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We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy
(NV7) defects in diamond. An applied electric field causes energy level shifts symmetrically away
from the NV~ ’s degenerate triplet states via the Stark effect; this symmetry provides immunity to
temperature fluctuations allowing for shot-noise-limited detection. Using an ensemble of NV s, we
demonstrate shot-noise limited sensitivities approaching 1 V/cm/ vHz under ambient conditions,
at low frequencies (<10 Hz), and over a large dynamic range (20 dB). A theoretical model for the
ensemble of NV™s fits well with measurements of the ground-state electric susceptibility param-
eter, (k1). Implications of spin-based, dielectric sensors for micron-scale electric-field sensing are

discussed.

I. INTRODUCTION

The detection of weak electric signals in low-frequency
regimes is important for areas of research such as par-
ticle physics [1], atmospheric sciences [2-4], and neuro-
science [5]. Commonly available ambient electrometers
that rely on electrostatic induction, like field mills [6, 7]
and dipole antennas [8], are physically limited in size to
several tens of centimeters by the wavelength of the elec-
tric field of interest. This hinders miniaturization at fre-
quencies below several Hertz [8-11]. Fully dielectric sen-
sors allow sensing of electric fields without fundamental
constraints on the size of the sensor and do not distort the
incident field [12, 13]. Ongoing efforts to develop compact
electrometers include use of the electro-optic effect within
solid-state crystals [14], single electron transistors [15-
17], and the energy shifts induced by electric fields of
atom-based sensors such as trapped ions [18] or Rydberg
atoms [19, 20]. Recently, optically-addressable electron
spins in solid-state materials have played a central role
in the development of quantum sensing [21, 22]. Com-
pared with atom-based approaches that require vacuum
systems, these systems allow for a higher density of spins
with a reduced experimental footprint, along with other
promising properties such as long room-temperature co-
herence times and optical accessibility for spin initializa-
tion and readout [23].

Among spin-based sensors, there has been significant
progress in using ensembles of spins in diamond for sens-
ing magnetic fields [5, 24, 25|, while work in diamond-
based electrometry has primarily focused on the use of
single spins [26, 27]. Here, we experimentally demon-
strate a spin-based, solid-state electrometer that is sensi-
tive to the electric field induced Stark shift on an ensem-
ble of negatively-charged nitrogen-vacancy (NV~) color
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centers while being robust, to first order, to tempera-
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FIG. 1. (a) Diamond electrometry setup. For applying elec-
tric fields across the ensemble of NV s, gold electrodes were
evaporated on both faces of the diamond plate (3 x 3 x
0.32 mm®). A collimated laser beam (~ 200 um diameter)
was used to excite a single pass of NV~ s input from the edge
of the diamond plate, and microwave (MW) excitation was
delivered to the ensemble of NV~s by a stripline in an ‘€2’
shape patterned on a printed circuit board. Inset A cross-
section of the experiment depicting four of the eight total
NV~ orientations within an ensemble of NV™s used for de-
tecting electric fields. (b) Generalized diagram depicting how
crystal (D), hyperfine (A), strain and the magnitude of trans-
verse electric fields (IT. = /I12 + I12) affect energy splitting
in both the ground- and excited-state spin configurations of
the NV~. The spin labels (ms and my) indicate the quan-
tum numbers of the electronic and hyperfine states, and the
two eigenstates that are sensitive to electric fields are given
by: [+){7[0)r (mr = +0) and |=){?|0); (m; = —0). The
inset to the right shows the ground-state ODMR, spectra of
an ensemble of NV 7s.



ture fluctuations. Our diamond-based electrometer oper-
ates at shot-noise limited sensitivities of ~ 1 V/cm/v/Hz
under ambient conditions at extremely low frequencies
(0.05-10 Hz) without repetitive readout and dynamic
decoupling control necessary for electrometry with sin-
gle NV—s [26]. By utilizing a high degree of sym-
metry to overcome the inhomogeneous strain and non-
collinear crystallographic orientations within an ensem-
ble of NV~s, this work brings diamond-based electrom-
etry into a regime where it has a competitive sensitivity
with a clear path towards miniaturization.

NV~ centers are sensitive to electric fields in
both their optical ground [26] and excited triplet
states [28]. Previously, electric field sensing with a sin-
gle NV~ was demonstrated with sensitivity down to
202 V/em/vHz (891 V/em/v/Hz) at a frequency of ~
10 kHz (DC) under precisely applied magnetic fields, but
the need for repetitive readout and dynamic decoupling
pulse control limited that technique to frequencies in ex-
cess of 10 kHz due to the NV~’s decoherence rate (1/T5
where T ~ 0.1 ms). The device demonstrated here
uses an ensemble of NV~ centers in an otherwise simi-
larly sized diamond. It is not only possible to achieve
higher sensitivities (albeit over a larger volume), but
it also allows for a measurement of the noise spectral
density (NSD) due to low-frequency electric field fluc-
tuations irrespective of temperature fluctuations. Fur-
thermore, the introduced method allows for highly ac-
curate measurement of the transverse electric suscepti-
bility parameter, (k) ), of the NV~’s ground state. By
using this measurement modality, we expect that a dia-
mond that is densely populated with NV~—s would yield
a projected shot-noise-limited electric field sensitivity ap-
proaching 6 x 1073 V/em/v/Hz [29], making NV ~-based
electrometers comparable with currently existing, room-
temperature, solid-state electrometers [12, 13].

II. THEORY OF NV~ ELECTROMETRY

The physical mechanism of the NV™’s sensitivity to
electric fields originates from its optical excited state con-
figuration, which is a highly electric field sensitive molec-
ular doublet (*F). Stark shifts of the excited state cannot
be measured optically under ambient conditions due to
phonon-induced mixing [30]. However within each orbital
of the molecular doublet, the electric field induced split-
ting of the m; = 0 hyperfine manifold can be detected by
optically detectable magnetic resonance (ODMR). Addi-
tionally, the 3E excited-state orbital overlaps sufficiently
with the ground-state molecular orbital (3A43) to also im-
part electric field sensitivity on the ground state spin
configuration of the NV~ [27].

The Hamiltonian describing both the triplet ground
and excited states of the NV~ share the following
form [31]:

Uy

~ ~ 2 - =
Hyy/h=(D+dE))S. +vB-g-5+5-A-1, (1)

where D is the crystal field splitting (Hz), vp is the gyro-
magnetic ratio (Hz/G), d|| is the axial electric field dipole
moment (Hz/V/cm), E is the axial electric field (V/cm),

B is the magnetic field vector, g is the g-factor tensor,
S is the vector of electronic spin-1 Pauli operators, A is

the hyperfine tensor, and I is the vector of nuclear spin-1
Pauli operators. Because an electric field’s effect on the
NV~ spin is significantly smaller than the crystal field
splitting (D), the transverse electric field dependence can
be considered as a perturbation to the Hamiltonian:

V/h=d[,(S.8, + S,S,) +1,(S2 - S2)],  (2)

where d | is the ground-state’s transverse electric field
dipole moment [32], II, and II, are the cartesian compo-
nents of the combined strain and electric fields [33], and

S; (for i = x,y, z) are the spin-1 Pauli operators of the
electronic spin. After diagonalizing Eqn. (1) and using
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FIG. 2. (a) ODMR spectrum with correspondingly colored
labels to indicate the detuning of transitions with step-wise
increasing applied voltages. (b) Experimentally measured
ODMR (points) at six different MW driving amplitudes over-
laid with their respective numerical fits (black) using a model
that accounts for an isotropic distribution of strain fields
within an ensemble of NV~s. The two transitions corre-
spond to the |—){”|0); (red, bottom) and |+){”[0); (blue,
top) eigenstates of the NV~ triplet ground state. (¢) Ground-
state shifts due to incremental, step-wise electric fields applied
to an ensemble of NV ™s at zero magnetic field. By comparing
the step-wise detuning shifts of the electric field transitions
with the applied voltages, it is possible to accurately deduce
the ensemble average value of (k1) = 7.0 £ 1.1 Hz/V/cm at
a bias field of 225 Volts. (d) Data of |+){"]0); transition
(top blue ‘0’) overlaid with numerical results (solid blue line).
Data of \—>g1)|0>1 transition (bottom red ‘+’) overlaid with
numerical results (dashed red line). See Eqn. 6 for details
about numerical results.



Eqn. (2) as the perturbation, there is a closed-form equa-
tion which describes the effect of electric and magnetic
fields on the NV~ (See Eqn. 5). The following equation
accurately describes how the eigenfrequencies of a single
NV~ change under an applied electric field (E) alongside
no magnetic field (é = 0). Furthermore, the expression
quantitatively matches the transition shifts due to a sym-
metric application of electric fields on all eight classes of
defects within an ensemble of NV~ centers:

fi(é = O,E) =D+ kHEH +tk E) (3)

where D is the crystal field splitting with a temper-
ature dependence of ~77 kHz/Kelvin [34], kj and k.
are the electric susceptibility parameters (in units of
Hz/(V/cm)), and E) and E, are the electric field am-
plitudes (in units of V/cm) parallel and perpendicular,
respectively, to the NV~ symmetry axis.

The shot-noise sensitivity to the transverse electric
field (in V/cm/v/Hz) limits using an ensemble of M
NV~s is given by the following:

111
N NN

where C' is the contrast of the ensemble ODMR spec-
tra, I' is the total photon collection rate per NV~ and
Ty is the inhomogeneous NV~ coherence time. Using
our experimentally measured values, we arrive at a shot-
noise limit approaching g, ~ 1.0 V/cm/vHz for the
NV~ ground state [35]. This expression shows that the
sensitivity limit depends on the density of NV~s in the
sample, the coherence properties of the NV~s, and the
efficiency of photon collection.

(4)

III. EXPERIMENTAL RESULTS

The diamond measured in this work is
3.0 x 3.0 x 0.32 mm? in size and contains an NV~ density
of ~1 ppb produced during the chemical vapor growth
process. The two square faces on which the electrodes
were evaporated have (100) crystallographic orienta-
tions (See Fig. 1), and thus the applied electric field
produces an equal projection onto all eight orientations
of NVs within the ensemble. We measured ODMR  of the
ensemble of NV~s using continuous-wave (CW) laser
and microwave excitation from the side and bottom,
respectively.

To account for the distribution of strain magnitudes
and angles within the ensemble of NV~s, we use the
(2,1) Gamma probability distribution as an ansatz for
the magnitude distribution, and assume a uniform and
isotropic angular distribution [36]. This model account-
ing for the isotropic distribution of strain accurately fits
the experimental data (See Fig. 2b). We also simulated
the expected electric field induced shift on the ensemble

average of NV~s in Fig. 2c using an estimated distribu-
tion of strain. The simulated results match well with the
step-wise increase in electric field; this agreement vali-
dated the use of this method for accurately scaling the
measured shift in frequency to the reported noise floor of
the noise spectral density (See Figures 2¢,d).

To detect a shift in NV~ transition frequencies of the
NV~ ensemble due to an external electric field, the mag-
netic field along the NV~ axes must be significantly
weaker than the internal electric or strain fields. The
maximum electric field sensitivity is achieved at zero
magnetic field, but at the expense of vector sensitiv-
ity [26]. Additionally, the shot-noise limited sensitivity
given by Eqn. 4 can be optimized by controlling the laser
and microwave excitation powers.
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FIG. 3. Measurements taken at 1.8 W laser excitation with a
high-stability bias voltage of 225 Volt. (a) Time trace of both
lock-in-amplifier channels monitoring frequency detuning of
ensemble states |+)§1)|O)1 (blue ‘4’) and |—>§1)\O>1 (red ‘0’)
in units of transition frequency noise per vHz. (b) Noise
spectral density (NSD) of both channels. The noise floor
of the red (blue channel is calculated to be equivalent to
12.6 + 6.4 (13.4 £ 7.4) V/em/+/Hz, assuming the noise is
entirely attributed to electric field fluctuations. The electric
field sensitivity estimated by the shot-noise limit is given by
the black line (1.2 £ 0.1 V/cm/+/Hz).

We measured two electric and strain sensitive transi-
tion frequencies (denoted as m; = £0) simultaneously at
a rate inversely proportional to the time constant of the
home-built lock-in instrumentation [37]. Although only
the two transitions are monitored, the shift in frequencies
correspond to an average shift due to the entire ensemble.
The inhomogeneous strain typically found in the ensem-
ble is indistinguishable from an inhomogeneous distribu-
tion of electric fields. Using a bias electric field beyond
the average strain of the ensemble of NV~ centers, the
shift of the m; = +0 (See Fig. 1 for notation) transitions



become linearly sensitive to electric fields, while the tran-
sitions, m; = £1, remain relatively insensitive to electric
fields due to the quadrupole field of the host nuclear 4N
spin (See Fig.2d).

Figure 3 presents the resulting sensitivity measure-
ments. A maximum electric field sensitivity of the ensem-
ble of NV~—s was achieved with an incident laser power
of 1.8 W. However, the high input laser (~30 uW/um?)
powers required to saturate the photoluminescence from
the NV~™s contributes to greater temperature fluctua-
tions in the diamond. In a simultaneous time trace
of the m; = 40 transitions, there are significant cor-
related shifts due to the temperature fluctuations (See
Fig. 3a). The noise-spectral densities (NSD) of the two
time traces indicate 1/f-type noise, which is consistent
with the source of the noise being due to temperature
fluctuations. The noise floors of both channels are more
than a factor of 10x greater than the shot-noise limit
(See Fig. 3b).

The temperature fluctuations are separated from
the electric field fluctuations using the temperature-
dependent, correlated shifts of the D parameter (See
Eqn. 3). The sum of the time traces corresponds to the
temperature fluctuations while the difference of the time
traces corresponds to the electric field fluctuations. The
NSD of the resulting sum and differences shows temper-
ature fluctuations of 2.4 +1.2 mK/v/Hz and electric field
fluctuations of 1.6 + 1.2 V/cm/v/Hz, respectively (See
Fig. 4). Thus, our method shows a shot-noise-limited
electric-field sensitivity that is approximately 8x im-
proved over a measurement without deconvolution with
temperature fluctuations.

IV. DISCUSSION

We have demonstrated sensing of electric fields with
an ensemble of NV~s below 1 Hz with sensitivities ap-
proaching 1 V/cm/ VHz. In spite of large temperature
variations, inhomogeneous distribution of strain and non-
collinear orientations, our measurement technique allows
for accurate measurements of the ensemble strain distri-
bution and the ensemble average of the transverse electric
susceptibility, k£, ; both of which are needed to accurately
measure low-frequency electric fields.

NV~-based sensing lends itself to imaging electric
fields at or below the optical diffraction limit [38—40]. We
anticipate that the use of low-strain nanodiamonds with
our demonstrated zero-magnetic field regime would en-
able simultaneous monitoring of both temperature [41]
and electric fields [26]. To the best of our knowledge,
nanodiamonds with low-strain (< 200 kHz) are not yet
available despite the tremendous progress in improving
the electronic coherence within such nano-scale struc-
tures [42, 43]. Such low-strain nanodiamonds with high
densities of NV~s would be beneficial for in vitro biolog-
ical studies [44, 45] and microelectronic diagonistics [46].
Finally, due to the many combinations of host materi-
als and defects, there is significant potential in discover-

ing defects within two- and three-dimensional materials
that would further improve upon existing electronic spin-
based electrometers [47, 48].

In this work, we have demonstrated a factor of more
than 200x improvement over previous demonstrations us-
ing a single NV~. The sensitivity may be further im-
proved by using a diamond with 1000x higher densities
of NV~s [5], improving the photon collection efficiency
by another 10-100 times by patterning the diamond sur-
face to overcome the confinement due to total internal
reflection [49, 50], and implementing pulsed control tech-
niques to avoid power-broadening of the transitions [51—-
54]. Such readily accessible material and setup improve-
ments could improve the shot-noise limited electric field
sensitivity to 6 x 1073 V/cm/v/Hz. Additional coher-
ent control on either the surrounding electron [55, 56]
or nuclear spins [57-59] in diamond would further im-
prove the sensitivity by reducing the broadening of the
transition line width. MW field inhomogeneities that are
typically more problematic for pulsed techniques would
benefit from recently proposed methodologies for gener-
ating robust pulse sequences [60]. Other promising direc-
tions for spin-based sensing involve all-optical techniques
in diamond for electrometry [61].
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FIG. 4. Identical experimental measurements as in Fig. 3 ex-
cept the analysis takes advantage of the experimental method-
ology for deconvolving fluctuations from temperature and
electric fields. (a) Time trace of the difference (orange ‘o’,
electric field) and sum (green ‘+’, temperature) of the lock-
in-amplifier channels from Fig. 3. (b) NSD on the time-trace
difference (sum) of the two channels, which corresponds to a
sensitivity of 1.6 + 1.2 V/cm/vHz (2.4 + 1.2 mK/v/Hz) due
the transverse electric field (temperature) fluctuations. The
sum of the two correlated channels yields a shot-noise sensi-
tivity limit of 0.9 + 0.1 V/em/+/Hz (black line), which is v/2
times lower than that of the individual channels as seen in
Fig. 3b.
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Appendix A: Appendix
1. Addressing an ensemble of NV™s

A diagram showing four of the eight possible NV~ ori-
entations found with a diamond containing an ensemble
of NV~s (See Fig. 5).

NV Orientations:

@ Nitrogen
applled 1 @ Vacancy
@ Carbon

B = |ELel= |ELs] = |[EL4

FIG. 5. Applied electric field with respect to the eight orien-
tations of NVs in the ensemble.

2. Sensitivity approaching \‘/“%

Using Eqn. 4 in the main text, we expect a shot-noise-
limited sensitivity approaching
6 x 10*3\//% using photocurrent values of 10 mW
(ny = 62x 105 eV /sec x 1 photon/1.9eV = 3x 101¢ pho-
ton/sec) as typically seen with ensemble NV~ measure-
ments for magnetometry experiments [5], a transverse
electric susceptibility of k; = 17V o, line width (Af)
of 1 MHz, and contrast(C) of 0.05.

3. Full energy transition expression

Using second-order, degenerate perturbation theory,
we derive the microwave transition frequencies between
the eigenstates split by transverse electric fields:

Lo B, )2
wi(E,B) =D+ 1k E| + 3lBB1)°
2D
\/ s o S B2 B2
4 —Ly2
B + E7 — BH + E? 2Dsm(a)cos(ﬁ) + (2D)
(A1)

where tan(a) = E, /B, 8 = 2¢p + ¢p, tan(¢p) =
B,/B,, tan(¢p) = E,/E,, B. = m, and
E, =,/E2+ Eg

The equation which describes the ensemble ODMR
spectrum is given by:



C, P(x)

L(f)=1 247r 27T//

22 sin(h)dzdfdo

where f is the frequency of the applied MW field, C,
is the ensemble average of the ODMR contrast, D, is
the ensemble average of the crystal field, P(xz) = xze™®
is the (2,1) Gamma probability distribution of the strain
magnitude, F, is the ensemble average of the strain mag-
nitude, Af, is the full-width half-maximum of single-NV
line-widths, 6 denotes the strain vector’s altitude angle
away from the NV~ symmetry axis, and ¢ is the strain
vector’s azimuthal angle.

4. Zero-ing of magnetic field using gradient descent

It is possible to zero the magnetic field using gradient
descent because the overlap of the m; = 41 transitions of
all eight orientations of NV~s has a contrast that varies
smoothly with respect to applied small magnetic fields.
By taking local gradients of the contrast at each magnetic
field setting (B,, B, and Bj) followed by successively

smaller step sizes, we find the setting of B that achieves
the globally maximum ODMR contrast and hence a zero
magnetic field.

5. Digital Lock-In Amplifier Implementation

Using an FPGA high speed DAC, our system contains
both the waveform generation and lock-in detection to
perform readout of the optical signals from the diamond.
The MW waveform sent to the diamond is generated dig-
itally in the FPGA by direct-sampling with a high-speed
DAC (2.4 Giga-samples, 3rd nyquist zone), which sig-
nificantly simplifies the RF hardware and allows gener-
ation of arbitrary waveforms. Control is performed by
a Linux based Python TCP/IP server running on the
Zyng’s ARM processor that interfaces to MATLAB on
the control PC.

6. Bandwidth limitations of the NV-based
electrometer

The mechanism that determines the NV spin’s sensitiv-
ity to high frequency electric fields at room temperature
is limited by the spin-dependent readout rate. This rate
is limited by the intersystem crossing process which is
weakly temperature dependent due to its non-spin con-

2
f (Dotk | Eyxsin(0))
ELE ) +1

(

serving property, and is ~21/300 ns. Due to current exper-
imental constraints such as limited photon collection effi-
ciency and a limited bandwidth of the photodiode given
the large dynamic range needed, the time constant on the
LIA can then be set to match the bandwidth of the NV
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(m=-1) (m=£0) (m=+1) 3
%107~ 2000
0.01 > —
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FIG. 6. Excited-state ODMR spectra measured on an

NV~ ensemble at zero magnetic field. Excited-state shifts

due to pulsed electric fields applied to an NV~ ensemble at

zero magnetic field. The sensitivity of this measurement ap-
V/cm

proaches 300—\/E .

Ground State Excited State

Lande’ g factor (g) 2 2
Lifetime (T,) milliseconds nanoseconds
Crystal Field Splitting (D) 2.8 GHz 1.4 GHz
N4 Hyperfine splitting (A) 2 MHz 40 MHz
Transverse field Sensitivity (d) 17 Hz / (V/cm) ~400 Hz / (V/cm)

FIG. 7. Table outlining the major differences between the
ground and excited state of the NV~ for electric field sensing.

electrometer’s spin readout of ~3 MHz. Higher detec-
tion bandwidths can be achieved using single-shot spin
readout at cryogenic temperatures.

7. Excited-state optically detected magnetic
resonance

The spin physics of the NV~ ’s excited state is identical
with the NV~’s ground state at temperatures above ap-
proximately 50 Kelvin [25]. For purposes of sensing elec-
tric fields, the excited state is expected to be significantly
less effective despite having 20 x greater transverse field
sensitivity. This is attributed to shorter optical sponta-
neous lifetime (12 ns) and smaller ODMR contrast in the
excited state. This analysis can be validated by substi-
tuting values from Fig. 7 into Eqn. 4.



