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Abstract

Photodetachment of negative ions in combined laser and low-frequency fields is investigated. The

time-dependent Green’s function method is used for calculation of electron flux at a macroscopic

distance away from the photodetachment source, typical for a photodetachment microscopy exper-

iment. In calculating the electron flux, we use the stationary phase method for the time integral,

equivalent to the semiclassical approximation, to compute the time dependent wavefunction. The

stationary points t
(i)
1 , i = 1, ..., n correspond to time instances of launching of classical trajectories

arriving at the detector at a given space-time point (r, t). The number of trajectories n contribut-

ing to the electron flux at any point in the classically allowed space-time domain can be controlled

by varying the switching interval of the high frequency laser which initiates the photodetachment

process. The divergences inherent in the electron flux in the semiclassical treatment are removed

by using the uniform Airy approximation near the caustics.

PACS numbers:
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I. INTRODUCTION

Studies of electron photodetachment in external static electric fields demonstrate spatial

interference of electrons traveling along different classical trajectories [1–4]. Similar phe-

nomena were predicted for photodetachment in parallel electric and magnetic fields [5–7]

and other external fields, particularly due to metallic and dielectric surfaces [8–11]. Ex-

perimental observations of spatial interference in static electric fields [12] allow very precise

determination of electron affinities [13–15]. These studies have developed in a whole field

called “photodetachment microscopy”. Similar studies with neutral atoms [16–22] are called

“photoionization microscopy”. Replacing static electric fields with low-frequency, particular

radiofrequency, fields adds new interesting physics [23–26] which was investigated in several

recent theoretical studies [27–31]. Yang and Robicheaux [28] showed that time-dependent

terahertz fields, in addition to the spatial interference, create also temporal interference.

Such studies are important for the general theory of detachment of negative ions and ioniza-

tion of neutral atoms and molecules by radiation fields. The returning electron trajectories

undergo rescattering and this contributes to such interesting phenomena as above-threshold

ionization [32], high-order harmonic generation [33, 34] and multielectron nonsequential ion-

ization [35]. Qualitatively the contribution of rescattering to these phenomena is described

by the “simple-man” model [36], although the modern computational techniques allow an

accurate quantitative description by numerical solution of the time-dependent Schrödinger

equation. For the purpose of understanding of more physics, the quasiclassical and semi-

classical methods [32, 37], which stand between the simple-man model and exact quantum-

mechanical calculations, are becoming quite useful.

There are two types of methods standing between classical and quantum mechanics.

Methods of the first type describe the wave function in terms of classical quantities, classical

probability density and action [19, 37–39]. The latter is equal to the phase of the wavefunc-

tion. If necessary, these quantities can be analytically continued in the complex time plane

to describe the motion in classically-forbidden regions [40–43]. However, this extension is

not always straightforward. Methods of the second type start with the Schrödinger equa-

tion, and then use short-wavelength approximation or stationary phase methods to obtain

an approximate wavefunction [42, 44, 45].

In the present paper we use the second approach, but restrict ourselves to classically
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allowed region. In this case the electron motion starts above the potential barrier bind-

ing the electron in a negative ion. Practically this is achieved by using a high-frequency

laser field which detaches electrons and launches classically allowed trajectories in another,

static or low-frequency, field. Our approach to description of this process, belonging to

the second type, is somewhat different from that of Yang and Robicheaux [28]. We start

with the integral form of the Schrödinger equation involving the exact quantum-mechanical

propagator for electron motion in a low-frequency field [46]. After calculating the integral

in this equation by the stationary phase method, we obtain the electron wavefunction in

terms of electron action along classical trajectories. The advantage of this approach is in its

generality, since it allows description of classically forbidden trajectories as well with sta-

tionary points lying in the complex time plane. It also can be extended to photoionization

by inclusion of the Coulomb field in calculation of classical trajectories.

The rest of the paper is organized as follows. In Section II we present the theoretical

formulation. In Section III we discuss the behavior of the wavefunction near the caustic.

In Section IV we analyze electron trajectories contributing to the flux at the detector. In

Section V we present sample results. Sec. VI contains conclusion and outlook. Atomic units

are used throughout the paper, unless stated otherwise.

II. THEORETICAL FORMULATION

We start with the time-dependent Schrödinger equation with the Hamiltonian

H = Ha +Hs +Hl

where Ha is the atomic Hamiltonian containing interaction of the active electron with the

atomic residue, and Hs, Hl are electron interactions with the short-wavelength laser field and

the long-wavelength (low-frequency) field respectively. The frequency of the laser field should

be high enough to allow one-photon detachment of the negative ion, and the frequency of the

long-wavelength field can lie between the radiofrequency (rf) and terahertz frequency range.

For specific calculations we choose rf fields with frequencies 100 and 200 MHz. We assume

that both fields are linearly polarized and parallel, and direct them along the negative z

axis. Then in the dipole approximation, using the length gauge, we have

Hs = −Fs(t)z, Hl = −Fl(t)z
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where Fs(t), Fl(t) are corresponding forces acting on the electron. We assume both fields to

be monochromatic, but in order to obtain temporal interference we will switch on the laser

field at time t0 and switch it off at time t2, so that

Fs(t) = Λ(t, t0, t2)Φ cos(ωst+ φ),

Λ(t, t0, t2) = f(t− t0)− f(t− t2)

where Φ is the field amplitude, and φ is a phase which does not influence the final result for

the electron current. The function f(t) is growing from 0 at t = −∞ to 1 at t =∞ with the

switching interval ts small compared to t2 − t0. The exact shape of f(t) is not important,

as long as

2π/ωs � ts � t2 − t0. (1)

For example, the choice ts = 0, or f(t) = η(t), where η(t) is the step (Heaviside) function

would not satisfy the first condition. Yang and Robicheaux [28] choose f(t) = [tanh(t/ts) +

1]/2.

For the low-frequency field we have

Fl(t) = F0 cosωt

and there is no need to limit its duration as long as the duration of the laser pulse is limited.

If ts is sufficiently small, the effective time instant for switching on the laser field is t0, and

the effective time instant for turning off the laser field is t2. Therefore, by varying t0 and

the time interval t2 − t0 we can control the initial phase of the low-frequency field and the

number of cycles of the low-frequency field which affect the detachment process.

The Schrödinger equation can be written in the following integral form

ψ(r, t) =
∫ t

−∞
dt′
∫
dr′G(r, t, r′, t′)Hs(r

′, t′)ψ(r′, t′) (2)

where G(r, t, r′, t′) is the electron propagator incorporating the atomic and the low-frequency

field, but not the laser field. We then make two approximations typical in these problems [40,

42]. First, we neglect the influence of the atomic field on the propagator. This is equivalent

to the neglect of the rescattering effects which are very weak for short-range potentials

describing electron interaction with atomic residue in the photodetachment problem [47, 48].

In photoionization problem the Coulomb field of the ion residue should be included. Second,
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we neglect the influence of both laser and low-frequency fields on the wave function in the

right-hand side of Eq. (2), i.e. we assume

ψ(r, t) ≈ e−iEbtψ0(r)

where Eb is the energy of the initial bound state, and ψ0(r) is the corresponding bound-state

wavefunction. This is justified for weak fields considered in the present paper [42].

For treating the absorption process the interaction Hamiltonian Hs can be replaced by

the positive-frequency part

Hs =
1

2
Λ(t, t0, t2)Φz exp[−i(ωst+ φ)]. (3)

Since the laser field is, strictly speaking, not monochromatic, this can raise a question about

possible contribution of the negative-frequency part. However, Eq. (3) is valid as long

as conditions (1) are satisfied. The integral equation turns now to the following integral

representation for ψ(r, t)

ψ(r, t) =
Φe−iφ

2
u(r, t)

u(r, t) =
∫ t

−∞
dt′Λ(t′, t0, t2)e−iEt

′
∫
dr′G(r, t, r′, t′)z′ψ0(r′) (4)

where E = Eb + ω is the electron energy after detachment. We assume it to be positive.

The quantity of physical interest is the ratio of electron current density at the space-time

point (r, t) to the photon current density in the laser field. It does not depend on Φ and φ

and is given by [4]
jel
jph

=
2πωs
c

Im

(
u∗(r, t)

∂u(r, t)

∂z

)
(5)

where c is the speed of light.

The exact propagator for linearly polarized field is well known, and can be written as [46]

G(r, t, r′, t′) = −iη(t− t′)[2πi(t− t′)]−3/2 exp[iR(r, t, r′, t′)] (6)

where R(r, t, r′, t′) is the principal Hamiltonian function (or action) along the trajectory

joining space-time points (r′, t′) and (r, t). We denote it by R to distinguish it from the

abbreviated action SE(r, r′) used usually in the problems of electron motion in a static field.

To simplify Eq. (4), we note that the integrand in the right-hand side contains a rapidly

oscillating function, and for its calculation we can use the stationary phase method. The

equation for the stationary point in t′ is

∂R(r, t, r′, t′)

∂t′
− E = 0. (7)
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Using the known relation from the classical mechanics, we obtain

H(r, t, r′, t′) = E (8)

where H is the classical Hamiltonian of the electron in the low-frequency field expressed as

a function of the space-time points (r′, t′) and (r, t). The explicit expressions for R and H

can be found using the classical equations of motion. Since both high and low frequency

fields are linearly polarized along the z axis, we can use the cylindrical symmetry of the

system to constrain the outgoing electron trajectories to a plane with a constant azimuthal

angle ϕ = 0. With these conditions, classical equations of motion of the electrons in the

low-frequency field are as follows,

x(t) = ẋ′(t− t′) + x′

z(t) = − F0

mω2
(cosωt− cosωt′) + (t− t′)(ż′ − F0

mω
sinωt′) + z′ (9)

where the primed quantities represent the initial space-time coordinates and components of

velocity. Now, using Eq.(9), we can write down the analytical expressions for R(r, t, r′, t′)

and H(r, t, r′, t′) (see, for example, [49]):

R(r, t, r′, t′) =
m

2(t− t′)
[(x− x′)2 + (z − z′)2]

+F0

(
1

ω2

(z − z′)
(t− t′)

(cosωt− cosωt′) +
1

ω
(z sinωt− z′ sinωt′)

)

+F 2
0

(
1

2mω4

(cosωt− cosωt′)2

(t− t′)
+

1

8mω3
(sin 2ωt− sin 2ωt′)− (t− t′)

4mω2

)
(10)

H(r, t, r′, t′) =
m

2

(
x− x′

t− t′
)2

+
m

2

(
z − z′ + F0

mω2 [cosωt− cosωt′]

t− t′
+

F0

mω
sinωt′

)2

− F0z
′ cosωt′ (11)

We emphasize that R, H, and the preexponential factor in Eq. (6) can be written in

analytical forms because we are dealing with photodetachment. For photoionization problem

the Coulomb field should be included. This can be done by numerical calculation of classical

trajectories in the superposition of the low-frequency field and the Coulomb field.
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The integral in the right-hand side of Eq.(4) can be calculated now by the stationary

phase method

g(r, t, r′) ≡
∫ t

−∞
dt′Λ(t′, t0, t2)e−iEt

′
G(r, t, r′, t′) =

−e
−iπ/4

2π

∑
t1

Λ(t1, t0, t2)

(t− t1)3/2

∣∣∣∣∣ ∂2R

∂(t′)2

∣∣∣∣∣
−1/2

t′=t1

exp{i[R(r, t, r′, t1)− Et1 ± π/4]} (12)

where the sum is over all solutions t1 of Eq. (8), and the sign in the exponent is determined

by the sign of ∂2R/∂(t′)2. If the switching time ts is short enough, the solutions of Eq.(8)

should be chosen from the interval t0 < t′ < t, if t < t2, and from the interval t0 < t′ < t2,

if t > t2. On the other hand, ts should not be too short. If, for example, it is chosen to

be 0, then the boundaries t0 and t2 can contribute to the integral as well, in addition to

the stationary points. We therefore require that ts satisfies conditions (1). Under these

conditions, the switching function Λ(t1, t0, t2) allows us, by varying t0 and t2, select the

number of stationary points t1 which physically correspond to the times of launching of

trajectories. In this way we control the number of classical trajectories contributing to the

electron current at the space-time point (r, t).

For calculation of the spatial integral in Eq. (4) we note that whereas the coordinates r

are allowed to reach macroscopic values, the coordinates r′ are limited by the spatial extent

of the wave function ψ0(r′). Following [4], we therefore expand R(r, t, r′, t1)−Et1 in powers

of r′. Note also that because of Eq. (8) t1 is an implicit function of r, r′ and t. Therefore

R[r, t, r′, t1(r, r′, t)]− Et1(r, r′, t) = R[r, t,0, t1(r, 0, t)] +
∂R

∂r′

∣∣∣∣∣
r′=0

· r′

+
∂R

∂t1

∂t1
∂r′

∣∣∣∣∣
r′=0

· r′ − Et1(r,0, t)− E ∂t1
∂r′

∣∣∣∣∣
r′=0

· r′. (13)

According to Eq. (7), terms with ∂t1/∂r′ cancel each other, and we obtain

R(r, t, r′, t1)− Et1 = SE(r, t)− p′(r, t,0, t1) · r′

where

SE(r, t) = R[r, t,0, t1(r,0, t)]− Et1(r,0, t) (14)

p′(r, t,0, t1) = − ∂R

∂r′

∣∣∣∣∣
r′=0

is the momentum of electron launched at the origin at time t1 and arriving at the space-time

point (r, t).
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The function SE(r, t) which we will call a modified action, reminds somewhat the abbrevi-

ated action used in stationary problems [1, 4]. However, there are two important differences:

first, the energy E is not a conserved quantity. Second, the sign of the second term in Eq.

(14) is negative since it contains the initial time t1 rather than final time t.

The spatial integration is reduced now to calculation of the well-known matrix element

M(p′) =
∫
e−ip

′·r′z′ψ0(r′)dr′.

For photodetachment of H− we can use the zero-range-potential approximation with read-

justed normalization constant [50]. Then

ψ0(r) = B
e−r/a

r

where a = (−2Eb)
−1/2, and

M(p′) =
8πiBp′

[a−2 + (p′)2]2
cosχ′

where χ′ is the angle between p′ and the z axis.

Finally

u(r, t) = −e
−iπ/4

2π

∑
t1

M(p′)Λ(t1, t0, t2)(t− t1)−3/2

∣∣∣∣∣ ∂2R

∂(t′)2

∣∣∣∣∣
−1/2

t=t1

exp{i[S(r, t)± π/4]}. (15)

This should be substituted in Eq. (5) for calculation of the ratio of the current densities.

III. WAVEFUNCTION NEAR CAUSTIC

Before we move on to the description of the wavefunction near the caustic surface, we first

briefly investigate the formation of caustics due to the photodetached electron trajectories

in time-dependent fields. As the final time t evolves at an arbitrary point on the detector,

new pairs of trajectories emerge from the complex space-time domain. In Fig.1, we show

how the trajectories start to appear in pairs at the center of the detector. Here , we have

drawn ∂S
∂t′

as a function of t′ with t′ ∈ [t0, t] for some fixed final times. According to Fig.

1, when the final time t gradually increases, the curve ∂S
∂t′

passes through a special point
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in initial time, denoted by t′ = tc(r
′, r, t). At this point, the following two conditions are

simultaneously satisfied.
∂R

∂t′

∣∣∣∣∣
t′=tc

= E

∂2R

∂(t′)2

∣∣∣∣∣
t′=tc

= 0 (16)

We say that the two equations (16) define a caustic surface which is the boundary for classi-

cally allowed trajectories in space-time domain. In other words, if we launch an ensemble of

trajectories from the source at r′ = 0 at a fixed initial time t′, the set of points, (r, t), in the

real space-time domain satisfying the above conditions are said to lie on the caustic surface,

which in general depends on the initial time t′. In Fig.2, we show electron trajectories and

the projection of the caustic surface on the x− z plane for three different initial times. Note

that trajectories do not cross the caustic surface in the 3-dimensional (x, z, t) space. Appar-

ent crossing points in the x− z plane observed in Fig. 2 do not represent actual crossings.

In the case of a static field, the caustic surface can be obtained from similar equations

∂R

∂τ
= −E, ∂2R

∂τ 2
= 0

where τ = t − t′. These two equations can readily be simplified to obtain an equation for

the caustic surface in configuration space which is independent of the launching time.(
1 +

zF

E

)(
1 +

z′F

E

)
− F 2

4E2
(x− x′)2 = 0.

Fig.3 shows the caustic surface as an envelope of electron trajectories for a static field.

On the caustic Eq. (12) is not valid. The integral can be evaluated by expanding the

action in powers of t − tc where tc(r, r
′, t) is the solution of the equation (16). Introduce

again the modified action

S(r, t, r′, t′) = R(r, t, r′, t′)− Et′.

Then in the vicinity of the caustic

S(r, t, r′, t′) = b(r, r′, t)(t′ − tc) + a(r, r′, t)(t′ − tc)3

where

b(r, r′, t) =
∂S

∂t′

∣∣∣∣∣
t′=tc

, a(r, r′, t) =
1

6

∂3S

∂(t′)3

∣∣∣∣∣
t′=tc

.
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FIG. 1: Graphical solution of the equation ∂S/∂t′ = 0 for t′ at different detection times t. For t=351.0 ns no real roots exist.

This means, there are no real trajectories arriving at the center of the detector. For t=357.00 ns there are two roots

corresponding to two electron trajectories arriving at the center of the detector at the same time. Amplitude and the

frequency of the field are 50 V/cm and 100 MHz respectively. The detector is 0.5 m away from the source.

Assuming now that t � tc and using the integral representation of the Airy function, we

obtain

g(r, t, r′) = − exp[i(S(r, t, r′, tc))]

(2πi)1/2(t− tc)3/2[3a(r, r′, t)]1/3
Ai

[
b(r, r′, t)

(3a(r, r′, t))1/3

]
.

For calculation of the spatial integral in Eq. (4) we perform the expansion similar to (13).

Using

∂S(r, t, 0, t′)

∂t′

∣∣∣∣∣
t′=tc

= H(r, t, 0, tc)− E,
∂S(r, t, r′, t′)

∂r′

∣∣∣∣∣
r′=0

= −p′(r, t, 0, tc),

we obtain

S(r, t, r′, tc) = S(r, t, 0, tc)− p′(r, t, 0, tc) · r′ + [H(r, t, 0, tc)− E]
∂tc
∂r′

∣∣∣∣∣
r′=0

· r′.

Finally

u(r, t) = − exp[i(S(r, t, 0, tc))]

(2πi)1/2(t− tc)3/2[3a(r, 0, t)]1/3
Ai

[
b(r, 0, t)

(3a(r, 0, t))1/3

]
M(pc)

where

pc = p′ − [H(r, t, 0, tc)− E]
∂tc
∂r′

∣∣∣∣∣
r′=0

.
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FIG. 2: Electron trajectories (thin lines) and projections of the caustic surfaces on the x− z plane (thick lines). Panels

(a),(b) and (c) show the variation of the caustic surface for different initial times.

IV. TRAJECTORY ANALYSIS

In all calculations we assume that electrons reach a planar detector, oriented perpen-

dicular to the z axis, at a distance 0.5 m from the negative ion which is placed at the

origin of our coordinate system. The amplitude and the oscillation frequency of the low-

frequency field are 50 V/cm and 100 MHz respectively. The electron starts its motion in

the classically allowed region with an initial kinetic energy E=0.5 meV after the photode-

tachment process. It is important to note here that this energy E is not a constant along
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FIG. 3: Electron trajectories (thin lines) and the caustic surface (thick solid line) for the case of a static field. F=50 V/cm,

E=0.5 meV

the electron’s trajectory. The incident photon energy corresponding to electron’s initial ki-

netic energy is ωs = E − Eb = 0.7556026 eV where Eb = −0.7551026 eV is the electron

energy in H−. The stationary phase condition (8) generates the launching time t′ for given

launching position r′, final position r and detection time t, and allows us to find the cor-

responding trajectory. We choose two suitable laser on-off intervals for the high-frequency

field, I1 = [t0, t2] = [−10ns, 0ns] and I2 = [t0, t2] = [−10ns, 10ns]. The durations of the laser

intervals are multiples of the period of the low-frequency field. For the switching function

(envelope function), Λ(t, t0, t2), we consider the following two trial functions where the first

one is the same as that of Yang and Robicheaux [28].

Λ1(t, t0, t2) =
1

2

[
tanh

(t− t0
ts

)
− tanh

(t− t2
ts

)]
(17)

Λ2(t, t0, t2) =
1

π

[
tan−1

(t− t0
ts

)
− tan−1

(t− t2
ts

)]
(18)
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FIG. 4: Profile of Λ(t, t0, t2) for the laser interval I2

where the switching interval is ts=500×2π/ωs. Fig.4 shows the shapes of the switching

functions Λ1(t, t0, t2) and Λ2(t, t0, t2) for the laser on-off interval I2. Although the first type

of switching occurs faster, both functions satisfy conditions (1), and the results do not

depend on the specific choice of Λ.

As the duration of the laser interval increases, the number of electron trajectories

arriving at the detector at the same time t increases as well. In Fig. 5 we show the

solutions t′ for each final time t for the two intervals I1 and I2. In Fig.5 (a), for large

t, there are 8 trajectories which can be separated into two groups G1 and G2 arriving

at the detector at the same final time t. The difference between the modified actions,

∆S = S(r, t′(1)) − S(r, t′(2)), where S is given by Eq. (14), corresponding to trajectories of

groups G1 and G2 with starting times t′(1) and t′(2), is large and the interference pattern

they produce is rapidly oscillating. This is expected because the earlier trajectories in

group G1 spend more time in the low frequency field than the trajectories in group G2.

In Fig.5 (b), we draw the initial times for electron trajectories corresponding to the

laser interval I1. Now for large t, we can observe a maximum of 4 electron trajectories

arriving at the detector center. Here the labels C1 and C2 mark the points where the

conditions in (16) are simultaneously satisfied. The semiclassical flux is diverging at

temporal or spatial caustics, and we will see these divergences as special features in

the temporal or spatial interference profiles in the next section. Well beyond the two

caustics in Fig.5(b), ∆S between A1 trajectories and A2 trajectories also grows rapidly

due to the same reason as in Fig.5(a). Therefore, the 4 trajectory interference structure
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FIG. 5: Relation between the detection time t and the launching time t′. Panel (a): The switching interval is I2. Maximum

of 8 trajectories grouped as G1 and G2 are possible. Panel (b): Switching interval I1. Maximum of 4 trajectories grouped as

A1 and A2 are possible. C1 and C2 indicate the points of the caustic condition (16).

exhibits rapid oscillations. The two trajectories in either of the groups A1 or A2 have a

very small initial time separation (∆t′) and thus a small ∆S producing less rapid oscillations.

V. TEMPORAL AND SPATIAL INTERFERENCE

Taking the switching interval I1, we now compute the ratio given by Eq.(5) with u(r, t)

calculated via Eq. (15). In calculation of the numerical derivative ∂u(r, t)/∂z, we have to

make sure that the increment dz is small enough so that at the new location,z + dz, we get

the same number of trajectories arriving at time t.

In Fig.6 and Fig.7, we show the electron flux calculated using semiclassical and uniform

Airy approximations. In Fig.8, we also show the electron flux when the rf frequency is
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but the number of trajectories increases from 2 to 4

increased to 200 MHz.

It is now interesting to see how the spatial interference pattern changes over the detector

plane as the final time t changes. Fig.9 shows that for a fixed final time t, there can be 2 or 4

trajectories arriving at an arbitrary point in the detector. For example, when the final time

t=360 ns, there are 4 trajectories arriving at each point in the detector. The interference

16



-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

t' 
(n

s)

x (mm)

t=358.0 ns
t=359.0 ns
t=360.0 ns

FIG. 9: Initial electron launching time as a function of the x coordinate on the detector plane for different final times t

pattern they produce over the detector plane is shown in Fig. 10. For the final time t=358

ns or t=359 ns, we can again see a transition region from 2 to 4 trajectories along the

x coordinate and therefore, a discontinuity in the corresponding semiclassical interference

pattern. Similar to the temporal interference pattern, we can remove these divergences using

the uniform Airy approximation near the caustics, as shown in Fig. 11. In Fig. 11, we also

show the spatial interference pattern of the electrons arriving at the detector plane when

the final time t=358 ns and t=359 ns.

VI. CONCLUSION

In conclusion we have investigated photodetachment of negative ions in time dependent

low-frequency fields by calculation of the electron flux arriving at a detector which is lo-

cated at a macroscopic distance away from the photodetachment source. For the calculation

of the electron flux, we have used the quantum propagator for the electron motion in a

time dependent field and the stationary phase approximation in the evaluation of the wave-

function. Specific calculations were done for H−, but the approach is easy to extend to

multielectron negative ions. We have investigated both temporal and spatial interference

structures in the electron flux contributed by two or four electron trajectories. Divergences

in the electron flux distribution in both spatial and time domain appear when a new pair of
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FIG. 10: Panel (a): Variation of the flux along x at t=360 ns (b): Interference pattern in the detector plane. The field

amplitude F0= 50 V/cm and frequency 100MHz,

real electron trajectories emerge from the complex time domain. This pairwise increment of

the number of trajectories happens when the point of observation lies on the caustic surface

defined by the electron trajectories in space-time domain. The divergences in the electron

flux distributions were removed using the uniform Airy approximation near the caustics.

In the current work we did not include the tunneling trajectories. This can be achieved

by extending the method we used into complex time domain. For the case of photoioiniza-

tion in time dependent fields, our method can be modified by inclusion of the long range

Coulomb potential into the semiclassical (Van Vleck) propagator [51]. Corresponding clas-

sical amplitudes and action are obtained by numerical integration of the classical equations

of motion. As a further development of the approach we used here, theory and calculation

of the electron flux for a time dependent photoionization microscopy experiment will be

presented in a separate paper.
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FIG. 11: Panels (a) and (c) show the variation of the spatial interference pattern along the x coordinate for t= 358 ns and

t=359 ns, respectively. Panels (b) and (d) show the corresponding spatial distribution of the electron flux in the detector

plane.
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