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The longest tune-out wavelength for potassium atoms, λzero = 768.9701(4) nm, was measured
using an atom interferometer with a large irradiance gradient supported in a multi-pass optical
cavity. Systematic errors in λzero measurements that arise from laser light, Doppler shifts, and the
Earth’s rotation are described. The ratio of oscillator strengths for the potassium D2 and D1 lines
inferred from this λzero measurement is ρ = fD2/fD1 = 2.0066(11), and the ratio of line strengths is
R = SD2/SD1 = 1.9977(11).

Tune-out wavelengths (λzero) are associated with roots
in the dynamic polarizability spectrum of an atom. Light
at a tune-out wavelength therefore causes zero energy
shift (no ac-Stark shift) for atoms in a particular state.
Precise λzero measurements [1–5] serve as a means to
study several atomic properties including lifetimes, oscil-
lator strengths, oscillator strength ratios, atomic scalar,
vector, and tensor polarizabilities and hyperpolarizabil-
ities, the polarization of atomic core electrons, core-
valence electron correlations, and relativistic and QED
effects on atomic transition amplitudes [6–15]. Improved
knowledge of λzero values can also be important for
several experiments that use species-specific and state-
specific optical dipole potentials created with light near
a tune-out wavelength [16–23]. Tune-out wavelengths,
also known as magic-zero wavelengths, were mentioned
in 2004 by Safronova, Williams and Clark [6]. They were
introduced in more detail in 2007 by LeBlanc and Thy-
wissen [16], and more precise calculations of several λzero

were presented in 2011 by Arora, Safronova and Clark
[7]. The most accurate measurements of tune-out wave-
lengths to date have used atom diffraction [1, 5], atom
interferometry [2, 3], and studies of trapped atom dy-
namics [4].
Here we present an improved measurement of the

longest tune-out wavelength for potassium, λzero =
(786,970.14 ± 0.42) pm. We describe how we made this
measurement using a multi-pass optical cavity to recy-
cle light shining on an atom interferometer. Then we
discuss methods we used to reduce errors and estimate
systematic uncertainties. Finally, we interpret this mea-
surement in terms of the the ratio of line strengths

R =
SD2

SD1

=
|〈4s‖D‖4p3/2〉|2
|〈4s‖D‖4p1/2〉|2

= 1.9977(11) (1)

and the ratio of oscillator strengths

ρ =
fD2

fD1

= R

(

ωD2

ωD1

)

= 2.0066(11) (2)

for the D1 and D2 lines in potassium associated with the
4s-4p1/2 and 4s-4p3/2 transitions, and we discuss the im-
pact of this measurement on our knowledge of the 4p1/2
and 4p3/2 state lifetimes.
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FIG. 1. (Color online) (a) Top-view schematic of atom in-
terferometer paths passing through a multi-pass optical opti-
cal cavity. (b) Side-view schematic of the plane-plane opti-
cal multi-pass cavity aligned so atoms interact with multiple
passes of the laser beam. The deviation from parallel is ex-
aggerated to show how the laser beam folds back at different
angles.

To measure λzero we applied an irradiance gradient
on the paths of a three-nanograting Mach-Zehnder atom
beam interferometer [24–26] as shown in Fig. 1. Then we
report the root in the light-induced phase shift spectrum,

φ(ω) =
α(ω)

2ch̄ǫov

∫

s
d

dx
I (x, y;ω) dy, (3)

where ω = 2πc/λ is the laser frequency, v is the atom
beam velocity, s is the atom wave-packet separation, and
dI/dx is the irradiance gradient. Figure 1 shows the co-
ordinate axes.
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A. Multi-Pass Cavity Enhancement

To improve the precision of λzero measurements we
built an optical cavity that increases the line-integral
of the irradiance gradient

∫

dI
dxdy. We used an optical

fiber to guide light directly into the vacuum chamber and
to launch a laser beam into a multi-pass optical cavity
(MPC). The MPC is made of two plane mirrors separated
by ℓ = 1 cm. The mirrors surround the atom beam as
sketched in Fig. 1 so atoms interact with approximately
40 passes of the laser beam. This is not a stable res-
onator (the laser spots walk and grow without bound),
so we refer to it as a multi-pass cavity (MPC).
To quantify the benefit of the MPC we first

discuss the phase shift φsingle caused by a sin-
gle laser beam propagating in ẑ with an irradi-
ance profile I = [2P/(πw2)] exp[−2(x2 + y2)/w2] where
P is the power and w is the beam width (ra-
dius at e−2 irradiance). From Eq. (3), the

phase φsingle ∝
∫

dI
dxdy = [8Px/(

√
2πw3)] exp[−2x2/w2]

is maximized when the laser beam center is offset from
the atom beam paths by x = w/2. Then, with
that optimized alignment, φsingle ∝

∣

∣

∫

dI
dxdy

∣

∣

max
=

(8/eπ)
−1/2 (

P/w2
)

. Because the laser beam width is
large compared to the s = 20µm separation of the atom
interferometer paths (w ≫ s), we neglect higher order

derivatives, e.g. d2

dx2

∫

Idy. We find the maximum phase
shift due to a single pass of a laser beam is

φsingle =

(

2

eπ

)

−1/2
α(ω)s

ch̄ǫov

P

w2
(4)

Since φsingle is proportional to P/w2, we are motivated
to use a smaller waist to get a bigger signal. However, the
60µm thickness of the atom beam sets a constraint on the
minimum waist w. If the laser beam is smaller than this,
it tends to reduce the ensemble- averaged light-induced
phase shift and contrast. Therefore, we chose w ≈ 60 µm
to produce a more uniform irradiance gradient across all
of the atom beam paths.
Fully separated interferometer paths would enable us

to apply light on one path while leaving the other path
through the interferometer completely in the dark, as
demonstrated in [3]. This would cause a phase φ1 =
α(ω)/(2ch̄ǫov)

∫

I(ω)dy that is larger than the gradient-
induced phase shift in Eq.(4) by the ratio φ1/φsingle =
(
√
e/2)(w/s). However, producing such well-separated

atom beam paths requires improved collimation and/or
larger diffraction angles, both of which reduce the atomic
flux in our apparatus. An alternative method to increase
φ without reducing atomic flux is to use more laser power
or recycle the laser light.
That is why we constructed a multi-pass cavity (MPC)

to recycle light and thus increase light-induced phase
shifts. Because the MPC sketched in Fig. 1b is built
with two plane mirrors, the laser beam diameter eventu-
ally grows as the laser propagates in the MPC. Therefore,
one might expect that there is a tradeoff between a small

waist or a long Raleigh range, but this is not the case.
Even though a smaller waist causes a larger signal for a
single pass of the laser beam, a long Raleigh range makes
several passes contribute significantly to φ. These factors
compensate as shown with Eqns. (5) and (6).
The MPC enhances the signal by the factor

φmulti

φsingle

= w2
0

∑

n

R′n

[w′(z′)]2
(5)

where R′ is the reflectivity of the mirrors and w′(z′) =
w′

0[1+(z′/z′R)
2]1/2 is the laser beam width. z′ = nℓ after

n reflections in the plane-plane cavity where ℓ is the sep-
aration between the two mirrors, and n = 0 corresponds
to the laser beam waist location. The Raleigh range is
z′R = πw′2

0 /λ. We use primes (w′, z′, and R′) to indicate
quantities for the laser beam in the MPC.
For comparison, w0 is the waist in a single-pass exper-

iment. For high reflectivity mirrors (R ≈ 1) and z′R ≫ ℓ,
we approximate the sum in Eq. (5) with the integral
∫

[w′(z′)]−2dz′/ℓ to find the enhancement factor

φmulti

φsingle

= π

(

w0

w′

0

)2 (
z′R
ℓ

)

= π2w
2
0

λℓ
. (6)

The last form shows that the enhancement is independent
of w′

0 and z′R. For our experiments with w0 = 60 µm,
λ = 769 nm, and ℓ=1.0 cm, Eq. (6) yields a calculated
enhancement of ℵ = 4.6. With reflectivity R′ = 99.7%,
Eq. (5) predicts ℵ = 4.0.
We experimentally verified that our MPC increased

the signal slope as shown in Fig. 2. With the MPC, the
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FIG. 2. (Color online) Enhanced slope for phase vs. wave-
length data due to multi-pass cavity. The slope for φmulti is
dφ/dλ = 1.9 mrad/pm with v = 2900m/s atoms (solid line
and solid circles). A smaller slope of 0.76 mrad/pm was ob-
served for a single-pass experiment (φsingle) with v = 1600m/s
atoms (dashed line and open circles).
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slope of dφ/dλ = 1.9 mrad/pm with 2900 m/s potas-
sium atoms was significantly larger than the slope dφ/dλ
= 0.76 mrad/pm that we observed with a single pass of
the laser beam. This was true even though we had used
slower (1600 m/s) potassium atoms for the single pass
experiments. For a more direct comparison, because the
signal slope depends on v−2 we predict that a single-pass
experiment with 2900 m/s potassium atoms in our exper-
iment would have an even smaller slope of 0.23 mrad/pm.
This predicted single-pass slope is 8.2 times smaller than
the slope we observed with the MPC. This validates that
the MPC is serving its purpose. The data with the MPC
used for the tune-out wavelength measurement presented
here were obtained over nine days with an average signal
slope of 2.1 mrad/pm and an RMS distribution of 0.5
mrad/pm.
Our experiment also benefited from improved mechan-

ical stability associated with the MPC and with bringing
the laser into the atom interferometer vacuum chamber
via an optical fiber. Repeated measurements of λzero

demonstrated less scatter than we had in [2] by factor of
6. The MPC improved our statistical precision for λzero

measurements from 1.4 pm in [2] to 0.3 pm in the present
work. In each case we quote a 2σ statistical uncertainty
(where σ is the standard error of the mean [27]), and both
[2] and this measurement used approximately 30 hours of
data.
Another example of an optical cavity to enhance ir-

radiance on an atom interferometer was described by
Hamilton et al. [28] who used intra-cavity light to make
an atom interferometer. In comparison, we only used a
cavity as an interaction region. Yet, similar to Hamil-
ton et al., we benefit from increased light-atom interac-
tions intra-cavity. In principle, a resonant cavity with
curved mirrors can further increase irradiance and main-
tain smaller beam waists in a cavity mode, both factors
which would increase dφ/dλ. Resonant cavities can also
serve as a spectral filter, which can be both beneficial and
detrimental as we discuss in the “Tuning-Out Broadband
Light” section of this paper.

B. Choice of Atom Velocity

Experimentally, we found it more favorable to work
with velocities of 2500 m/s as compared to 1600 m/s.
So, here we discuss reasons why there may be an opti-
mum atom beam velocity for λzero measurements with
our apparatus. The velocity of the atoms has an ef-
fect on the signal to noise for two reasons. First, slower
atoms receive larger light-induced phase shifts because
the signal φ is proportional to v−2. This is because the
interaction time is proportional to 1/v, and the separa-
tion, s in Eq. (3), depends on the de Broglie wavelength
λdB = h/mv. However, slower atom beams also have
much lower atom count rates (N ∝ v3), and therefore
worse statistical precision (shot noise) in phase described

by δφ = (C
√
N)−1. Thus, the shot noise limited signal

to noise ratio is

SNR =
φ

δφ
∝ C√

v
(7)

This näıve estimate shows that higher signal to noise ra-
tios would be obtained with velocity as low as possible.
However, this assumed zero detector background noise
and zero drifts in the laser wavelength, laser power, laser
beam alignment, and atom fringe reference phase over
time.
If we consider a more realistic model with a flux-

independent background (average) atom count rate due
to detector noise, then we find there is an optimum atom
beam velocity. If the observed counts N = N0+B are the
sum of N0 detected atoms and B background counts, this
increases the fluctuations in counts and reduces contrast
so

C = C0

N0

N0 +B
(8)

where C0 is the contrast that would be observed if B=0.
Then

δφ =
1

C
√
N

=

√
N0 +B

C0N0

(9)

and

SNR =
φ

δφ
∝ v−2C0N0√

N0 +B
(10)

Now let N0 = kv3, where k = 100B/(3km/s)3 is typ-
ical. This means that the background B is about 1% of
the count rate that we observe with 3 km/s atom beams.
Then we find the velocity that maximizes SNR is

v =

(

2B

k

)1/3

= 814 m/s (11)

This model of signal to noise identifies a non-zero opti-
mum velocity. Additional phase noise due to drifts in
alignment will make the optimum velocity even higher.
This is because faster atoms provide higher flux, and this
enables us to operate experiments faster and thus con-
trol for drifts better. Hence, our selection of 2 to 3 km/s
atoms may be close to optimal.

C. Decoherence Spectroscopy

The MPC causes a set of Doppler shifts. As indicated
in Fig. 1 we do not have a simple crossed-beam exper-
iment. Instead there are many laser beams crossing at
different angles relative to the atom beam.
To measure the range of Doppler shifts in our multi-

pass cavity we developed decoherence spectroscopy [29].
This technique uses quantum decoherence due to photon
scattering to cause laser wavelength dependent contrast
loss.
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FIG. 3. (Color online) Decoherence spectroscopy data (red
solid circles) showing contrast vs laser wavelength. Theoret-
ical curves are shown in solid blue for no Doppler shift and
dashed blue for a −0.21 pm Doppler shift. The best fit model
indicates that a +0.21 pm shift should be added to our λzero

measurements due to Doppler shifts in the MPC [29].

For decoherence spectroscopy we used the same exper-
imental laser beam and atom beam geometry as we did
for λzero measurements, but the laser wavelength is tuned
near resonance (across the D2 line). The laser power is
also attenuated by several orders of magnitude to reduce
power broadening. Then, we monitor the atom interfer-
ence fringe contrast as a function of laser wavelength as
shown in Fig. 3.
A model decoherence spectrum shown as a dotted blue

line in Fig. 3 makes the best fit to the decoherence data.
The theory used for the fits to the data is explained in
[29]. The measured contrast spectrum is shifted by (-
0.21 ± 0.10) pm from the theoretical prediction. There-
fore, we apply a (+0.21 ± 0.10) pm correction to our
λzero measurement. This correction accounts for the net
Doppler shift in our experiment and for any systematic
errors of the Bristol 621B wavemeter that we use to mea-
sure the laser wavelength.

D. Tuning-Out Broadband Light

Broadband light from a tapered amplifier (TA) laser
can cause errors in λzero measurements. Therefore, we
measured the spectrum of broadband emission of our TA
and controlled it in order to minimize systematic errors
in λzero.
For more background, as discussed by Bolpasi and

von Klitzing [30], there are several categories of atomic
physics experiments for which broadband light causes
problems such as heating, decoherence, or background
signals. There are also some types of experiments such
as fluorescence spectroscopy and magneto optical trap-

ping that are not adversely affected by a small amount
of off-mode light. However, in experiments to measure
λzero, broadband light near a resonance can add signifi-
cant light-induced phase shifts.
To minimize broadband light we saturate the TA (Ea-

gleyard EYP-TPA-0765-02000) with 20 mW of light from
an external cavity diode laser (Eagleyard EYP-RWE-
0790-04000) after an optical isolator, and spatially fil-
ter the 1.2 W TA output by focusing it into a single
mode optical fiber (Thorlabs SM-600) after another op-
tical isolator. The fiber brings 200 mW of light into the
multi-pass cavity in vacuum.
To measure the broadband spectrum shown in Fig. 4,

we used a Photon Control model SPM-002-C grating
spectrometer in conjunction with a thin (1 mm) glass
étalon, which increases the effective dynamic range of the
spectrometer. A dark fringe and bright fringe are used
alternately to suppress or transmit the the monochro-
matic component of the laser. A dark fringe in reflection
from the étalon suppresses the monochromatic compo-
nent of the laser by a factor of 1000, whereas, the broad-
band light spectrum is spread over many étalon fringes.
Étalon fringes are not resolved in Fig. 4 since the 0.2 nm
(100 GHz) free spectral range of the étalon is five times
smaller than the 1 nm resolution of the grating spectrom-
eter. Thus, the power of the broadband light spectrum
is two times larger than what is measured and we make
a correction for this effect. Suppressing the monochro-
matic light increased the dynamic range of our spectrom-
eter system sufficiently for us to measure the broadband
spectrum when the TA was seeded. For comparison, the
unseeded TA light has about three times more power and
a 1 to 2 nm bluer broadband spectrum (not shown). We
observed the broadband spectrum shown in Fig. 4 using a
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FIG. 4. (Color online) Power spectrum output from our ta-
pered amplifier. The broadband spectrum (open blue circles)
was observed with 1000 times more acquisition time while
using a dark fringe from an étalon to suppress the monochro-
matic component of the spectrum, as described in this paper.
A spectrum with the monochromatic light tuned to a bright
fringe of the étalon is shown with a solid red circles.
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FIG. 5. (Color online) Error in λzero due to broadband light.
(a) Spectra of α(ω) and Pbroad vs. wavelength used in Eq. (14)
to calculate φBB. Two different Pbroad spectra indicate how
temperature-tuning the tapered amplifier laser adjusts the
peak wavelength λBB of the broadband light. Pbroad and
α(ω) are scaled in order to be viewed conveniently on the
same graph. (b) Resulting error (δλzero) as a function of the
broadband peak wavelength λBB.

500 ms acquisition time. We measured the relative power
in the monochromatic peak using a maximum in reflec-
tion from the étalon (a bright fringe) and reducing the
spectrometer acquisition time to 0.5 ms. The asymmet-
ric spectral peak reported for the monochromatic light
in Fig. 4 is due to the spectrometer’s response, as we
verified using a monochromatic HeNe laser.
Scanning the seed laser wavelength by 1 nm causes no

observed changes in the broadband spectrum of the laser.
This is important because to measure φ(λ) we scan the
wavelength of the seed laser on either side of λzero as
shown in Fig. 2. Also of note, the peak wavelength of
the broadband spectral component depends on the tem-
perature of the TA’s water-cooled mount. With this, we
can minimize shifts in φ(λ) caused by broadband light by
adjusting the TA temperature.
To model how broadband light affects our λzero mea-

surement, we write the TA output spectrum as a
monochromatic component plus a broadband compo-
nent:

Plaser(λ) = Pmono(λ) + Pbroad(λ). (12)

A delta-function spectrum describes the amplified
monochromatic laser light, Pmono(λ) = PMδ(λ − λM),
where PM is the power of the monochromatic component
and λM is the wavelength of the monochromatic compo-
nent. A Gaussian distribution describes the broadband

component, Pbroad(λ) = PBB(σBB

√
2π)−1 exp[−(λ −

λBB)
2/(2σ2

BB)], where PBB is the power of the broadband
component, λBB is the peak wavelength of the broadband
distribution, and σBB is the RMS width of the Gaussian
broadband distribution. This representation leads to a
two-component model of the phase shift

φtotal(λM) = φ(λM) + φBB (13)

where φ(λM) is given by Eq. (3) with ω = 2πc/λM, and
and the phase shift due to the broadband radiation from
the seeded TA is

φBB =
1

2ǫoch̄v

∫ ∫

s α(ω)
dIbroad(ω;x, y)

dx
dy dω (14)

with the spectrum of Ibroad(ω;x, y) found from the mea-
sured Pbroad(λ). Then the shift in measured λzero caused
by φBB is

δλzero = φBB

(

dφ

dλ

)

−1

. (15)

As shown in Fig. 5, the shift δλzero is an antisymmetric
function of λBB. Therefore we can tune the broadband
spectrum to make δλzero = 0.
If the spectral width of the broadband radiation is

larger than the fine structure splitting, σBB > ∆λFS,
then a peak wavelength λBB near

λBB,zero ≈ λD2 +
fD1

fD1 + fD2

∆λFS (16)

can null φBB and thus minimize error in λzero. This
λBB,zero is the peak wavelength for a broadband spec-
tral component that causes zero phase shift. So we call
λBB,zero the broadband tune-out wavelength. Here, the
fine structure splitting is denoted by ∆λFS ≡ λD1 −λD2,
and for K, ∆λFS = 3.4 nm. To derive Eq. (16) we ex-
press dynamic polarizability as a sum-over-states with
just the D1 and D2 excitations, we ignore αr in Eq. (17),
and we make the near-resonance approximation that
ω2
D1 − ω2 ≈ 2ω(ωD1 − ω). Hence λBB,zero is approxi-

mate, but it is significantly different than λzero. For al-
kali atoms with an oscillator strength ratio [see Eq. (2)]
of ρ ≈ 2 we find the broadband tune-out wavelength is
approximately λBB,zero = λD2 + (1/3)∆λFS, whereas the
tune-out wavelength for monochromatic light is approx-
imately λzero = λD2 + (2/3)∆λFS. For narrower broad-
band spectra (so the inequality σBB > λFS is no longer
satisfied) the peak wavelength that minimizes φBB will
shift from λBB,zero towards λzero.
We controlled λBBpeak by adjusting the temperature

of the tapered amplifier laser (to 14◦C) with the goal of
making λBB = λBB,zero. We used the spectrometer and
étalon system to measure λBB = 767.5(3) nm, and σBB =
5(1) nm, and PM/PBB = 370(40). With these data we
used Eqs. (14) and (15) to infer that broadband light
caused a systematic error of -0.08(8) pm for our tune-
out wavelength measurement. Therefore, we applied a
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correction of +0.08(8) pm before we present our final
result for λzero. This correction and the uncertainty in
this correction are smaller than the statistical precision
of our λzero measurement.

E. Minimizing Errors Due To Earth’s Rotation

In Trubko et al. [22], we reported large (±200 pm)
systematic shifts in measured tune-out wavelengths,
λzero,lab, due to the Earth’s rotation rate, ΩE , and ellipti-
cally polarized light. Such errors stem from balancing the
Coriolis force with atomic-spin-dependent forces that are
caused by light near a tune-out wavelength. In [22] we
demonstrated that λzero,lab is more sensitive to ΩE when
we use circularly polarized light, magnetic fields parallel
to the light propagation (along ẑ), and atom beams with
broad velocity distributions. For the new λzero measure-
ment reported here we reduced the sensitivity to ΩE by
using linearly polarized light, a transverse magnetic field
(along x̂), and a narrow atom beam velocity distribution.
To create those conditions in the lab we installed a po-
larizer immediately prior to the MPC inside the vacuum
system, we applied a 10 Gauss transverse magnetic field
with coils outside vacuum, and we used a 50 µm diame-
ter nozzle for the supersonic beam jet to obtain an RMS
velocity spread of σv = v0/16, where v0 = 2.9 km/s is
the most probable atomic velocity in the beam.
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FIG. 6. (Color online) λzero measurement as a function of op-
tical polarization and magnetic field orientation. Data with
circularly polarized laser light are from [22] and were taken
with v ≈ 1600 m/s atom beams. Data with linearly polar-
ized light were take with v ≈ 2900 m/s atom beams. Open
square red data show measurements with the laser beam on
the right side of the interferometer and solid circle blue data
show measurements on the left side.

To monitor systematic errors due to ΩE we measured
how the root λzero,lab depends on the sign of the irra-
diance gradient. Alternately illuminating the left and
right sides of the atom interferometer reverses the sign
of the atomic spin states (mF numbers) that participate
in phase echoes [22]. This changes the sign for the error

(λzero,lab − λzero). Fig. 6 summarizes how the difference

λright
zero,lab − λleft

zero,lab was reduced by using linearly polar-
ized light and the transverse magnetic field. We attribute
the remaining difference to smaller but still nonzero spin-
dependent forces that change with the irradiance gradi-
ent. Therefore, as suggested by Trubko et al. [22] we

report the average 1
2
(λright

zero,lab+λleft
zero,lab) for our measure-

ment of λzero, as shown in Fig. 7. We estimate an addi-

tional systematic uncertainty of (λright
zero,lab−λleft

zero,lab)/10 =
0.26 pm associated with this averaging procedure. This
uncertainty accounts for the fact that the magnitude and
uniformity of the irradiance gradient, and hence the size
of the systematic shift, can be slightly different when we
reverse the sign of the irradiance gradient by moving the
MPC from left to right.

I. RESULTS

Here we summerize the data acquisition, analysis, and
error budget. Data in Fig. 8 were acquired with light
chopped on or off in between every file. Each file index
(point) represents 5 seconds of data. The wavelength of
light was automatically switched every 125 seconds, and
the laser wavelength was measured with a Bristol Instru-
ments 621B wavemeter and recorded four times per sec-
ond. Files with laser wavelength changes greater than
0.1 pm were ignored. The light-off data were used to
remove the (∼6 rad/hr) phase drift. Twenty minutes of
data from a series of 220 files shown in Fig. 8(a) were
used to make φ(λ) spectra shown in Fig. 8(b). We ob-
tain a λzero measurement from this spectrum by finding
the root of a φ(λ) fit. The fitting procedure uses chi-

768.9715

768.9710

768.9705

768.9700

768.9695

768.9690

768.9685

λ z
er

o 
 (

nm
)

 right

 average

 left

FIG. 7. (Color online) Determination of λzero from the av-

erage of average 1
2
(λright

zero,lab + λleft
zero,lab). Only statistical error

bars of 2 times the standard error of the mean are shown.
Systematic corrections totaling 0.3 pm, and systematic uncer-
tainties totaling 0.3 pm are later added before a final result
is presented for λzero.
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squared minimization and a theoretical spectrum given
by Eq. (3), where φ (ω) is simplified to φ (ω) = bα (ω)
and α(ω) is shown in Eqs. (17) and (18). R and b are
the free parameters. This analysis is further described in
[2]. Ninety-one data sets similar to Fig. 8, some longer in
duration than others, representing over 30 hours of data
in total, were compiled on a total of 9 different days to
make 91 separate λzero measurements.

We compared results using the mean of all the data,
the trimmed mean using the central 80% of the data, the
weighted average using error bars that come from find-
ing roots of individual φ(λ) data sets, and the trimmed
weighted mean [27]. The results were all within 0.3 pm,
and the statistical uncertainty (SEM) using these differ-
ent methods ranged from 0.15 to 0.24 pm. For the final

result we used the trimmed weighted means for λright
zero,lab

and λleft
zero,lab shown in Fig. 6.

The error budget for this λzero measurement is pre-
sented in Table I. The statistical uncertainty in λzero

that we report, 0.3 pm, is twice the standard error of the
mean [27]. Table I also summarizes the three types of
systematic errors we discussed in the Sections on Deco-
herence Spectroscopy, Tuning-Out Broadband Light, and
Minimizing Errors Due To ΩE . These errors in turn are
related to Doppler shifts, broadband light, and optical
polarization. Table I summarizes the correction (if any)
and the uncertainty due to each source. Our final result
with corrections applied and statistical and systematic
uncertainties added in quadrature is λzero = 768.9701(4)
nm.

II. DISCUSSION

Several calculations of tune-out wavelengths [7–14, 16]
use the sum-over-states approach to calculate the dy-

TABLE I. Error budget for the λzero measurement. Statistical
and systematic uncertainties added in quadrature combine to
make the total uncertainty of 0.4 pm. Corrections due to
known systematic shifts are also shown. The left/right shift
refers to the error from the difference in λzero measurements
when the irradiance gradient is greater on either the left or
right arms of the atom interferometer, as shown in Figs. 6 and
7. The left/right shift depends on the optical polarization, the
magnetic field orientation, the earth’s rotation rate, and the
atom beam velocity distribution, as described in this paper
and in [22].

Source of error Correction (pm) Uncertainty (pm)

2 × Standard error - 0.29

of the mean

Doppler shift + 0.21 0.10

Broadband light + 0.08 0.08

Left/Right shift - 0.26

Total + 0.29 0.41

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

p
h
a
se

 (
ra

d
)

769.02769.00768.98768.96768.94

wavelength (nm)

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

p
h
a
se

 (
ra

d
)

200150100500

file index

(a)

(b)

FIG. 8. (Color online) (a) Phase data for the laser shining on
the right path of the interferometer. Each file contains five
seconds of data. Laser light from the tapered amplifier was
chopped on or off in between every file. Light-on data are
shown in solid red circles, light-off data are shown in open
black circles. After 24 files the seed laser wavelength was au-
tomatically changed. (b) Phase data from (a) versus laser
wavelength. Corrections for the net Doppler shift and broad-
band laser light have not been applied to the shown data in
(a) and (b).

namic polarizability α (ω), expressed in terms of reduced
dipole matrix elements 〈i‖D‖k〉 or oscillator strengths
fik. For K between the D1 and D2 lines,

α(ω) =
e2fD1

m (ω2
D1 − ω2)

+
e2fD2

m (ω2
D2 − ω2)

+ αr

=
ωD1

∣

∣

〈

4s1/2 ||D|| 4p1/2
〉∣

∣

2

3h̄ (ω2
D1 − ω2)

+
ωD2

∣

∣

〈

4s1/2 ||D|| 4p3/2
〉∣

∣

2

3h̄ (ω2
D2 − ω2)

+αr

(17)
where ωD1 and ωD2 are atomic resonance frequencies,
and αr = αtail + αcore + αvc includes residual contribu-
tions from all transitions except the principle D1 and
D2 transitions, contribution from core electrons, and the
contribution from valence-core coupling [12, 31–34]. The-
oretical values for αr have been calculated by several the-
orists including [12, 31, 35]. Using our λzero measurement
of 768.9701(4) nm and the theoretical αr(λzero) = 6.7009
a.u.[12], we report the ratio of D1 and D2 line strengths
for K as

R =
SD2

SD1

=
|〈4s‖D‖4p3/2〉|2
|〈4s‖D‖4p1/2〉|2

= 1.9977(11) (18)
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FIG. 9. (Color online) Comparison of measured and calcu-
lated values for the longest λzero for potassium. Calcula-
tions are shown in solid red circles. Calculations that as-
sume R = 2 or αr = 0 are shown with open red circles. The
result from lifetime measurements is shown with solid green
triangles. Measurements made with atom interferometery are
shown with solid blue squares.

and the ratio of oscillator strengths

ρ =
fD2

fD1

= R

(

ωD2

ωD1

)

= 2.0066(11) (19)

and the ratios of lifetimes

τ4p1/2

τ4p3/2

=
R

2

(

ωD2

ωD1

)3

= 1.01223(55). (20)

Independent measurements of state lifetimes by Volz et

al. [36] established the value R= 1.9989(74). Holmgren
et al. [2] found R = 2.0005(40) based on a tune-out wave-
length measurement. Now, with a more precise λzero

measurement we report R=1.9977(11). Our new result
has 6.7 has times smaller uncertainty for R than was
experimentally measured without tune-out wavelengths.
The uncertainty of 0.0011 for R reported here primarily
comes from uncertainty in the measured λzero. For com-
parison, a contribution of 0.0001 to the uncertainty in
R is due to a 5% uncertainty in αcore. Our experiments
with a multi-pass cavity have improved the statistical
precision in the λzero measurement by a factor of 6 com-
pared to [2]. However, due to the systematic shifts that
we have described, the experiment with a multi-pass cav-
ity has only improved the total uncertainty for R by a
factor of 3.6 as compared to [2].
If we combine this new measurement of λzero with our

recent measurement of static polarizability for potassium

of α(0) = 289.7(3) a.u. [37, 38] and the theoretical value
αr(0) = 6.26(33) a.u.[31], then we can report the val-
ues for individual oscillator strengths, dipole matrix ele-
ments, lifetimes, and line strengths with reduced uncer-
tainty. All of these physical quantities are related as de-
scribed in [38]. For lifetimes of the 4p1/2 and 4p3/2 states,
we report τ4p1/2

= 26.78(4) ns and τ4p3/2
= 26.46(4) ns.

As a comparison, Volz et al. report independent lifetimes
measurements τ4p1/2

= 26.79(7) ns and τ4p3/2
= 26.45(7)

ns [36]. These results are consistent, but ours offer
a smaller uncertainty. Other experiments by Wang et

al. and Falke et al. are sensitive to the average of life-
times, but not the difference (or ratio) of the the τ4p1/2

and τ4p1/2
lifetimes [39, 40].

Figure 9 compares calculations and measurements for
the longest tune-out wavelength for potassium. We show
experimental results in Fig. 9 from this work, from Holm-
gren et al. [2], and the λzero inferred from the independent
measurements of the 4p3/2 and 4p1/2 state lifetimes by
Volz et al. [36]. The only calculation with a published
uncertainty so far is by Arora et al. [7], who presented
λzero= 768.971 nm with a 3 pm uncertainty based on
many body perturbation theory (MBPT) calculations.
Relativistic configuration interaction with core polariza-
tion (RCICP) calculations by Jiang et al. [12] showed
λzero = 768.97077 nm. We also used results for dipole
matrix elements from Johnson et al. [41, 42], which were
already discussed in the context of R by [43], in order to
infer λzero using Eq. (17).

Along with the theoretical results [7, 9, 41, 42] we plot
shifted λzero values that show how the value of λzero from
Aurora et al. would change if we assume a value of zero
for αr in Eq. (17). Setting αr = 0 decreases λzero by only
0.2 pm [12]. Then we show a shifted prediction for λzero

that we produced using Eq. (17) and the hypothesis that
R = 2 (but still using the measured values for λD1 and
λD2). Setting R = 2 increases λzero by 0.4 pm.

Historical discussions of the oscillator strength ratio
anomaly problem [33, 46–58] explain why R and ρ devi-
ate from the statistical value of 2 that would be näıvely
expected from the statistical degeneracies of the 4p3/2
and 4p1/2 states. Both relativistic effects and core po-
larization effects are important, as pointed out by Fermi
in 1930 [59] and discussed extensively by Migdalek [46–
48, 60–64]. Figure 10 shows theoretical predictions and
experimental measurements for R and ρ for Na, K, Rb,
and Cs. This shows that R < 2 and ρ > 2 are trends that
get more pronounced for heavier atoms. With the λzero

measurement presented in this work, we have shown that
R < 2 with 2σ significance and ρ > 2 with 5σ significance
for K atoms, where σ here refers to the total uncertainty
in our λzero measurement summarized in Table I. To our
knowledge, the λzero measurement presented here consti-
tutes the first significant demonstration of the oscillator
strength ratio anomaly for potassium.

To conclude, λzero measurements have stimulated cre-
ative experimental work in several laboratories, such as
synchronized pulsing of light on atoms in a TOP trap
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