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Given a preferred orthonormal basis B in the Hilbert space of a quantum system we define a measure of the
coherence generating power of a unitary operation with respect to B. This measure is the average coherence
generated by the operation acting on a uniform ensemble of incoherent states. We give its explicit analytical form
in any dimension and provide an operational protocol to directly detect it. We characterize the set of unitaries
with maximal coherence generating power and study the properties of our measure when the unitary is drawn at
random from the Haar distribution. For large state-space dimension a random unitary has, with overwhelming
probability, nearly maximal coherence generating power with respect to any basis. Finally, extensions to general
unital quantum operations and the relation to the concept of asymmetry are discussed.

I. INTRODUCTION

One of the most fundamental attributes of quantum dynam-
ical systems is their ability to exist in linear superpositions of
different physical states. In fact any pure quantum state can be
regarded, in infinitely many different ways, as a linear super-
position of a basis of distinguishable quantum states. The ex-
perimental signature of such a superposition structure (in the
given basis) is known as quantum coherence [1]. The latter is
also known as one the basic ingredients for quantum informa-
tion processing [2] and its protection e.g., by decoherence-free
subspaces [3–5], is one of the fundamental challenges in the
field.

Over the last few years we have witnessed a strong renewal
of interest in the quantitative theory of coherence [6, 7]. This
is partly practically motivated by the role that quantum co-
herence plays in quantum metrological protocols (see e.g.,
discussion in [8]) and, on a more conceptual ground, by its
relation to the general resource theory of asymmetry [9–11].
Quantum coherence is also believed to play a role in some
fundamental biological process [12–14] as well as in quan-
tum thermodynamics [15, 16]. The general idea is that one
can quantify quantum coherence by introducing a real-valued
function over the quantum state-space, a coherence measure,
such that it vanishes for all the states that are deemed to be in-
coherent and cannot increase under some class of operations
that preserve incoherence [17]. Even if a preferred basis is
chosen, the choice of the coherence measure is not unique
and different options have been discussed in the literature
[6, 8, 18, 19].

In this paper we address a closely related problem, which
was first tackled in [20]: the quantification of the power of a
quantum operation to generate coherence. Again, even when
an underlying coherence measure is assumed, the definition
of the coherence generating power (CGP) of a Completely
Positive (CP)-map is not unique and different lines of attack
are possible [20–22] (see Sect IV C of [7] for a comprehensive
list of references). All of these approaches, however, are cast
in terms of an optimization problem that is extremely hard to
handle for generic channels in arbitrary dimensions.

Following the spirit of Ref. [23] in entanglement theory, we
shall here pursue a different strategy based on probabilistic
averages. We define the CGP of a map as the average coher-

ence that is generated when the corresponding quantum opera-
tion is performed over a suitable input ensemble of incoherent
states. We shall here firstly focus on unitary maps and intro-
duce a definition of CGP based on a uniform ensemble (see
below for a precise definition) of incoherent states.

Our measure of CGP is analytically computable for arbi-
trary unitary map in any dimension. It also enjoys several nat-
ural and desirable properties e.g., invariance under pre- and
post-processing by incoherent unitaries. We shall present a
simple operational protocol for the direct detection of the CGP
of a given map which does not involve the ensemble gener-
ation or quantum process tomography [24, 25]. The set of
unitary operations with maximal CGP is easily characterized
and some universal statistical properties of our measure over
the group of unitaries can be established rigorously. We will
also provide some numerical study of the distribution of CGP
in various dimensions d (for d = 2 analytical form is avail-
able). Finally, extensions of CGP to arbitrary unital operations
are discussed as well as the connection to the broader concept
of asymmetry generating power of a map. The proofs of the
Propositions can be found in the Appendix.

II. PRELIMINARIES

Let B = {|i〉}di=1 be an orthonormal basis in the Hilbert
space H ∼= Cd. Given B one has the associated B-dephasing
map overL(H) given byX 7→ DB(X) =

∑d
i=1 |i〉〈i| 〈i|X|i〉
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Figure 1. Protocol for the direct detection of the Coherence Gen-
erating Power (CGP) Eq. (2) of the unitary CP map U based on
Eq. (7). Here DB is the dephasing super-operator for the preferred
basis B, the measurement of the swap operator is denoted by S and
|Φ+〉 := d−1/2 ∑d

i=1 |i〉
⊗2.
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Figure 2. Probability distribution densities (PDD) of the normalized
C̃B(U) for d = 2, . . . , 5. An ensemble of Haar-distributed U ’s has
been generated numerically. For d = 2 the analytical form of the
PDD is PCGP (c) = 1

2
(1− c)−1/2 (see H).

[26]. The dephasing map DB can be realized physically as
the measurement CP map associated to any non degenerate
observable H diagonal in the basis B. For any B, the de-
phasing map is an orthogonal projection over L(H) equipped
with the standard Hilbert-Schmidt scalar product 〈X, Y 〉 :=
tr(X†Y ). We will denote byQB := 1I−DB the complemen-
tary projection of DB . Naturally, one defines B-incoherent
operators (states) as operators (states) that are diagonal in the
preferred basis B.

Definition 1.– The set of B-incoherent operators is the
range of the B-dephasing map, i.e., ImDB . We will denote
the set of B-incoherent states ρ (ρ ≥ 0, tr ρ = 1) by IB .

From the point of view of this definition one can say that
DB (QB) projects an operator onto its incoherent (coherent)
component. The set IB is clearly isomorphic to a (d − 1)-
dimensional simplex spanned by convex combinations of the
|i〉〈i|, i = 1, . . . , d. CP maps (all such maps are assumed
to be trace preserving in this paper) T mapping IB into itself
will play a distinguished role in this paper. A necessary and
sufficient condition for the invariance of IB under T is given
by T DB = DBT DB [8]. However, in this paper we will
adopt a slightly stronger invariance condition.

Definition 2.– A CP map T on L(H) will be called B-
incoherent iff [T , DB ] = 0. We will write T ∈ CPB .

Note that B-incoherent maps leave both the subspace of
B-incoherent operators and its orthogonal complement (∼=
KerDB = ImQB) invariant. Let us first establish the fol-
lowing, almost obvious, fact.

Proposition 1.– A unitary CP map U(X) = UXU† (with
U unitary) is B-incoherent iff U |i〉 = ηi|σU (i)〉 where σU
is a (U -dependent) permutation of {1, . . . , d} and the ηi’s are
U(1)-phases. B-incoherent unitary maps form a subgroup of
CPB .

III. MEASURES OF COHERENCE GENERATING POWER

Loosely speaking a coherence measure is a way to quan-
tify how far a given state is from being incoherent, moreover
this quantification is requested to fulfill some natural proper-
ties. More precisely, let us consider the function c̃B(ρ) :=
‖ρ−DB(ρ)‖1 = ‖QB(ρ)‖1 (‖X‖1 denotes the 1-norm of X ,
i.e. the sum of the singular values of X); this is vanishing iff

ρ is B-incoherent. Moreover if T ∈ CPB then c̃B(T (ρ)) =
‖QBT (ρ)‖1 = ‖T QB(ρ)‖1 ≤ ‖QB(ρ)‖1 = c̃B(ρ), where
we have used Definition 2 and the monotonicity of the 1-norm
under general CP maps. These remarks show that c̃B is a
good coherence measure with respect to B-incoherent oper-
ations [8]. Unfortunately the 1-norm is hard to handle, there-
fore in this paper we will adopt the Hilbert-Schmidt 2-norm
‖X‖2 =

√
〈X, X〉. We define the function

cB(ρ) := ‖QB(ρ)‖22. (1)

Again, it is immediate to see that cB vanishes iff ρ ∈ IB
and c̃B(ρ) ≤

√
d cB(ρ). On the other hand it is now not

true that cB is necessarily non-increasing under general B-
incoherent CP maps (as the 2-norm does not have that prop-
erty either). However if T is unital i.e., T (1I) = 1I, then
‖T (X)‖2 ≤ ‖X‖2 [27]. Thereby the desired monotonicity
property is recovered if one restricts to the set of unital B-
incoherent CP maps.

Let us now introduce the main novel concept of this paper.
Definition 3.– The coherence generating power (CGP)

CB(U) of a unitary CP map X 7→ U(X) := UXU†, (U ∈
U(H)) with respect the basis B is defined as

CB(U) := 〈cB(Uoff (|ψ〉〈ψ|))〉ψ (2)

where Uoff := QBUDB and the average over ψ is taken ac-
cording to the Haar measure.

The operational idea behind our definition (2) of CGP is
simple: the power of a unitary U to generate coherence (in a
preferred basis B) is given by the average coherence, as mea-
sured by the function (1), obtained byU acting over an ensem-
ble of incoherent states. The latter is prepared by a stochas-
tic process that involves first the generation of (Haar) random
quantum states, and then their B-dephasing e.g., by perform-
ing a non-selective measurement of any non-degenerate B-
diagonal observable. Note that the ensemble so generated co-
incides with the uniform one over the simplex IB (see B). Of
course other definitions are possible. For example, besides the
freedom of choosing a coherence measure different from (1),
one might have resorted to a different ensemble ofB-diagonal
states or even replace the average by a supremum over the en-
semble [20–22]. However, our choice, thanks to the high sym-
metry of the Haar measure, will allow us to establish proper-
ties of CGP on general grounds as well as to compute it in
an explicit analytic fashion. The most basic properties of the
CGP can be derived directly from Eq. (2).

Proposition 2.– a) CB(U) ≥ 0 and CB(U) = 0 iff
U ∈ CPB . b) If W is a unitary such that W ∈ CPB then
CB(UW ) = CB(WU) = CB(U). c) Let {|̃i〉 := V |i〉}di=1

be a new basis B̃ := BV obtained from B by the (right) ac-
tion of the unitary V then: CBV (U) = CB(V †UV ).

Part b) shows that CGP does not change if the ensemble
is pre- or post-processed by incoherent unitaries. Moreover,
Part c) shows that computing the CGP for a single given ba-
sis B0 is in principle sufficient for obtaining it for any basis B
(for, given any pair of bases, there is always a unitary connect-
ing them). It also implies, as we will see, that the statistical
properties of the CGP over the unitary group are universal in
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Figure 3. Probability distribution density (PDD) of the normalized
C̃B(U) for d = 40. A Gaussian fit is superimposed on the numeri-
cally generated PDD to highlight the central-limit type behavior.

the sense of being basis independent: just the Hilbert space
dimension d matters.

It is important to stress that Prop. 2 holds for a more gen-
eral choice of cB than Eq. (1) e.g., for c̃B [28]. The choice
of the Hilbert-Schmidt norm in the definition of CGP, on
the other hand, while imposing the somewhat severe unital-
ity constraint, has the great advantage of allowing one for an
explicit computation of CB(U).

Proposition 3.– Let |Φ+〉 = 1/
√
d
∑d
i=1 |i〉⊗ 2 be the max-

imally entangled d× d singlet, then: a)

CB(U) =
1

d+ 1
[1− tr (SωB(U))] , (3)

where ωB(U) := (DBUDB)⊗ 2(|Φ+〉〈Φ+|) and S =∑d
i,j=1 |ij〉〈ji| is the swap operator over H⊗2; b)

tr (SωB(U)) = 1/d
∑d
i,j=1 |〈i|U |j〉|4; c) CB(U) ≤

1−1/d
d+1 =: Cd. The upper bound is saturated iff |〈i|U |j〉|2 =

1/d (∀i, j).
Part c) of Prop. 3 above shows the fact that for U to

be a unitary with maximal CGP the base B and the base
BU := {U |i〉}di=1 have to be mutually unbiased [29,
30]. For example the unitary U such that 〈h|U |m〉 =

1/
√
d exp(i 2πd hm), (h,m = 1, . . . , d) has maximal CGP.

We also remark that from a) and b) above it follows easily
that CB(U) = CB(U†).

Eq. (3) naturally leads to an operational protocol for the
detection of the CGP of a unitaryU which does not require the
generation of a Haar distributed ensemble of states or quantum
process tomography [24, 25].

Protocol for CGP detection: 1) Prepare |Φ+〉; 2) B-
dephase both subsystems; 3) Apply U to both subsystems; 4)
B-dephase again both subsystems; 5) Measure the expectation
value of the observable S (see e.g., [31]); 6) Plug the obtained
value in Eq. (3). This protocol is depicted in Fig. (1). Since

D⊗ 2
B (|Φ+〉〈Φ+|) =

1

d

d∑
i=1

|i〉〈i|⊗ 2 =: ρB , (4)

steps 1) and 2) above can be replaced by 1’) Prepare the maxi-
mally classicallyB-correlated state ρB (for which it is enough
to B-dephase one subsystem). This shows that entanglement
is not really needed in the detection of CB(U). However, in
5) one is required to measure S which involves non-trivial in-
teractions between the two d-dimensional subsystems. This is
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Figure 4. Coherence generating power for convex combinations
of unitaries of the form E(·) =

∑3
k=1 pkUk · Uk

†. The simplex∑
k pk = 1 is represented as an equilateral triangle with one vertex

on the origin. The (dimensionless) coordinates are x = p2 + p3/2
and y = (

√
3/2)p3. One always has the convexity inequality

C̃B(E) ≤
∑3
k=1 pkC̃B(Uk) as noted in the main text. (a) Here

d = 3 and we fixed Uk such that C̃B(U1) = 1, C̃B(U2) = 1/2

and C̃B(U3) = 0. (b) For this example (d = 10) U1 is the Discrete
Fourier Transform matrix 〈l|U1|m〉 = d−1/2 exp (ilm2π/d) while
U2 (U3) is obtained by interchanging the first (last) 2 rows of U1. All
Uk have maximal CGP (simplex vertices) but the CGP of mixtures
can drop significantly. (c) This is a typical case for randomly cho-
sen unitaries Uk of large dimension (here d = 40). One observes
that C̃B(Uk) is nearly maximal consistently with the concentration
phenomenon.

the experimentally more challenging part of the protocol. No-
tice, however, that for two-qubits, this amounts to a standard
Bell’s basis measurement.

IV. CGP AS A RANDOM VARIABLE OVER THE UNITARY
GROUP

We now investigate some of the properties of the CGP of
Eq. (3) seen as a random variable over the unitary groupU(H)
equipped with the Haar measure dµ(U).

Proposition 4.– a) The probability distribution density
PCGP (c) :=

∫
U(H)

dµ(U) δ(c−CB(U)) for the CGP Eq. (3)
is independent of B. b) The first moment is given by

〈CB(U)〉U =

∫
dc cPCGP (c) =

d− 1

(d+ 1)2
. (5)

c) Let us define the normalized CGP C̃B(U) :=

CB(U)/Cd ≤ 1 then 〈C̃B(U)〉U = (1 + 1/d)−1. Using
Levy’s lemma for unitaries [32] one obtains

Prob
(
C̃B(U) ≥ 1− 2/d1/3

)
≥ 1− exp

(
−d1/3/256

)
.

(6)
Eq. (6) shows that in high-dimension a random unitary will

have, with overwhelming probability, nearly maximal CGP.
In Fig. 2 are reported numerical simulations of the probability
distribution function of C̃B(U) for Haar distributed U in dif-
ferent dimensions. In particular numerics shows that the vari-
ance of C̃B(U) is O(1/d3) (see 5). Moreover, Fig. 3 shows
that for large Hilbert space dimension d a central-limit type
behavior emerges and the PCGP can be well approximated by
a normal distribution.
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Figure 5. This log-log plot shows the numerically computed vari-
ance of the random variable C̃B(U) (where U is distributed accord-
ing to the Haar measure) for different values of the dimension d of
the Hilbert space. A power-lawA/dα least square fitting (taking into
account only the points d = 6, 10, 20, 40) gives α = 3.01, suggest-
ing that the variance of C̃B(U) is O(1/d3).

V. BEYOND UNITARITY AND FINITE DIMENSIONS

In this section we will briefly discuss how our approach ex-
tends to CP maps that are not necessarily unitary and how one
might extend our formalism to infinite dimensions e.g., opti-
cal modes. Since we still would like to employ the Hilbert-
Schmidt norm we will focus here on unital maps. We can
still adopt Eq. (1) for the definition of a coherence measure.
Moreover, incoherent (according to Def. 2) E will not increase
it. We can now define the CGP of E by the same Eq. (2)
(with E replacing U). It is still true that CB(E) = 0 ⇔
Eoff := QBEDB = 0 but this is now a weaker property
than incoherence as it does not imply [E , DB ] = 0. The
corresponding measure of CGP is therefore not faithful i.e.,
CB(E) = 0 ⇒ E ∈ CPB doesn’t hold (just the converse
does) [33]. The following proposition shows how Prop. 3 gen-
eralizes to unital maps more general than unitaries.

Proposition 5– Let E(·) =
∑
k Ak · A

†
k, (
∑
k A
†
kAk = 1I)

be a unital CP-map over L(H). If we define its CGP by Eq. (2)
(replacing U with E) then it follows that a) CB(E) ≥ 0 and
it vanishes if E is B-incoherent. b) If T is B-incoherent then
CB(T E) ≤ CB(E). c)

CB(E) =
1

d+ 1
[tr (Sω̃B(E))− tr (SωB(E))] ≤ Cd, (7)

where ωB(E) := (DBE)⊗ 2(ρB) and ω̃B(E) := E⊗ 2(ρB). d)
CB(E) = [d(d+ 1)]−1

∑d
i,l 6=m=1 |

∑
k(Ak)li(Ak)∗mi|2

Property b) in Prop. 5 is the analog of Eq. (3) and can be
similarly interpreted by an operational protocol involving the
measurement of S over the states ωB(T ) and ω̃B(T ). Point
d) above gives the CGP explicitly as a function of the matrix
elements of the Kraus operators of E ; it corresponds to b) in
Prop. 3. We also note that the function E 7→ CB(E) is convex
(since it is a convex combination of the convex functions E 7→
cB(Eoff (|ψ〉〈ψ|))∀|ψ〉). It follows that the maximum CGP
of a convex set of maps will be achieved over extremal points.
This phenomenon can be seen in the in Fig. 4.

Remarkably, Eq. (7) seems to suggest a natural way in

which our results can be extended to infinite dimensions. Let
us consider, for simplicity, the unitary case and normalize
Eq. (3) by dividing by Cd. Now sending d → ∞ the d-
dependent pre-factor of CGP disappears and one is led to con-
sider the expression C̃

(∞)
B (U) = 1 − tr (Sω

(∞)
B (U)) with

ω
(∞)
B (U) = (DBU)⊗ 2(ρ

(∞)
B ) where ρ(∞)

B is some infinite-
dimensional generalization of the maximally classically B-
correlated state Eq. (4). For example, for any λ ∈ (0, 1),

one could choose ρ(∞)
B := (1 − λ2)

∑∞
i=0 λ

2i|i〉〈i|⊗ 2 [34].
With this choice it is immediate to check that C̃(∞)

B (U) = 0
iff U is incoherent and that post-processing with incoherent
unitaries leaves the CGP invariant [35]. Developments in the
infinite-dimensional case will be presented elsewhere [36].

VI. ASYMMETRY

Closely related to the theory of coherence is the notion
of asymmetry [9–11]. Given an observable H one says that
a state ρ (a CP map E) is H-symmetric (H-covariant) iff
[H, ρ] =: H(ρ) = 0 ([H, E ] = 0). An asymmetry measure
is a real valued function aH(ρ) that vanishes over symmet-
ric states and is non-increasing under covariant CP maps i.e.,
aH(E(ρ)) ≤ aH(ρ) [11]. Following the main idea of this pa-
per one could define the asymmetry generating power (AGP)
of a CP map E by AH(E) := 〈aH(E(ω))〉ω where the average
is performed over a suitable ensemble of H-symmetric states
ω.

In order to directly connect Asymmetry Generating Power
(AGP) and and CGP we assume from here on that the Hamil-
tonian H is non degenerate and that B = {|i〉}di=1 is the as-
sociated basis of eigenvectors. In this case the notion of H-
symmetric state and the one ofB-incoherent collapse. It is in-
deed immediate to see that H(ρ) =: [H, ρ] = 0⇔ DB(ρ) =
ρ (in the degenerate case incoherence implies symmetry). At
the CP map level, however, one has just that H-covariance
impliesB-incoherence but not the converse. For example uni-
taries in Prop. 1 realizing a non-trivial permutation of B are
incoherent but not covariant. As a consequence the set of co-
herence measures is smaller than the set of asymmetry mea-
sures [8, 37]. We introduce the following notion of AGP for
unital maps E

AH(E) = 〈‖HEDB(|ψ〉〈ψ|)‖22〉ψ (8)

where once again the average is taken with respect to the Haar
measure. As the CGP Eq. (7) in the main text (see comment
after Prop. 5) also the AGP Eq. (8) is a convex function of
its argument. Furthermore, if H =

∑d
i=1 εi |i〉〈i|, δ(H) :=

minl 6=m |εl − εm| > 0 (non-degeneracy) and ‖H‖ :=
maxl 6=m |εl − εm|, then the AGP (8) fulfills the following
properties:

Proposition 6.– a) AH(E) = 0 for all incoherent maps E .
In particular all H-covariant maps have vanishing AGP. b)
if T is a unital H-covariant map AH(T E) ≤ AH(E). For
unitary H-covariant T the inequality becomes an equality. c)
AH(E) = [d(d + 1)]−1

∑
i,l 6=m(εl − εm)2|〈l|E(|i〉〈i|)|m〉|2.

d) δ2(H)CB(E) ≤ AH(E) ≤ ‖H‖2CB(E). e) If E(·) = U ·
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U† and the unitary U ’s are Haar distributed then the induced
distribution ofAH(U) depends just on the gap spectrum {εl−
εm}l 6=m.

Proof.– a) Follows from HDB = 0 and EDB = DBEDB
which holds for incoherent maps. b) Use [T , DB ] = 0 for H-
covariant maps and the non-increasing property of the Hilbert-
Schmidt norm under unital maps. c) Following the same
steps in the proof of a) in Prop. 3 one arrives at AH(E) =

[d(d + 1)]−1
∑d
i=1 ‖HE(|i〉〈i|)‖22. Expanding the norms in

this equation and using H(|l〉〈m|) = (εl − εm)|l〉〈m|) one
completes the proof. d) From c) using δ(H) ≤ |εl − εm| ≤
‖H‖, (∀l,m). e) If the Hamiltonian eigenbasis is changed by
|i〉 7→ W |i〉 (W unitary) then from the result in c) one sees
that E 7→ W†EW (W(·) = W · W †). If E(·) = U · U†
the last equation implies U 7→ W †UW . The proof can
be now completed following the same reasoning of point c)
in the proof of Prop. 2 and observing that H enters now,
having modded the basis away, just through the differences
εl − εm (l 6= m = 1, . . . d). �

VII. CONCLUSIONS

In this paper we have discussed a way to quantify the coher-
ence generating power (CGP) of a quantum operation. As a
coherence measure we have conveniently adopted the Hilbert-
Schmidt norm of the coherent part of a quantum state. Our ap-
proach is to look at the average coherence produced when the
operation is performed over a uniform ensemble of input in-

coherent states. The input ensemble is obtained by dephasing,
with respect to the chosen basis, an ensemble of pure states
distributed according to the Haar measure.

Under these assumptions one obtains an analytically com-
putable measure of CGP for arbitrary unital operations in any
dimension. Operational protocols for the direct detection of
CGP have been described. Neither the ability to generate the
Haar distributed input ensemble nor quantum process tomog-
raphy are required. We focused on unitary maps, character-
ized those with maximal CGP, and studied the distribution of
this measure over the unitary group, both analytically and nu-
merically. For unitary maps this distribution is universal (basis
independent) and for large Hilbert space dimension a central-
limit type phenomenon emerges. A random unitary has, with
overwhelming probability, nearly maximal CGP. Finally, we
extended our approach to quantify the power of an operation
to generate a more general type of asymmetry.

The analytical framework here established is particularly
suited for unital quantum maps. Going beyond unitality, fi-
nite dimensionality, and extending to general resource theo-
ries represent challenging tasks for future investigations.
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Appendix A: Proof of Proposition 1

This condition is clearly a sufficient for B-incoherence as
commutativity of U and DB can be explicitly checked in a
straightforward fashion. It is also necessary. Indeed if U is
B-incoherent then U(|i〉〈i|) must be B-diagonal for all i; be-
cause of unitarity, it also must be a one-dimensional projector
whence U(|i〉〈i|) has necessarily the form |j〉〈j|where |j〉 is a
uniquely defined element j =: σU (i) of B. The only degrees
of freedom of U left are then U(1)-phases. The last statement
of the proposition is evident. �

Appendix B: Equivalence of ensembles

Here we show that the ensemble constructed in the main
text coincides in fact with the uniform distribution over the
simplex spanned by the states |i〉〈i|, i = 1, . . . , d. For any
(measurable) function f the expectation value over the en-
semble is given by 〈f(DB(|ψ〉〈ψ|)〉ψ . Calling ψi = 〈i|ψ〉

and pi = |〈i|ψ〉|2 we can write it as

〈f(DB(|ψ〉〈ψ|)〉ψ = M

∫
dψ1 · · ·

∫
dψd×

× f(p1, . . . , pd)δ(1−
d∑
i=1

pi) (B1)

where M is a normalization constant and dψi =
dRe(ψi) dIm(ψi). Switching to polar coordinates one has
dψi = ridri dϑi = dpi dϑi/2. Performing the integration
over the angles ϑi we obtain

〈f(DB(|ψ〉〈ψ|)〉ψ = M ′
∫
dp1 · · ·

∫
dpd×

× f(p1, . . . , pd)δ(1−
d∑
i=1

pi) , (B2)

that is, the uniform measure over the simplex (M ′ is another
normalization constant).

Appendix C: Proof of Proposition 2

a) By definition the CGP is non-negative, moreover
CB(U) = 0 implies Uoff (|ψ〉〈ψ|) = 0,∀|ψ〉, which in turn
implies that Uoff = UDB − DBUDB = 0. This equa-
tion, as remarked in the above, shows that ImDB is invari-
ant under U but, since U is normal, also the orthogonal com-
plement KerDB is invariant. It follows that [UB , DB ] = 0
that is what we wanted to prove. b) CB(WU) = CB(U)
(CB(UW ) = CB(U)) follows from the commutativity of
W and QB (DB) and the unitary invariance of the Hilbert-
Schmidt norm (Haar measure). c) By definition of B̃ = BV
one finds DB̃ = VDBV†, (V(·) = V · V †) inserting this rela-
tion in Eq. (2) in the main text and using again unitary invari-
ance of the Hilbert-Schmidt norm and of the Haar measure
one completes the proof. �

Appendix D: Lemma

If S is the swap operator over H⊗ 2 (S =∑d
i,j=1 |ij〉〈ji|, H = span{|i〉}di=1) then: a) ‖X‖22 =

tr (SX ⊗X) ; b) 〈|ψ〉〈ψ|⊗ 2〉ψ = [d(d + 1)]−1(1I + S)
where the average is taken over Haar distributed ψ in H, (see
e.g., [38]).

Appendix E: Proof of Proposition 3

a) Using the Lemma and Definition 3 one can immedi-
ately write CB(U) = [d(d + 1)]−1tr

[
S U⊗ 2

off (1I + S)
]
.

The first term in this expression is vanishing; indeed
U⊗ 2
off (1I) = Q⊗ 2

B (1I) = 0 (the identity is a diagonal
operator for any B). Using the fact that ∀Y one has

http://www.pnas.org/content/46/4/570
http://dx.doi.org/10.1088/0305-4470/26/13/005
http://dx.doi.org/ 10.1103/PhysRevLett.88.217901
http://dx.doi.org/ 10.1103/PhysRevLett.88.217901
https://arxiv.org/abs/1612.08139
https://arxiv.org/abs/1612.08139
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1103/PhysRevA.93.052331
http://dx.doi.org/10.1016/S0370-1573(02)00266-1
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tr
[
SQ⊗ 2

B Y
]

= tr
[
S(1I−D⊗ 2

B )Y
]

the second term can be

written as tr
[
S U⊗ 2

off (S)
]

= tr
[
S (1I−D⊗ 2

B )(UDB)⊗ 2(S)
]

Moreover, D⊗ 2
B (S) =

∑d
i=1 |i〉〈i|⊗ 2 =: dρB therefore

the first term in the last equation can be now written
as (d + 1)−1tr

(
SU⊗ 2(ρB))

)
= (d + 1)−1. The last

equality follows from the fact that U⊗ 2(ρB) is entirely
supported in the eigenvalue one subspace of S (sym-
metric subspace). Observing now that is also true that
D⊗ 2
B (S) = dD⊗ 2

B (|Φ+〉〈Φ+|) completes the proof of part a).
Let us now move to part b). One has tr

(
S(DBU⊗ 2)(ρB)

)
=

1/d
∑d
i=1 tr

(
S(DBU)⊗ 2(|i〉〈i|⊗ 2)

)
=

1/d
∑d
i=1 ‖(DBU(|i〉〈i|)‖22. But DBU(|i〉〈i|) =∑d

j=1 |〈i|U |j〉|2|j〉〈j|. Bringing together the last two
equations completes the Proof of part b). Now part c). From
the above one sees that dtr (SωB(U)) is the sum of d purities
‖DBU(|i〉〈i|)‖22, (i = 1, . . . , d). Therefore the minimum
of this quantity occurs when they are all their minimum i.e.,
1/d. Adding over i one finds 〈S〉ωB(U) ≥ 1/d from which
the desired upper bound c) follows, This bound is achieved iff
DBU(|i〉〈i|) = 1I/d, (∀i). This, in turn, from the expression
a few lines above, implies |〈i|U |j〉|2 = 1/d. Notice that this
conclusion can be also derived directly from the formula c).
�

Appendix F: Proof of Proposition 4

a) Given a fixed basis B0 and any other base B one has that
there exists a V ∈ U(H) such that B = B0V (see com-
ment after Prop. 2 in the main text). Therefore PB(c) =
PB0V (c)dc =

∫
dµ(U) δ(c − CB0V (U)) =

∫
dµ(U) δ(c −

CB0
(V †UV )) =

∫
dµ(U) δ(c − CB0

(V †UV )) =∫
dµ(VWV †) δ(c− CB0

(W )) = PB0
(c)dc. Where we have

used c) of Prop. 2 and the unitary invariance of the Haar
measure i.e., dµ(VWV †) = dµ(V ). b) Let us consider the
terms |〈i|U |j〉|4 from part b) of Prop. 3 and perform average
with respect a Haar distributed U . Denoting by |ψ〉 = U |j〉
this amounts to average with respect |ψ〉 the following quan-
tity (〈i|ψ〉〈ψ|i〉)2 = tr

(
|i〉〈i|⊗ 2|ψ〉〈ψ|⊗ 2

)
. Using now the

Lemma one finds 〈|〈i|U |j〉|4〉U = 〈|〈i|ψ〉|4〉ψ = [d(d +
1)]−1tr

(
|i〉〈i|⊗ 2(1I + S)

)
= 2[d(d + 1)]−1. Adding over

i and j and using Eq. (3) in the main text one obtains Eq. (5).
c) Here we need a version of the Levy Lemma formulated for
Haar distributed d × d unitaries: Prob{X(U) − 〈X(U)〉U ≥
ε} ≤ exp

[
− dε2

4K2

]
where K is a Lipschitz constant of

X : U(d) 7→ R i.e., |X(U) − X(V )| ≤ K‖U − V ‖2 [32].
Let us set X(U) := 1 − C̃B(U) then X(U) − 〈X(U)〉U =

1 − C̃B(U) − 1/(d + 1) from which Prob{C̃B(U) ≤ 1 −

ε − 1/d} ≤ exp(−dε2/(4K2)). If we now set ε = d−α with
α ∈ (0, 1/2) we get

Prob{C̃B(U) ≤ 1− 2/dα} ≤ exp(−d1−2α/(4K2)).

To complete the proof we have to estimate the Lips-
chitz constant K. For this, from Eq. (3), and the def-
initions above, is clearly enough to consider the function
f(U) = 1/d

∑d
i=1 tr

(
S(D⊗ 2

B (|iU 〉〈iU |⊗ 2)
)

=: 1 − d/(d −
1)C̃B(U) where |iU 〉 := U |i〉. Let us consider each of
the d terms, called fi(U), separately: |fi(U) − fi(V )| ≤
|tr
(
SD⊗ 2

B (|iU 〉〈iU |⊗ 2 − |iV 〉〈iV |⊗ 2)
)
| ≤ ‖|iU 〉〈iU |⊗ 2 −

|iV 〉〈iV |⊗ 2‖1, where we have used tr(AB) ≤ ‖A‖∞‖B‖1,
‖S‖∞ = 1 and, since B-dephasing is a CP map,
‖D⊗ 2

B (X)‖1 ≤ ‖X‖1. Now, the last trace-norm distance
can be upper bounded by twice the Hilbert space distance
‖|iU 〉⊗ 2−|iV 〉⊗ 2‖ ≤ ‖U⊗ 2−V ⊗ 2‖∞ = ‖1−(U†V )⊗ 2‖∞.
if ∆ := U−V andK := U†∆ has U†V = 1−K and then the
last norm becomes ‖1− (1−K)⊗ 2‖∞ = ‖K⊗1I + 1I⊗K+
K⊗K‖∞ ≤ ‖K‖∞(2 +‖K‖∞) ≤ 4‖K‖ ≤ 4‖U −V ‖∞ ≤
4‖U − V ‖2 where we have used standard operator norm in-
equalities. Bringing all together ‖f(U)−f(V )‖ ≤ 8‖U−V ‖2
showing that one can take K = 8. Setting α = 1/3 and con-
sidering he complementary inequality one obtains Eq. (6) in
the main text. �

Appendix G: Proof of Proposition 5

Proceed exactly as in the unitary case. The only difference
is that, for general E the state E⊗ 2(ρB) = ω̃B is not entirely
supported in the eigenvalue one eigenspace of S. �

Appendix H: PDD for CGP in d = 2

Using Eq. (3) for a SU(2) matrix one findsCB(U) = 1
3 (1−

|a|4 − |b|4), where a = 〈0|U |0〉 = 〈1|U |1〉∗, b = 〈1|U |0〉 =
−〈0|U |1〉∗. Since |a|2+|b|2 = 1 one can use the Bloch sphere
parametrization |a| = cos(θ/2), |b| = sin(θ/2) from which it
follows C̃B(U) = CB(U)/Cd=2 = sin2(θ). The distribution
density of c = C̃B(U) ∈ [0, 1] is given by

PCGP (c) =
1

4π

∫ 2π

0

dφ

∫ π

0

d(cos θ)δ(c− sin2 θ)

=
1

2

∫ 1

−1
dx δ(c− 1 + x2) =

1

2
√

1− c
,

where we have used
∫
dx δ(f(x)) =∑

x0 : f(x0)=0 |f ′(x0)|−1.
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