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Abstract

We present the photoelectron momentum distributions (PMDs) of helium (He), neon (Ne) and ar-

gon (Ar) atoms driven by a linearly-polarized, visible (527 nm) or near-infrared (800 nm) laser pulse

(20 optical cycles in duration), based on the time-dependent density functional theory (TDDFT)

under the local density approximation with a self-interaction correction. A set of time-dependent

Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseu-

dospectral method. An effect of the electron-electron interaction driven by a visible laser field is

not recognizable in the He and Ne PMDs except for a reduction of the overall photoelectron yield,

but there is a clear difference between the PMDs of an Ar atom calculated with the frozen-core

approximation and the TDDFT, indicating an interference of its M-shell wavefunctions during the

ionization. Furthermore, we find that the PMDs of degenerate p-states are well separated in in-

tensity when driven by a near-infared laser field, so that the single-active-electron approximation

can be adapted safely.

∗ Mitsuko.Murakami@indstate.edu
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I. INTRODUCTION

Since the X-ray free-electron lasers around the world (such as LCLS in US, SACLA in

Japan, and the FLASH in Germany) became operational around 2010, many groundbreaking

experiments have been conducted in the field of angle-resolved photoelectron momentum

spectroscopy of gaseous atoms, e.g., the orbital-dependent observation of lithium (Li) excited

states [1], the two-color, core-excitation of neon (Ne) atoms [2], and the xenon Rydberg

states [3], to name a few. Resolutions of the photoelectron momentum distribution (PMD)

in these experiments are unprecedentedly high, which has made the detailed comparison

with theoretical calculations possible.

There are various methods to calculate the PMD of atoms, such as the R-matrix theory

[4, 5], the perturbation approach [6], the strong-field approximation [7, 8], and the time-

dependent Schrödinger equation (TDSE) [9, 10]. The PMD of hydrogen atoms has been

studied extensively in the past using the TDSE [11–14], but the PMD of many-electron atoms

previously studied was limited by the single-active-electron (SAE) approximation [3, 15, 16].

One notable exception is the calculation of PMD based on the time-dependent density func-

tional theory (TDDFT) in Ref. [17] using the octopus code [18], but their method was not

tested with real many-electron atoms but with the one-dimensional soft-Coulombic hydro-

gen atom. The highest-occupied atomic orbitals (HOAOs) of noble-gas atoms beyond the

helium (He) are in p-states, where the electron-electron interaction forces three degenerate

orbitals to be perpendicular to each other, and they ionize by a linearly-polarized laser field

into different angles. Since the orbital-dependent measurements of p-state PMD are al-

ready available [1, 19], theoretical calculations beyond the SAE approximation are urgently

needed. Recently, the multi-electron PMDs of noble-gas atoms driven by an extreme ultra-

violet (XUV) laser pulse were calculated, based on the solution of the two-electron TDSE in

the limit of the frozen-core (FC) approximation [28]. Their calculation was in an excellent

agreement with experimental data.

In this paper, we calculate the PMD of He, Ne and argon (Ar) atoms driven by a linearly-

polarized visible (527 nm) or near-infrared (800 nm) laser pulse (20 optical cycles in dura-

tion), based on the TDDFT. The TDDFT is a mathematically tractable alternative to the

many-electron TDSE and assumes a single-electron Hamiltonian for each electron in an

atom. The resulting set of linearly independent Kohn-Sham (KS) equations is numerically
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solved using the generalized pseudospectral (GPS) method [20]. The KS effective potential

of the atom is calculated by using the local density approximation with a self-interaction

correction (LDA-SIC) [21]. This scheme has been successfully used in the past to calculate

high harmonic spectra of He, Ne and Ar [22] atoms, the strong-field ionization of Li and

beryllium atoms [23], the resonance energies of He Rydberg states [24], the Cooper minimum

in the high harmonic spectra of an Ar atom [25, 26], and the transient absorption spectra

of a He atom [27]. This paper complements these works with the PMD calculation of He,

Ne and Ar atoms.

With rapid technological advances in high performance computing, all-electron calcula-

tions of atoms in a strong laser field have become as affordable as ever. For the modest-

intensity (0.5 ∼ 1× 1014 W/cm2), linearly-polarized driving laser we use in this paper, our

TDDFT calculation of the PMD based on the GPS method requires a very moderate num-

ber of special points (150-250 radial and 31-63 polar angles) and takes only 5-20 hours per

electron per CPU (central processing unit). While we consider the multi-photon ionization

of noble-gas atoms driven by a visible-to-infrared (a few eV) laser pulse in our work, the

process considered in Ref. [28] is the one-photon double ionization driven by an XUV (∼ 100

eV) laser pulse. In general, the calculation of a one-photon, double ionization requires the

∼PW/cm2 driving-laser intensity, which makes our all-electron TDDFT calculation too dif-

ficult to converge in a reasonable computation time. Therefore, we restrict our goal in

the present paper to the observation of a multi-electron interference effect in a moderately

intense, low-frequency driving laser field.

The paper is organized as follows. In Section II, we describe the numerical methods in

our calculations. Sec. IIA introduces the KS Hamiltonian for the TDDFT based on the

LDA-SIC approximation, and Sec. II B and Sec. IIC describe the numerical schemes for the

initial value problem and the time evolution, respectively. Results are presented in Section

III. The PMDs generated by a 527-nm driving laser pulse are discussed first, separately for

He (Sec. IIIA), Ne (Sec. III B) and Ar (Sec. IIIC) atoms. The PMDs of the Ne and Ar

atoms are studied further using an 800-nm laser pulse in Sec. IIID. Then, we discuss the

applicability of our method to the experiments of Refs. [1] and [19] in Sec. III E. Section

IV summarizes the results. Atomic units (e = me = ~ = 1) are used throughout, unless

specified otherwise.
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II. METHODS

A. Time-dependent Density Functional Theory

Consider an atom interacting with a strong laser field E(t). To describe the dynamics of

each electron in the atom, we solve the time-dependent KS equation in the length gauge,

given by [29]

i
∂

∂t
ψiσ(r, t) = H(r, t)ψiσ(r, t), (1)

where i = 1, 2, ..., Nσ ranges over occupied atomic orbitals, σ ∈ {↑, ↓} specifies the electron

spin ±1
2
, and

H(r, t) =

[

−1

2
∇2 −

Z

r
+ vKS

σ [n↑, n↓](r, t) + r ·E(t)

]

. (2)

The charge number of a nucleus is equal to the total number of electrons, i.e., Z = N↑+N↓.

The KS potential vKS
σ [n↑, n↓](r, t) in the Hamiltonian H(r, t) is a functional of the spin

electron density

nσ(r, t) =
Nσ
∑

i=1

niσ(r, t) =
Nσ
∑

i=1

|ψiσ(r, t)|
2, (3)

and consists of two parts, such that

vKS
σ [n↑, n↓](r, t) = VH[n](r, t) + vxcσ [n↑, n↓](r, t). (4)

The first term in the above equation is the Hartree potential, defined by

VH[n](r, t) =

∫∫∫

n(r′, t)

|r− r′|
d3r′, (5)

which is a functional of total electron density: n(r, t) =
∑

σ nσ(r, t). The second term

vxcσ [n↑, n↓](r, t) is an exchange-correlation potential and needs to be approximated in practice.

We employ the local density approximation (LDA) with a self interaction correction (SIC)

[21, 30]

vxcσ [n↑, n↓](r, t) ≃ V LDA
σ [nσ](r, t)− V SIC

σ (r, t), (6)

where

V LDA
σ [nσ](r, t) = −

(

6

π
nσ(r, t)

)1/3

, (7)

and

V SIC
σ (r, t) = V SI

σ (r, t) +
1

nσ(r, t)

Nσ
∑

i=1

′niσ(r, t)viσ(t). (8)

4



In the last expression, V SI
σ (r, t) is the self-interaction potential given by

V SI
σ (r, t) =

1

nσ(r, t)

Nσ
∑

i=1

niσ(r, t)wiσ(r, t), (9)

with

wiσ(r, t) = VH[niσ](r, t)− V LDA
σ [niσ](r, t). (10)

Moreover, viσ(t) ≡ 〈V SIC
iσ (t)〉 − 〈wiσ(t)〉, where

〈V SIC
iσ (t)〉 =

∫∫∫

V SIC
σ (r, t)niσ(r, t) d

3r, (11)

and

〈wiσ(t)〉 =

∫∫∫

wiσ(r, t)niσ(r, t) d
3r. (12)

The asymptotic condition, where V SIC
σ → 0 as r → ∞, requires that viσ = 0 for the HOAOs,

and thus the primed summation
∑′ in Eq. (8) denotes a summation over all orbitals except

for the HOAOs [31]. We can calculate viσ(t) non-iteratively as [32]

viσ(t) =
Nσ
∑

j=1

′[A−1
σ (t)]ij [〈V

SI
jσ (t)〉 − 〈wjσ(t)〉] , (13)

where

[Aσ(t)]ij = δij −

∫∫∫

niσ(r, t)njσ(r, t)

nσ(r, t)
d3r, (14)

and

〈V SI
jσ (t)〉 =

∫∫∫

V SI
σ (r, t)njσ(r, t)d

3r. (15)

The LDA-SIC is an exchange-only approximation, so that electrons with opposite spins

do not interact. For noble-gas atoms in particular, the number of linearly independent KS

equations to be solved is therefore Z/2. The total density can then be found by multiplying

the spin-up (or -down) electron density by 2.

B. Initial Value Problem

For the stationary states of atoms, we may assume the separable solution of form

ψiσ(r) =
Rℓ

iσ(r)

r
Y m
ℓ (θ, φ), (16)
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where Y m
ℓ (θ, ϕ) are the spherical harmonics

Y m
ℓ (θ, ϕ) =

√

(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ, (17)

and Pm
ℓ (cos θ) are the associated Legendre polynomials. Each spin orbital ψiσ(r) is (2ℓ+1)-

fold degenerate for different m’s. If we take an average over these degenerate states, then

spin electron density of an individual atomic orbital is spherically symmetric and given, by

using the addition theorem of spherical harmonics, as

n̄iσ(r) =

(

1

2ℓ+ 1

)

|Rℓ
iσ(r)|

2

r2

ℓ
∑

m=−ℓ

|Yℓm(θ, φ)|
2

=
|R

(ℓi)
iσ (r)|2

4πr2
, (18)

where ℓi is the angular momentum of ψiσ(r). Note that ℓi is not a summation index but

specific to each i-th orbital, and hence we enclose it in parentheses. In the limit of the

central field approximation (18), the Hartree potential (5) reduces to a function of only the

radial coordinate, i.e.,

VH[n̄](r, 0) =

∫

n̄(r′)

r>
4πr′2dr′, (19)

where n̄(r) =
∑

σ

∑Nσ

i=1 n̄iσ(r), and r> ≡ max(r, r′). The scaled function U(r) ≡ rVH[n̄](r, 0)

satisfies the following Poisson’s equation

−
d2

dr2
U(r) = 4πr n̄(r), (20)

with the boundary conditions

U(0) = 0, U(rmax) =

∫ rmax

0

n̄(r) 4πr2dr. (21)

In the same limit, the LDA-SIC potential (6) also reduces to a radial function, such that

V LDA
σ [n̄σ](r, 0) = −

(

6

π
n̄σ(r)

)1/3

, (22)

and

V SIC
σ (r, 0) = V SI

σ (r, 0) +
1

n̄σ(r)

Nσ
∑

i=1

′n̄iσ(r)viσ, (23)

where

V SI
σ (r, 0) =

1

n̄σ(r)

Nσ
∑

i=1

n̄iσ(r)wiσ(r, 0), (24)
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LDA-SIC KLI HF exp.

He 1s2 -0.918 -0.918 -0.918 -0.904

Ne

1s2 -30.836 -30.802 -32.772 31.976

2s2 -1.644 -1.707 -1.930 -1.781

2p6 -0.808 -0.850 - 0.850 -0.794

Ar

1s2 -114.364 -114.929 -118.610 -117.829

2s2 -10.981 -11.958 -12.322 -11.991

2p6 -8.619 -9.558 -9.571 -9.132

3s2 -1.050 -1.149 -1.277 -1.077

3p6 -0.549 -0.630 -0.591 -0.581

TABLE I. The ground-state energy εi of each bound electron in au, calculated by using the LDA-

SIC or the KLI approximations. Also shown are the Hartree Fock results (HF) and experimental

values (exp.) from Refs [33] and [34], respectively.

wiσ(r, 0) = VH[n̄iσ](r, 0)− V LDA
σ [n̄iσ](r, 0), (25)

viσ =
Nσ
∑

j=1

′(A−1
σ )ij[〈V

SI
jσ 〉 − 〈wjσ〉] , (26)

and

(Aσ)ij = δij −

∫

n̄iσ(r)n̄jσ(r)

n̄σ(r)
4πr2dr. (27)

Accordingly, the eigenvalue problem for the KS equation (1) becomes diagonal in each ℓ,

such that

H0
ℓ (r)R

ℓ
iσ(r) = εiR

ℓ
iσ(r), (28)

where

H0
ℓ (r) =

−1

2

∂2

∂r2
+
ℓ(ℓ+ 1)

2r2
−
Z

r
+ vKS

σ [n̄σ](r, 0), (29)

and

vKS
σ [n̄σ](r, 0) = VH[n̄](r, 0) + V LDA

σ [n̄σ](r, 0)− V SIC
σ (r, 0). (30)

Eq. (28) is solved by using the generalized pseudospectral method [20]. The resulting

set of eigenvalues and eigenstates are used to construct a time-evolution operator for the

stationary part of the Hamiltonian in Eq. (2).
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TABLE I lists the groundstate energies εi of occupied atomic orbitals for He, Ne and

Ar atoms obtained by the LDA-SIC approximation. In the self-interaction-free theory, the

groundstate energy of the HOAOs should be equal to the negative of the first ionization

potential [30]. For reference purposes, we calculated the groundstate energies using the

Krieger-Li-Iafrate (KLI) approximation [31] as well, whose method is relegated to the Ap-

pendix. Also shown are the calculations based on the Hartree-Fock (HF) method from

Ref. [33] and the experimental values (exp.) from Ref. [34]. For a comparison of total

energies between these methods, see Ref. [21].

C. TDDFT in a linearly polarized field

Without loss of generality, we may assume that the laser polarization of a linearly-

polarized field is along the z-axis. Then,

E(t) = Eo(t) sin(ωot) (31)

−→ r · E(t) = Eo(t) sin(ωot) r cos θ, (32)

where Eo(t) is a pulse envelope function, given by

Eo(t) =
√

Io cos
2

(

ωo t

2n

)

, (33)

with Io and n being the peak intensity and the number of optical cycles (T = 2π/ωo) per

pulse, respectively.

Because of the azimuthal symmetry in (32), the magnetic quantum number mi of the i-th

orbital is conserved during the time evolution, so that we can assume the solution of form

ψiσ(r, t) =
∑

ℓ

R
ℓ(mi)
iσ (r, t)

r
Y

(mi)
ℓ (θ, φ). (34)

It then follows that the spin electron density of each orbital is independent of the azimuthal

angle φ and can be expanded with the Legendre polynomials, such that [35]

niσ(r, θ, t) =
∑

ℓ

nℓ
iσ(r, t)

√

2ℓ+ 1

4π
Pℓ(cos θ), (35)

where

nℓ
iσ(r, t) =

√

2ℓ+ 1

4π

∫∫

dΩ |ψiσ(r, t)|
2 Pℓ(cos θ). (36)
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Similarly, the Hartree potential of each orbital in a linearly polarized field can also be

expanded with the Legendre polynomials as

VH[niσ](r, θ, t) =
∑

ℓ

V H
ℓ [niσ](r, t)

√

2ℓ+ 1

4π
Pℓ(cos θ), (37)

where

V H
ℓ [niσ](r, t) =

√

2ℓ+ 1

4π

∫∫

dΩ VH[niσ](r, θ, t) Pℓ(cos θ). (38)

The scaled functions Uℓ(r, t) ≡ rV H
ℓ [niσ](r, t) satisfy the following Poisson’s equation

[

−
d2

dr2
+
ℓ(ℓ+ 1)

r2

]

Uℓ(r, t) = 4πr nℓ
iσ(r, t), (39)

with the boundary conditions

Uℓ(0, t) = 0,

Uℓ(rmax, t) =
4π

2ℓ+ 1
(rmax)

−ℓ

∫ rmax

0

nℓ
iσ(r, t) r

ℓ+2dr.
(40)

The Hartree potential (5) is then found as

VH[n](r, θ, t) =
∑

σ

Nσ
∑

i

VH[niσ](r, θ, t). (41)

For the time evolution, the Hamiltonian given by Eq. (2) is split into H0
ℓ(r) + V (r, θ, t),

where the stationary Hamiltonian is given by Eq. (29), and

V (r, θ, t) = VH[n](r, θ, t) + V LDA
σ [nσ](r, θ, t)− V SIC

σ (r, θ, t)

− vKS
σ [n̄σ](r, 0) + Eo(t) sin(ωot) r cos θ.

(42)

Then, the wavefunction (34) is evolved as [29]

ψiσ(r, t+∆t) ≃ e−iH0

ℓ
(r)∆t/2L−1(ℓ)e−iV (r,θ,t+∆/2)∆t

× L(θ)e−iH0

ℓ
(r)∆t/2ψiσ(r, t) ,

(43)

where L denotes the Legendre transform defined by

L
{

R
ℓ(mi)
iσ (r, t)

}

(θ) ≡
∑

ℓ

P
(mi)
ℓ (θ, φ)R

ℓ(mi)
iσ (r, t)

=
∑

ℓ

√

(2ℓ+ 1)(ℓ−mi)!

2(ℓ+mi)!
P

(mi)
ℓ (cos θ)R

ℓ(mi)
iσ (r, t)

= R
(mi)
iσ (r, θ, t).

(44)
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In the FC approximation, one would neglect the change in the potential that depends on

the electron density during the time evolution, so that Eq. (42) reduces to

V (r, θ, t) ≃ Eo(t) sin(ωot) r cos θ. (45)

In Section III, we will discuss the difference in the PMDs calculated with or without the FC

approximation.

In each timestep, the wavefunction ψiσ(r, t) is split into inner and outer regions by a

smooth masking function, and the PMD is found from the outer-region wavefunction that

is propagated in the momentum space with the Volkov Hamiltonian in the velocity gauge

[10, 14]. We study the PMD of each individual electron at the end of the time evolution

t = tf , given by

Diσ(p, θp) =
∣

∣

∣
ψ̃v
iσ(p, tf )

∣

∣

∣

2

, (46)

where ψ̃v
iσ(p, tf ) is the Fourier transform of the outer-region wavefunction, as well as the

PMD of all electrons, given by

D(p, θp) =

∣

∣

∣

∣

∣

∑

σ

Nσ
∑

i=1

ψ̃v
iσ(p, tf)

∣

∣

∣

∣

∣

2

. (47)

III. RESULTS

A. Helium

The total number of electrons in a He atom is Z = 2, and therefore only one time-

dependent KS equation (1) for one of the two electrons needs to be solved, as the other

electron evolves exactly the same way. The TDDFT calculation of a He atom is relatively

stable, and the timestep of ∆t = 0.2 is sufficient to obtain converging results.

Figure 1 shows the PMDs of a He atom (1s2) driven by a 527-nm, linearly polarized laser

pulse (n = 20 optical cycles) of a peak intensity Io = 5× 1013 or 1× 1014 W/cm2. In Fig. 1,

a well-known interference pattern caused by the electron rescattering [11, 16] intercepts the

concentric circles of discrete momenta, given by [4]

ps =
√

2(s ωo + no ωo − Ip − Up), (48)

where s = 1, 2, . . . is the number of above-threshold photons absorbed, Ip is the ionization

potential, Up = Io/4ωo
2 is the ponderomotive energy, and no = ⌊Ip/ωo⌋ + 1. The number
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of angular nodes in each concentric circle increases with the driving-laser intensity. The

calculation with the FC approximation given by Eq. (45) yields the similar PMDs as Fig. 1,

except that the overall PMD yield with the FC approximation is greater than the TDDFT

calculation by roughly 10%. This is consistent with the previous TDDFT calculations in

Refs. [25, 29], where it was found that the ionization probability of noble-gas atoms according

to the TDDFT is smaller than the one based on the FC approximation. To elucidate this

point, we integrate the polar angle out of the PMDs with and without the FC approximation

and plotted the resulting above-threshold-ionization (ATI) spectra in Figure 2. The first

positive photoelectron kinetic energies given by Eq. (48) with an assumption of Ip = −ǫi

(the first ionization potential, given in Table I) are 1.96 eV for Io = 5 × 1013 W/cm2 and

0.66 eV for Io = 1 × 1014 W/cm2 (and all subsequent spectra are separated by ωo = 2.35

eV), which agree with the locations of the ATI spectral peaks in Fig. 2.

B. Neon

For a Ne atom, Z/2 = 5 wavefunctions are evolved in total, one electron per spin. The

timestep as small as ∆t = 0.05 is necessary to make the TDDFT calculation stable for the

p-state systems such as Ne or Ar atoms. Figure 3 shows the individual Ne PMDs of 2s, 2p0

and 2p1 states in the L-shell, as well as the PMD of all Z = 10 states, driven by a 527-nm,

linearly polarized, 20-cycle laser pulse of a peak intensity of Io = 5× 1013 W/cm2. Because

of the symmetry in the Hamiltonian, the 2p−1 state evolves in the same way as the 2p1. The

PMD of the 1s state is not shown because its photoelectron density turned out negligibly

small (< 10−18) compared to the other states.

The PMD yield of the Ne(2s) state in Fig. 3(a) is the smallest, as expected from its

relatively large binding energy −εi (see Table I). More strikingly, we find that there is

a clear suppression along the z-axis in the Ne(2p1) PMD in Fig. 3(c), in contrast to the

Ne(2p0) PMD in Fig. 3(b). This is because the atomic orbital of the 2p1 state is aligned

in perpendicular to the driving-laser polarization with a node at z = 0. One can compare

their PMD yield in the ATI spectra in Figure 4. As expected, the spectral intensity of the

2p0 state, whose atomic orbital is in parallel with the driving-laser field, is the largest. The

first positive photoelectron kinetic energy for the 2p state predicted by Eq. (48) is 0.25 eV,

which agrees with the ATI peaks of the 2p0 and 2p1 states in Fig. 4.
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It is known that the PMD of the hydrogen atom driven by a linearly polarized laser field

has a four-fold symmetry, i.e., D(r, θ) = D(r, π− θ) = D(r,−θ) [4]. The He PMDs in Fig. 1

also exhibit such a four-fold symmetry, and so does the PMD of each individual electron of

a Ne atom in Figs. 3(a)-(c). On the other hand, the four-fold symmetry is broken in the

PMD evaluated from the sum of all states in Fig. 3(d), presumably because of the quantum

interference among the complex wavefunctions ψ̃v
iσ(p, tf ) of different phases. A similar effect

is known in the high harmonic spectra of the CO2 molecule [36].

C. Argon

For an Ar atom, Z/2 = 9 wavefunctions are evolved. Figure 5 shows the individual Ar

PMDs of 3s, 3p0 and 3p1 states in the M-shell, as well as the PMD of all Z = 18 states.

All driving-laser parameters are the same as the Ne calculation in the previous section.

The PMDs of the inner atomic orbitals in the K- and the L-shells are not shown, as the

electron density in their PMDs turned out negligibly small (< 10−17) compared to the M-

shell electrons.

Similar to the Ne(2p1) PMD in Fig. 3(c), the Ar(3p1) PMD in Fig. 5(c) is suppressed

along the z-axis, whereas the PMDs of 3s and 3p0 states in Figs. 5(a) and 5(b) are not,

reflecting their orbital structures. On the other hand, the intensity of the Ar(3s) PMD in

Fig. 5(a) is fairly large, in contrast to the Ne(2s) PMD in Fig. 3(a). The PMD yields of

different atomic orbitals can be compared with one another in Figure 6, where we plot their

corresponding ATI spectra. The intensities of the ATI spectra from degenerate 3p0 and 3p1

atomic orbitals are particularly close to one another. The first positive photoelectron kinetic

energies given by Eq. (48) are 0.72 eV for the 3s2 states and 0.23 eV for the 3p6 states, in a

good agreement with the location of the first spectral peaks in Fig. 6.

The four-fold symmetry we found in the PMDs of each individual atomic orbital in He

and Ne atoms also holds for the Ar PMDs in Fig. 5(a)-(c), but it breaks in the PMD of

all electrons in Fig. 5(d), similar to the Ne case in Fig. 3(d). Lastly, the Ar(3p1) PMD in

Fig. 5(c) shows a suppression of electron density in both parallel and perpendicular directions

to the laser polarization, resulting in a four-lobe structure; this is consistent with the recent

p-state measurement of the PMD of krypton atoms during a two-photon ionization (13-eV

excitation, followed by a 595-nm linearly-polarized laser pulse) [37].
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In Figures 7 and 8, we plot the PMDs and the ATI spectra of an Ar atom calculated

with the FC approximation given by Eq. (45). All the laser parameters are kept the same as

the TDDFT calculation in Figs. 5 and 6. We find that the PMD yield from the 3s state in

Fig. 7(a) is negligibly small compared to the one from the 3p0 or the 3p1 state, in contrast

to the TDDFT results in Fig. 5. A comparison of ATI spectra in Fig. 6 and Fig. 8 shows

that the FC approximation does not affect the location of ATI spectral peaks but makes

the PMD yield from the 3p0 state dominate over the other M-shell orbitals (3s and 3p1).

In view of the electron-electron interaction, inner electrons would ionize more easily after

valence electrons ionize, and thus the enhanced ATI yield from the 3s state in the TDDFT

calculation relative to the FC approximation makes sense.

Another striking difference between the TDDFT and the FC approximation is in the

PMD from the Ar(3p1) state. Notice that there are 8 angular nodes in the central region of

both Fig. 5(c) and Fig. 7(c). While the intensity of each peak separated by these nodes is

uniform under the FC approximation in Fig. 7(c), it is weaker in the z-direction according

to the TDDFT in Fig. 5(c). This is reasonable, given that the electrons in the 3s and the

3p0 states ionize along the z-axis (in parallel with the laser polarization) most in Figs. 5(a)

and 5(b). They should interfere with the electrons in the 2p1 state from ionizing in the same

direction, but the FC approximation fails to predict such electron-electron interaction.

D. Ionization by infrared lasers

In the previous sections (IIIA-IIIC), atoms are driven by a visible (527 nm) linearly-

polarized laser pulse. Experimentally, a driving-laser with longer wavelengths (typically

near- to mid-infrared) is more commonly used in the momentum spectroscopy [3, 15, 19].

In this section, we study the PMDs of Ne and Ar atoms driven by a near-infrared (800 nm),

linearly-polarized 20-cycle laser pulse of a peak intensity Io = 1× 1014 W/cm2.

Figure 9 shows the ATI spectra of L-shell and M-shell electrons in Ne and Ar atoms,

respectively. The ATI yields from inner electrons are negligibly small (< 10−20 for the

Ne(1s2) states and < 10−15 for the Ar(1s22s22p6) states) and therefore not shown. We find

that the ATI spectral intensities from degenerate p-states in Fig. 9 are well separated, and

the m=0 state that is in parallel with the driving-laser field (2p0 for Ne and 3p0 for Ar) yields

the most photoelectrons. As a result, it is safe to assume that the SAE approximation is
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valid in the PMD calculation with an infrared driving laser field, in accordance with the

recent publications by other groups [3, 38]. In Figure 10, we plot the single-electron PMD

of the 2p0 state of Ne and the 3p0 state of Ar. They exhibit complex structures due to the

electron rescattering, similar to the xenon PMD measured using a mid-infrared (24-31 µm)

driving laser pulse in Ref. [3].

E. Discussion

In this section, we would like to discuss the applicability of our current GPS method

based on the TDDFT to the experiments in Refs. [1] and [19]. They are two of the earliest

measurements of the p-state PMDs, resolving the information of different orbitals (m = 0 and

±1). The all-electron calculation of the excited-state Li(1s22p) PMD, which was measured

using an XUV laser pulse (85-91 eV) in Ref. [1], is significantly more complicated than

the noble-gas atoms we study in the this paper because (1) the valence shell of a Li atom

is partially-filled even in the ground state, which makes the electrons with opposite spins

evolve differently, and (2) the stationary-Hamiltonian for the excited-state of a many-electron

atom is different from the ground-state calculation in the TDDFT, due to the Kohn-Sham

potential which depends on the electron density. Our TDDFT calculation can handle both

problems, and our calculation of Li excited states is currently under progress.

There are two reasons why we did not attempt to reproduce the experimental results

of Ref. [19]. First, their PMD measurement used a circularly-polarized field, whereas

our present TDDFT calculation can only deal with a linearly-polarized laser field, due

to the following computational constraints. With a circularly-polarized driving-laser field,

the spherical-harmonic expansion of the time-dependent electron density involves complex-

valued coefficients, which makes the numerical calculation of a Hartree potential in each

timestep significantly more time-consuming than with a linearly-polarized field. Such cal-

culations would be a subject of our future publication.

Second, the main result presented in Ref. [19] was an observation of the quantum beat-

ing, where a pump field prepares the initial state as a superposition of two fine-structured

states ( 2P1/2 and 2P3/2 of the Ne atom), and a probe field measures the Rabi oscillation

of frequency τ = 2π/∆E, where ∆E is the fine-structure splitting of the two states. This

effect is independent of the probe-field polarization (and the rest of laser parameters such
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as intensity, frequency and duration) and happens as long as the initial state is prepared

as a superposition of two states with different energies. In fact, Ref. [19] demonstrated the

Rabi oscillation between the two fine-structure states using a linearly-polarized field as well.

Furthermore, this type of quantum beating is not restricted to the fine-structure states but

can happen between any two non-degenerate eigenstates, as evidenced in Ref. [39] where the

quantum beating between various excited states of a He atom was measured. Ref. [39] also

presents a TDSE calculation in the limit of the SAE approximation, which reproduces the

quantum beating in their experiment; in this sense, the quantum beating in Ref. [19] is not

a multi-electron effect we aimed to study in our present work. This was the second reason

why we did not attempt a direct comparison between our calculation and the experimental

results in Ref. [19]. A theoretical calculation was given in Ref. [19] based on the rotating

wave approximation for a two-level system, which was sufficient to explain the quantum

beating. It would be more desirable, however, to diagonalize the stationary-state Hamilto-

nian in the (j,mj)-basis rather than the (ℓ,m)-basis in the GPS method, to take the fine

structure into account.

IV. CONCLUSION

In this paper, we calculated the photoelectron momentum distribution (PMD) of noble-

gas atoms (He, Ne and Ar) driven by a linearly-polarized 20-cycle laser pulse of peak intensi-

ties 0.5 ∼ 1×1014 W/cm2 based on the time-dependent density functional theory (TDDFT).

With a visible (527 nm) driving-laser frequency, we find that the PMD yields from outer or-

bitals according to the TDDFT are comparable in strengths, so that they could interfere and

break the four-fold symmetry in the PMDs. This is an example of the quantum interference

due to different complex phases among the individual wavefunctions in an atom. There are

no experimental data to compare our results with yet, but such a symmetry breaking should

exist in the PMD of multi-electron atoms driven at a visible (400-700 nm) laser frequency.

To observe the many-electron interference effect, it is crucial that the spectral intensities of

multiple orbitals are comparably strong. For a longer (∼ 800 nm) driving-laser frequency,

which is more commonly used in the PMD experiments, we found that the PMDs of degen-

erate p-state orbitals are well separated in their intensities, so that the interference effect is

not observable. Moreover, the PMDs of p-state electrons with m = ±1 are suppressed along
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the z-axis, reflecting their orbital orientations and the interference with the m=0 electron

that mostly ionizes along the z-axis. Therefore, when driven by a linearly-polarized field at

an infrared driving-laser frequency, the PMD yield from the outermost electron with m = 0

dominates over the rest of the electrons, so that one can safely adapt the SAE approximation

to calculate the PMD.
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APPENDIX

The Krieger-Li-Iafrate (KLI) approximation [31] is an exchange-only KS potential for the

stationary-state of a many-electron atom, given by

vxcσ [n↑, n↓](r) ≃ V S
σ (r) +

1

n̄σ(r)

Nσ
∑

i=1

n̄iσ(r)viσ, (A-1)

where V S
σ is the Slater potential defined by

V S
σ (r) =

1

n̄σ(r)

Nσ
∑

i=1

n̄iσ(r)v
HF
iσ (r), (A-2)

with vHF
iσ being the single-particle Hartree-Fock exchange potential

vHF
iσ (r) =

−1

R
(ℓi)
iσ (r)

Nσ
∑

j=1

R
(ℓj)
jσ (r)

ℓi+ℓj
∑

ℓ=|ℓi−ℓj |





ℓi ℓj ℓ

0 0 0





2

W σ,ℓ
ij (r). (A-3)
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In the above expression, R
(ℓi)
iσ (r) is the radial function in Eq. (16),

(

ℓi ℓj ℓ
0 0 0

)

are Wigner-3j

coefficients, and

W σ,ℓ
ij (r) ≡

∫

r<
ℓ

r>ℓ+1
R

(ℓi)
iσ (r′)R

(ℓj)
jσ (r′)dr′, (A-4)

with r< ≡ min(r, r′) and r> ≡ max(r, r′). In practice, W σ,ℓ
ij (r) is obtained by solving the

following differential equation:

[

−
d2

dr2
+
ℓ(ℓ+ 1)

r2

]

Qσ,ℓ
ij (r) = (2ℓ+ 1)

R
(ℓi)
iσ (r)R

(ℓj)
jσ (r)

r
, (A-5)

where Qσ,ℓ
ij (r) ≡ rW σ,ℓ

ij (r). The boundary conditions are

Qσ,ℓ
ij (0) = 0,

Qσ,ℓ
ij (rmax) =







δij if ℓ = 0

1
(rmax)ℓ

∫ rmax

0
R

(ℓi)
iσ (r)R

(ℓj)
jσ (r) rℓdr otherwise.

(A-6)

The orbital-dependent constant viσ in Eq. (A-1) is found as

Ciσ ≡ 〈V KLI
iσ 〉 − 〈vHF

iσ 〉 =
Nσ
∑

j=1

(A−1
σ )ij[〈V

S
jσ〉 − 〈vHF

jσ 〉] , (A-7)

where Aσ is given by Eq. (27).
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FIG. 1. (Color online) The cross section of photoelectron momentum distributions (PMDs) of a

He atom, driven by the 527-nm, linearly polarized, 20-cycle laser pulse along the z-axis with the

peak intensity of (a) Io = 5 × 1013 W/cm2 or (b) 1 × 1014 W/cm2. The PMD intensity is in the

logarithmic scale and shown as a color map.
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FIG. 2. (Color online) The above-threshold-ionization (ATI) spectra of a He atom, obtained by

integrating the polar angle out of the PMDs in Fig. 1, are shown with solid lines (TDDFT) for (a)

Io = 5× 1013 W/cm2 and (b) Io = 1× 1014 W/cm2. Also shown with dotted lines are the spectra

from the frozen-core (FC) approximation.
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FIG. 3. (Color online) The PMD cross section of a Ne atom, driven by the 527-nm, linearly

polarized, 20-cycle laser pulse along the z-axis with the peak intensity of Io = 5 × 1013 W/cm2,

obtained from (a) the 2s state, (b) the 2p0 state, (c) the 2p1 state, and (d) the sum of all (1s22s22p6)

states.
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FIG. 4. (Color online) The ATI spectra of a Ne atom, obtained by integrating the polar angle out

of the PMDs in Figs. 3(a)-(c).
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FIG. 5. (Color online) The PMD cross section of an Ar atom, driven by the 527-nm, linearly polar-

ized, 20-cycle laser pulse along the z-axis with the peak intensity of Io = 5×1013 W/cm2, obtained

from (a) the 3s state, (b) the 3p0 state, (c) the 3p1 state, and (d) the sum of all (1s22s22p63s23p6)

states.
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FIG. 6. (Color online) The ATI spectra of an Ar atom, obtained by integrating the polar angle

out of the PMDs in Figs. 5(a)-(c).
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FIG. 7. (Color online) The same as Fig. 5, but calculated with the frozen-core approximation.
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FIG. 8. (Color online) The ATI spectra of an Ar atom under the frozen-core approximation,

obtained by integrating the polar angle out of the PMDs in Fig. 7.
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FIG. 9. (Color online) The ATI spectra from (a) the L-shell electrons of a Ne atom and (b) the

M-shell electrons of an Ar atom, driven by an 800-nm, linearly polarized, 20-cycle laser pulse along

the z-axis with the peak intensity of 1× 1014 W/cm2.
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FIG. 10. (Color online) The PMD cross section of (a) the Ne(2p0) state and (b) the Ar(3p0) state

in Fig. 9.
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