(+∞) = 2.182,
ζ(−∞) = −1.392 and ζ(kF a) → kF a for |kF a| ≪ 1.
From the renormalization procedure above, we can see

that the renormalized contact potential Eq. (4) repro-
duces the exact energy solution for the system of two
interacting particles in a trap. The next step is to ap-
ply such a renormalized contact potential to many body
systems. Since the many body Hamiltonian cannot be
diagonalized exactly due to the huge number of degrees
of freedom, we must make some aggressive but reason-
able approximations, as we will discuss in the following
subsections.

A. Mean-field approach

One natural and intuitive idea is to generalize the HF
approximation employed above along with the renormal-
ized interaction to many body systems. Such an approx-
imation for bosons is also called the mean-field approxi-
mation.
With the inclusion of renormalized interactions, the

N -body Hamiltonian now becomes

H =

N
∑

i=1

(

− ~
2

2m
∇2
i +

1

2
mω2

hor
2
i

)

+

N
∑

i<j

4π~2ζ(kF a)

mkF
δ(rij).

(9)
The mean-field theory assumes the N -body ground state

wave function to be Ψ =
∏N
i=1 ψ(ri). By taking the

variation δH/δψ = 0 under the normalization condition
〈ψ|ψ〉 = 1, we can obtain a renormalized N -body Gross-
Pitaevskii (GP) equation:

[

− ~
2

2m
∇2 +

1

2
mω2

hor
2 +

4π(N − 1)~2

3m

×
(

ζ′(kFa)a+ 2
ζ(kF a)

kF

)

|ψ|2
]

ψ = ǫψ. (10)

where ǫ is the Lagrange multiplier enforcing normaliza-
tion in the variation procedure, and is also identified as
the orbital energy. ζ′(x) means the derivative of ζ with
respect to the variable x. kF is the local Fermi momen-
tum. With such a mean-field approximation and in the
framework of the local density approximation (LDA), the
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local Fermi momentum is given by kF = (6π2N |ψ|2)1/3.
After solving Eq. (10), we can evaluate the total energy
of the system as

E =

∫
[

Nψ

(

− ~
2

2m
∇2 +

1

2
mω2

hor
2

)

ψ

+
N(N − 1)

2

4π~2ζ(kF a)

mkF
ψ4

]

d3r. (11)

At very large particle numbers, the kinetic energy com-
poses a very small portion of the total energy of the sys-
tem. In the meanwhile, the particle density varies slowly
in the trap except for the edge of the cloud, which is an
evidence of the validity of the LDA. In this condition, we
can solve Eq. (10) using the Thomas-Fermi approxima-
tion, which neglects the kinetic energy term and thereby
converts Eq. (10) to a regular algebraic equation. In the
unitary regime, if we neglect edge effects, which means
assuming kFa → +∞ at any position of the cloud, we
can obtain an analytical expression for the wave func-
tion, which is given by

ψTF (r) =

[

3(6π2)1/3(R2
TF − r2)

16πN2/3ζ(+∞)l4ho

]3/4

, (12)

where RTF is the Thomas-Fermi radius indicating the
size of the cloud. It is given by

RTF = N1/6

(

256
√
2

9

)1/6
(

ζ(+∞)

π

)1/4

lho. (13)

Consequently, the orbital energy is given by

ǫ =
1

2
mω2

hoR
2
TF . (14)

The fact that ψTF does not depend on a is another sig-
nature that the scattering length is no longer a relevant
length scale in the unitary regime.
In order to calculate the dynamics of a degenerate Bose

gas, it is natural to convert Eq. (10) to a time-dependent
GP equation:

[

− ~
2

2m
∇2 +

1

2
mω2

hor
2 +

4π(N − 1)~2

3m

×
(

ζ′(kF a)a+ 2
ζ(kF a)

kF

)

|ψ̃|2
]

ψ̃ = i~
∂

∂t
ψ̃. (15)

We should notice that now the local Fermi momen-
tum kF also becomes time-dependent. Although such
a non-linear and time-dependent Shrödinger equation
can be solved directly using a brute force time-evolution
method, we can obtain a clearer physical picture if ap-
propriate approximations are made to Eq. (15). One
typical method is the Bogoliubov approximation, which
is commonly used to predict elementary excitations of a
BEC. The Bogoliubov approximation assumes the time-
dependent wave function to be

ψ̃bog(r, t) = e−iǫt/~
(

ψ(r) + u(r)e−iωt + v∗(r)eiωt
)

.
(16)

Inserting this wave function into Eq. (15) and linearizing
the equation to the first order in u(r) and v(r), we can
obtain a pair of coupled differential equations:

(

− ~
2

2m
∇2 +

1

2
mω2

hor
2 + f(N, a, ψ)− ǫ

)

u

+g(N, a, ψ)v = ~ωu, (17)

(

− ~
2

2m
∇2 +

1

2
mω2

hor
2 + f(N, a, ψ)− ǫ

)

v

+g(N, a, ψ)u = −~ωv, (18)

where ω corresponds to the eigen mode frequency. f and
g are in general complicated functions ofN , a, and ψ, but
they have simple forms in the asymptotic limits a → 0
and a→ ∞:

f → 8πN~
2a

m
ψ2, g → −4πN~

2a

m
ψ2 (a → 0), (19)

and

f → 40πN2/3
~
2ζ(+∞)

9(6π2)1/3m
ψ4/3,

g → −16πN2/3
~
2ζ(+∞)

9(6π2)1/3m
ψ4/3 (a→ ∞). (20)

The lowest and most significant eigen-mode is called the
breathing mode, which corresponds to the oscillation of
the overall size of the cloud with a fixed geometry. We
will discuss this mode in later sections.

B. Hyperspherical description

The hyperspherical coordinate system is a powerful
toolkit to treat few-body problems[23–26]. To generalize
this toolkit to many body systems, aggressive approxima-
tions must be made to significantly reduce the dimension
of the problem. The hyperspherical description of a sin-
gle component weakly-interacting BEC and a degenerate
Fermi gas have been studied with the bare Fermi pseudo
potential, and important physics has been predicted even
with crude approximations[27, 28]. Similar to the proce-
dure in Ref. [27], we formulate the hyperspherical theory
in a degenerate unitary Bose gas with the renormalized
interaction.
For N particles in a 3D space, which contains 3N de-

grees of freedom, the hyperspherical coordinates are con-
structed as follows: The hyperradius R, which is a collec-
tive coordinate and indicates the overall size of the cloud,
is given by

R =

√

√

√

√

1

N

N
∑

i=1

r2i , (21)

The remaining 3N−1 coordinates are called hyperangles.
2N of them are the defined as the regular spherical angles
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of the N particles, that is, {θ1, φ1, θ2, φ2, · · · , θN , φN}.
The remaining N − 1 hyperangles can be defined as

tanαi =

√

∑i
j=1 r

2
j

ri+1
, (i = 1, · · · , N − 1) (22)

With this set of hyperspherical coordinates, the Hamil-
tonian in Eq.(9) can be rewritten as

H = − ~
2

2M

1

R3N−1

∂

∂R
R3N−1 ∂

∂R
+

Λ2

2MR2

+
1

2
Mω2

hoR
2 + Vint(R,Ω), (23)

where M = Nm is the total mass of the N particles.
Vint(R,Ω) denotes the renormalized interactions written
in hyperspherical coordinates, that is,

Vint(R,Ω) =

N
∑

i<j

4π~2ζ(kF a)

mkF
δ(rij). (24)

Λ is called the grand angular momentum operator. The
eigen-functions of the operator Λ2, denoted by Φλ, are
called hyperspherical harmonics[29]. They satisfy the
equation

Λ2Φλ(Ω) = λ(λ+ 3N − 2)Φλ(Ω), (25)

where Ω represents all hyperangles. For a given λ,
Φλ usually has huge degeneracy especially for large λ.
The eigen-functions Φλ form a basis in the hyperangu-
lar Hilbert space. An aggressive approximation we make
here is to only retain one hyperangular momentum eigen-
state out of this huge basis set. This is also known as the
K-harmonics approximation in nuclear theories[30] and
it becomes exact in the unitary limit and in the non-
interacting limit[15, 31]. The natural choice of this eigen
state for bosons would be the lowest eigen state of Λ2,
denoted by Φ0, which in fact is a constant. Such a choice
of hyperangular wave function also freezes the geome-
try of the atomic cloud into that of the non-interacting
case, while the interparticle interactions modify the over-
all size of the cloud, which is reflected in the hyperra-
dial wave function. With this K-harmonics approxima-
tion, the total N -body wave function can be separated
as Ψ(R,Ω) = F (R)Φ0(Ω). Inserting this expression into
the time-independent Schrödinger equation and integrat-
ing over all hyperangles yields a hyperradial Schrödinger
equation:

(

− ~
2

2M

d2

dR2
+ Veff (R)− E

)

R(3N−1)/2F (R) = 0, (26)

where Veff (R) is an effective hyperradial potential writ-
ten as

Veff (R) =
(3N − 1)(3N − 3)~2

8MR2
+

1

2
Mω2

hoR
2

+〈Φ0(Ω)|Vint(R,Ω)|Φ0(Ω)〉Ω, (27)
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FIG. 1. Effective hyperradial potential curves for N = 5000
particles with different scattering lengths a/lho =0.01(solid),
0.1(dashed), 1(dotdashed) and 10 (dotted) respectively.

where 〈· · · 〉Ω denotes integration over all hyperangles.
The evaluation of the last term in Veff has been elabo-
rated in Ref. [27]. In the large N limit which we are in-
terested in, 〈Φ0|Vint(R,Ω)|Φ0〉Ω can be readily calculated
numerically. We can even obtain analytical expressions
in the unitary limit and the weakly interacting limit: For
a→ ∞,

〈Φ0|Vint(R,Ω)|Φ0〉Ω =
N8/3(3/5)3/2ζ(+∞)(4π/3)1/3~2

πMR2
,

(28)
and for a→ 0,

〈Φ0|Vint(R,Ω)|Φ0〉Ω =
N3(2/π)1/2(3/2)3/2~2a

2MR3
. (29)

Fig. 1 shows the effective hyperradial potential curves
at different scattering lengths. At large hyperradius,
Veff (R) is always dominated by the R2 term representing
the confinement of the harmonic trap. At a small hyper-
radius, the system feels two repulsive forces originating
from the quantum pressure and the two-body interac-
tion. It is interesting that the two-body interaction term
transitions from R−3 to R−2 as the scattering length in-
creases to infinity.
Eq. (26) is equivalent to the Schrödinger equation of

a particle moving in a 1D potential. Moreover, in the
large N limit, the mass of this “particle” is so huge that
it can be treated classically. Consequently, the minimum
of Veff corresponds to the total energy of the system at
equilibrium, that is,

E = Veff (R0), (30)

where R0 denotes the equilibrium position. Furthermore,
as the hyperangular wave function is kept frozen, the os-
cillation of this massive “particle” in the hyperradial po-
tential indicates the oscillation of the overall size of the
system, which corresponds to the breathing mode. The
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breathing mode frequency is associated with the coeffi-
cient of the second order expansion of Veff at R0, that
is,

ω = ωho

√

1

M

d2Veff
dR2

∣

∣

∣

∣

R=R0

(31)

III. RESULTS AND DISCUSSIONS

At first, we discuss the total energy of a degenerate
Bose gas. Fig. 2 shows the average energy per particle for
N = 104 particles as a function of the scattering length.
In the weakly interacting regime where 〈n〉a3 ≪ 1, the
mean-field energy obtained by solving the GP equation
with renormalization agrees excellently with that with-
out renormalization. These two results start to separate
near a/lho = 0.2, which corresponds to 〈n〉a3 = 0.25. The
mean-field energy diverges at unitarity without renormal-
ization. The energy obtained using the Thomas-Fermi
approximation and the mean-field energy differ in the
weakly interacting regime where the kinetic energy is a
significant contribution to the total energy. However, at
large scattering lengths, the total energy of the system
is dominated by the strong interactions between parti-
cles and thereby the Thomas-Fermi approximation agrees
excellently with the mean-field result. The energy ob-
tained using the hyperspherical method agrees qualita-
tively with the mean-field result, though it is slightly
smaller. Overall, the total energy of the system sat-
urates at large scattering lengths with the inclusion of
the interaction renormalization, which indicates that the
scattering length is no longer a relevant length scale of
the system near unitarity.
We now discuss the energy of a unitary Bose gas using

the Thomas-Fermi approximation since it is very accu-
rate in the strongly interacting regime. One advantage
of the Thomas-Fermi approximation is that we can ob-
tain analytical expressions for many physical quantities,
which offers us a clear picture of the unitary Bose gas.
With the Thomas-Fermi approximation, the ground state
energy is given by

E

N
=

27

64

(

256
√
2

9

)1/3
(

ζ(+∞)

π

)1/2

N1/3
~ωho (32)

For a unitary gas in a uniform space, the only rele-
vant length scale of the system is the average interparti-
cle distance determined by n−1/3, where n is the particle
density. This also defines the only energy scale of the sys-
tem ~

2n2/3/2m. When the gas is inhomogeneous while
the density varies slowly in space, the local density ap-
proximation can be applied to the system and thereby
n2/3 is replaced by its average value 〈n2/3〉. For a uni-
tary Bose gas in a harmonic trap, the average value is
given by

〈n2/3〉 = 5× 32/3N1/3

8(2π)5/6ζ(+∞)1/2l2ho
. (33)
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FIG. 2. The average energy per particle as a function of the
scattering length in the ground state of a degenerate Bose
gas for N = 104 particles. The results are obtained with
the renormalized interaction using mean-field approach(blue
solid), the Thomas-Fermi approximation(red dashed), and
hyperspherical method(black dotted) respectively. The dot-
dashed curve shows the mean-field result with the bare un-
renormalized contact interaction for comparison.
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FIG. 3. The average energy per particle, in units of
~
2〈n2/3〉/2m, as a function of the average particle density

for a/lho = 0.1(blue dotted), 1(red dotdashed) and 10(green
dashed) respectively. The black solid line shows the universal
relation of energy from Eq. (34).

Therefore, from Eq. (32) and Eq. (33), we can obtain
the universal relation of the energy of a unitary Bose gas,
which is given by

E

N
=

65/3π1/3ζ(+∞)

5

~
2〈n2/3〉
2m

≈ 12.67
~
2〈n2/3〉
2m

(34)

This universal relation is close to the value E/N =
13.33~2n2/3/2m reported in Ref. [10].
We show in Fig. 3 the average energy per particle, in

units of ~2〈n2/3〉/2m, as a function of the average density
for different scattering lengths to verify this universal re-
lation. The results are obtained by solving the renormal-
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ized GP equation Eq. (10). At small scattering length
a/lho = 0.1, the value of 2mE/N~

2〈n2/3〉 varies signifi-
cantly with the average density. As the scattering length
increases, 2mE/N~

2〈n2/3〉 has weaker dependence on the
average density and the value approaches the universal
constant in Eq. (34). At a/lho = 10, where gas has
reached the unitary regime, the result agrees excellently
with the universal relation Eq. (34) for 〈n〉l3ho > 5, The
small deviation from the universality at small densities
may be due to the inaccuracy of LDA when the interpar-
ticle distance is comparable to the trapping length.
Besides the total energy, there are many interesting

physical quantities worthy of investigation in unitary
Bose gases. An important quantity that bridges the two-
body correlations and the thermodynamics of a many-
body system is called the two-body contact or Tan’s con-
tact. It was first introduced by Shina Tan to study the
universal properties of a two-component Fermi gas with
s-wave contact interactions[32, 33]. Universal relations
determined by the two-body contact have also been iden-
tified in systems consisting of identical bosons[34]. The
two-body contact in bosons has been measured using rf
spectroscopy[35]. The two-body contact is determined
by the derivative of the total energy of the system with
respect to the scattering length:

C2 =
8πma2

~2

dE

da
. (35)

It is an extensive thermodynamic quantity of the system.
Another intrinsic quantity, which is commonly used in
homogeneous systems, is the contact density C2, which
can be obtained from the limit of the high momentum
tail: C2 = limk→∞ k4nk, where nk is the number of par-
ticles in the k momentum state. Since the interparticle
distance is the only relevant length scale of a homoge-
neous system at unitarity, the two-body contact density
must scale as

C2 = αn4/3, (36)

where α is an universal dimensionless coefficient. Such a
universal relation can be generalized to a trapped system
under LDA, which is given by

C2 = αN〈n1/3〉. (37)

Fig. 4 shows the average two-body contact per par-
ticle, in units of 〈n1/3〉, as a function of the scatter-
ing length. The results are obtained by directly solv-
ing the renormalized GP equation Eq. (10). The value
of C2/(N〈n1/3〉) has similar behavior for different num-
bers of particles: It increases drastically in the weakly
interacting regime as the scattering length grows; it then
attains a maximum value before saturating in the unitary
regime. For different numbers of particles C2/(N〈n1/3〉)
saturates at the same value, demonstrating the univer-
sality of α.
From our renormalized mean-field model, we can de-

rive the universal relation Eq. (37) and determine the
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FIG. 4. The average two-body contact per particle, in units of
〈n1/3〉, as a function of the scattering length for N = 103(blue
solid), 104(red dashed),105(green dotdashed) and 106(black
dotted) particles.
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FIG. 5. The average two-body contact per particle, in units
of 〈n1/3〉, as a function of the average particle density for
a/lho = 0.1(blue dotted), 1(red dotdashed) and 10(green
dashed) respectively. The black solid line shows the universal
relation of two-body contact from Eq. (37).

universal coefficient α analytically with appropriate ap-
proximations. To calculate the two-body contact, we
take the derivative of the renormalized mean-field en-
ergy Eq. (11) with respect to the scattering length. We
should note that at unitarity the scattering length de-
pendence of the wave function ψ is much weaker than
the renormalization function ζ(kF a). Thus, by approxi-
mating ∂ψ/∂a|a→∞ ≈ 0 and neglecting the edge effect,
we can readily obtain Eq. (37) and the coefficient α is
given by

α =
1.138(4π)2

0.994(6π2)2/3
≈ 11.8. (38)

Other theoretical works have reported the the universal
coefficient to be α = 10.3[12], 9.04[13] and 12[17], which
agree qualitatively with our prediction from the renor-
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FIG. 6. The breathing mode frequency as a function of the
scattering length for N = 104 particles. The results are ob-
tained using the hyperspherical method(blue solid), Bogoli-
ubov approximation(red dashed) and by direct time evolu-
tion(black dots).

malized mean-field approach.
To further verify our prediction of the universal rela-

tion Eq. (37) and the value of the coefficient α, we show
in Fig. 5 the average two-body contact per particle, in
units of 〈n1/3〉, as a function of the average particle den-
sity for different scattering lengths. At small scattering
length a/lho = 0.1, C2/(N〈n1/3〉) increases significantly
with the density. The value of C2/(N〈n1/3〉) at a/lho = 1
is larger than its values for both a/lho = 0.1 case and
a/lho = 10 case because it attains a maximum with the
increment of the scattering length, as shown in Fig. 4. In
the unitary regime, C2/(N〈n1/3〉) converges to the uni-
versal coefficient α, which corresponds to a/lho = 10 case.
The value of α from exact calculation is slightly smaller
than the the analytical approximation α ≈ 11.8, which
might be due to the edge effect and the small scattering
length dependence of the wave function.
Finally, we discuss the elementary excitations of the

degenerate Bose gas in a harmonic trap. Specifically, we
focus on the lowest radial excitation, which corresponds
to the breathing mode. The breathing mode frequency
can be determined from the hyperspherical method, the
Bogoliubov approximation, or by directly solving the
time-dependent GP equation, as discussed in the the-
ory of renormalization section above. Fig. 6 shows the
breathing mode frequency as a function of the scatter-
ing length for N = 104 particles. These three differ-
ent methods show overall consistency with each other.
The time-evolution results are obtained by solving Eq.
(15) with an interaction quench. At vanishing scatter-
ing length, the breathing mode frequency is apparently
ω = 2ωho, which corresponds to the beating between two
adjacent harmonic levels with zero angular momentum.
The breathing mode frequency increases gradually with
the scattering length before it reaches a maximum value.
It is interesting that the breathing mode frequency re-

gresses to the non-interacting value ω = 2ωho at unitar-
ity. Similar unitary behavior has also been predicted in
Ref. [15].
It is interesting to compare our results with those for

a unitary Fermi gas. Before the comparison, we should
note that Fermi systems have a few fundamental differ-
ences from Bose systems. First, a unitary Fermi gas is
usually created by ramping the scattering length in the
attractive region from a→ 0− to a→ −∞, during which
the system is always in the lowest energy branch. How-
ever, a unitary Bose gas must be created in the repul-
sive region from a → 0+ to a → +∞, because a BEC
with strong attractive interactions is extremely unsta-
ble. This procedure pushes the Bose system to unitarity
along the first excited energy branch. As a consequence,
a unitary Fermi gas usually has a smaller energy than a
unitary Bose gas. Second, a fermion has two populated
spin states and s-wave scattering only happens between
fermions with different spin substates. Thus, in a uni-
tary Fermi gas, particles with different spins have the
strongest interaction while those with the same spin in-
teract weakly. We compare our results with those for an
unpolarized unitary Fermi gas that has an equal number
of particles in each spin substate.
In a unitary Fermi gas, the average energy per particle

is characterized by the relation E/N = ξ(3/5)~2k2F /2m,
where ξ is a universal constant called Bertsch parameter
[3]. Ref. [21] reported its value to be ξ = 0.51 using the
renormalized interaction, which is qualitatively close to
the experimental result ξ = 0.376 [36], although not in
quantitative agreement. These results verify that with
the same density, the energy of a unitary Fermi gas is
lower than that of a unitary Bose gas. The two-body con-
tact of a unitary Fermi gas is characterized by a universal
constant C2/NkF , which has been measured experimen-
tally to have a value ranging from 2.6 to 3.5 [37–39]. Such
a universal relation for the two-body contact is similar to
that in a unitary Bose gas. As to the breathing mode fre-
quency, Ref. [40] predicted a similar result ω = 2ωho for
a unitary Fermi gas using the renormalized interaction,
which was also measured experimentally [41].

IV. CONCLUSION

In summary, we introduced a renormalized contact po-
tential to study degenerate Bose gases with large scat-
tering lengths. Such a renormalized interaction is de-
signed by matching the Hartree-Fock energy to the ex-
act energy of two interacting particles in a trap. We
employ this renormalized contact potential in company
with the mean-field theory and the hyperspherical the-
ory to study the stationary properties and elementary
excitations of a degenerate Bose gas, especially in the
unitary regime. In the framework of the local density
approximation, the only relevant length scale of a degen-
erate unitary Bose gas is the interparticle spacing n−1/3,
where n is the particle density. This length scale also de-
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termines the only energy scale ~
2n2/3/2m and the only

two-body contact scale n1/3 of the system. Our renor-
malization theory offers us a much more clear and con-
venient approach to obtain the universal relations for en-
ergy and two-body contact at unitarity, which are given
by E/N = 12.67~2〈n2/3〉/2m and C2/N = 11.8〈n1/3〉 re-
spectively. Our results are in consistent with other the-
oretical predictions. Moreover, we studied the lowest ra-
dial excitation of a degenerate Bose gas, which can be
induced by an interaction quench. This excitation is also
known as the breathing mode. Our theory shows an in-
teresting phenomenon that the breathing mode frequency

at unitarity returns to the value of a non-interacting gas.
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