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The one-body density matrix (OBDM) and the momentum distribution of quantum many-body
systems are usually very difficult to calculate. Here we develop a technique to calculate the OBDM
and the momentum distribution of a general one dimensional (1D) spinor quantum gas in the strong
interaction regime. This technique relies on a remarkable connection between the OBDM of the
spinor gas and that of a spinless 1D hard-core anyon gas, which allows us to efficiently calculate the
OBDM of the spinor system with particle numbers much larger than what was previously possible.
Given the OBDM, we can easily calculate the momentum distribution of the spinor system, which is
also related to the momentum distribution of the hard-core anyon gas. Our study not only provides
a practical method for the calculation of the OBDM, but also provides significant new insights into
the properties of 1D strongly interacting spinor quantum gases.
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I. INTRODUCTION

One dimensional (1D) quantum many-body systems
possess many remarkable properties and have fascinated
theorists for many decades [1]. With the advent of cold
atoms, we now have a experimentally realizable 1D sys-
tem amenable to exquisite control [2]. Recently, physics
of a 1D spinor quantum gas in the strong interaction
regime has been studied by using a strong coupling ansatz
wave function [3–6], according to which, the many-body
wave function of the system [7, 8] can be mapped to a
direct product of a spatial wave function described by a
spinless fermion and a spin wave function governed by
an effective spin-chain Hamiltonian first proposed in [5].
Over the past couple of years, there have been numerous
works on this spin-chain model for strongly interacting
pure spinor quantum gases [9–15] or Bose-Fermi mixtures
[16–18], from ground state properties to dynamics. A re-
cent experiment investigated a few-body spin-1/2 Fermi
gas in the strongly interacting regime [19].

It is well known that, even with the knowledge of the
many-body wave function, the calculation of correlation
functions and momentum distribution of any quantum
many-body system is in general extremely difficult and
poses a tremendous challenge. This difficulty stems from
the intrinsic complexity of the many-body wave function.
The goal of the current paper is to propose a very effi-
cient method of calculating the one-body density matrix
and the momentum distribution of a strongly interacting
1D spinor gas by exploiting a remarkable connection be-
tween the OBDM of such a spinor gas and the OBDM
of a spinless hard-core anyon gas. With this method, we
can readily calculate the momentum distribution of a 1D
quantum gases up to a few hundred particles, which is
an order of magnitude larger than what was previously
possible. Furthermore, this method also provides signifi-
cant new insights into the 1D strongly interacting regime.
For example, we show that the momentum distribution

of a single impurity moving in a background of strongly
interacting spinless bosons, which was measured in a re-
cent experiment [20], mimics that of a hard-core spinless
anyon with a time-dependent statistical parameter.

II. ONE-BODY DENSITY MATRIX

Consider a spinor quantum gas with N atoms. The
explicit form for a strong coupling ansatz wave function
with a single spatial wave function ϕ (often referred to
as the charge state in literature, which describes the par-
ticles distribution in position space) can be written as

Ψ(x1, ..., xN ;σ1, ..., σN ) =
∑
P

(±1)PP (ϕθ1χ) , (1)

where xi and σi denote the spatial and spin coordinates,
respectively; ±1 are for bosonic and fermionic gases, re-
spectively; P are permutation operators acting on both
the spatial and the spin coordinates; ϕ(x1, ..., xN ) is a
spinless fermion wave function, θ1 is the generalized step
function which restricts the system to the spatial sector
x1 < x2 < ... < xN ; and finally, χ(σ1, ..., σN ) is a spin
wave function for an N sites spin chain system governed
by the spin-chain Hamiltonian which takes the following
form:

Hsc = −
N−1∑
j=1

Cj
1± Ej,j+1

g
, (2)

where the coupling coefficients Cj depend only on charge
state ϕ, and Ej,j+1 is the spin exchange operator that
exchanges two neighboring spins [6]; g characterizes the
interaction strength. For a system with spin-independent
interaction, g is a single number; in general, g can also
be an operator that has different values in different spin
channels. The wave function represented by Eq. (1) can
be understood as having N fermions with distribution
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probability amplitude given by ϕ, and with each fermion
attached with a spin, which may be regarded as the con-
tinuum version of a slave fermion state. The correspond-

ing one-body density matrix (OBDM) associated with
the many-body wave function Ψ is defined as

ρ(x′, x;σ′, σ) =
∑

σ1,...,σN−1

∫
dx1...dxN−1 Ψ∗(x1, ..., xN−1, x

′;σ1, ..., σN−1, σ
′)Ψ(x1, ..., xN−1, x;σ1, ..., σN−1, σ) . (3)

Substituting Eq. (1) into Eq. (3), we have

ρ(x′, x;σ′, σ) =
∑

σ1···σN−1

∫
dx1 · · · dxN−1ϕ

′∗ϕ
∑
P ′P

θ′P
′
θP ⊗ (P ′χ′†)(Pχ) , (4)

where we have used the short-hand notation ϕ′ = ϕ(x1, ..., xN−1, x
′), ϕ = ϕ(x1, ..., xN−1, x), χ′ = χ(σ1, ..., σN−1, σ

′),
and χ = χ(σ1, ..., σN−1, σ). To evaluate the above equation, we need to order x′ and x with respect to x1, . . . , xN−1.
For example, assuming x′ < x, we can take x′ ∈ (xm−1, xm) and x ∈ (xn−1, xn) with m ≤ n, and denote this ordering
configuration as Γm,n, in which

Γm,n : x1 < ... < xm−1 < x′ < xm < ... < xn−1 < x < xn < ... < xN−1 . (5)

Once the ordering of x′ and x are fixed, all permutations
on 1 · · ·N − 1 will lead to the same integral value, be-
cause these kind of permutations does not change either
θ′P
′
θP or (P ′χ′†)(Pχ) . According to this observation,

the OBDM (4) can be written as [6, 21]

ρ(x′, x;σ′, σ) =

N∑
m,n=1

ρm,n(x′, x)Sm,n(σ′, σ) . (6)

Equation (6) takes a kind of “spin-charge” separated
form: The spatial part

ρm,n(x′, x) =(−1)n−mN !

∫
Γm,n

dx1...dxN−1

· ϕ∗(x1, ..., xN−1, x
′)ϕ(x1, ..., xN−1, x) ,

(7)

depends only on the charge state ϕ. The information on
the spin degrees of freedom is carried by the spin corre-
lation function

Sm,n(σ′, σ) = (±1)m−n 〈χ|Sσ
′,σ

m (m...n)|χ〉 , (8)

(again, ±1 for bosonic and fermionic gases, respectively)

where Sσ
′,σ

m is a local SU(N) generator (Sσ
′,σ |σ〉 = |σ′〉)

on site m, and (m...n) is a loop permutation operator
that permutes m → m + 1,m + 1 → m + 2, ..., n − 1 →
n, n → m. In the above, we have assumed that m ≤ n.
The case with m ≥ n can be obtained using the identity
ρm,n(x′, x) = ρn,m(x, x′) and Sm,n(σ′, σ) = Sn,m(σ, σ′).

The difficulty of evaluating the OBDM lies in the fact
that Eq. (7) involves an (N − 1)-dimensional integral.
With sophisticated numerical techniques, one may be
able to carry out such an integral up to ∼ N = 20 [21].
Here we develop a new method to evaluate ρm,n(x′, x),
which relies on its discrete Fourier transform given by:

ρm,n(x′, x) = N−2
∑
κ,κ′

ρκ
′,κ(x′, x) eiπκ

′m e−iπκn , (9)

where κ and κ′ take a discrete set of values 2k/N with
N consecutive integers k, and

ρκ
′,κ(x′, x) = N

∫
dx1...dxN−1

N−1∏
j=1

Aκ
′∗(xj − x′)Aκ(xj − x)ϕ∗(x1...xN−1, x

′)ϕ(x1...xN−1, x) , (10)

where Aκ(xi−xj) ≡ eiπ(1−κ)θ(xi−xj), with θ(x) being the
Heaviside step function. Remarkably,

Ψκ(x1, ..., xN ) =

∏
i<j

Aκ(xj − xi)

 ϕ(x1, ..., xN ) , (11)

is the wave function of N hard-core spinless anyons [22,
23] with statistical parameter κ (we use the convention
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in Ref. [24–26]), whose OBDM, ρκ(x′, x) ≡ ρκ,κ(x′, x), is
given exactly by Eq. (10) with κ′ = κ. The case with κ =
0 and 1 correspond to the hard-core spinless bosons and
the ideal spinless fermions, respectively. By defining a
similar Fourier transform for the spin correlation function

Sκ
′,κ = N−2

N∑
m,n=1

Sm,ne
iπκ′me−iπκn ,

we can rewrite Eq. (6), the OBDM of a strongly inter-
acting spinor quantum gas, as

ρ(x′, x;σ′, σ) =
∑
κ′,κ

ρκ
′,κ(x′, x)Sκ

′,κ(σ′, σ) . (12)

There has been an extensive study of the properties of 1D
hard-core spinless anyon gases [22–35] (and the references
therein). In particular, their OBDM and momentum dis-
tributions have been calculated. We can take advantage
of these results to evaluate Eq. (12) in a very efficient way.
In the following, we present two examples, one concerns
a homogeneous system with translational invariance and
the other a harmonically trapped system. And for both
of these two cases, we consider ϕ as the ground state
slater determinant.

III. TRANSLATIONAL INVARIANT SYSTEM

For a translational invariant system with length L
(periodic boundary condition is assumed), the OBDM
ρ(x′, x;σ′, σ) depends only on y ≡ x − x′, and Eqs. (6)
and (12) are reduced to

ρ(x′, x;σ′, σ) =

N−1∑
r=0

ρr(y)Sr(σ
′, σ)

=
∑
κ

ρκ(y)Sκ(σ′, σ) , (13)

where r in the first line is understood as n−m, so from
Eq. (8) we have Sr(σ

′, σ) = (±1)r 〈χ|Sσ′,σm (m...m+ r)|χ〉
which is independent of m, and in the second line Sκ =

N−1
∑N−1
r=0 Sre

−iπκr only depends on spin. To ensure
the boundary condition, we need to impose the selec-
tion rule (1...N)χ = (∓1)N−1χ on the spin state χ with
∓1 for bosonic and fermionic gases, respectively. After
Fourier transform with respect to y, the corresponding
momentum distribution for the spinor quantum gas can
be obtained as

ρσ(p) =
∑
κ

ρκ(p)Sκ(σ, σ) , (14)

where ρκ(p) is the momentum distribution for the hard-
core anyon system. Note that ρκ and Sκ are periodic in
κ with period 2. Hence we may restrict κ in the range
[−1, 1].

The OBDM for the homogeneous hard-core anyon gas,
ρκ(y), has an analytic expression in the form of the
Toeplitz determinant [24–26]. Its momentum distribu-
tion, ρκ(p), is investigated in Ref. [26]. It is shown that
ρκ(p) is peaked at p = κ~kF , where kF = Nπ/L is the
Fermi momentum, for κ ∈ (−1, 1). Whereas for κ = ±1,
the system becomes an ideal spinless Fermi gas whose
momentum distribution is characterized by the Fermi sea.
Examples of ρκ(p) for N = 201 are shown in Fig. 2(c).

To find the OBDM and the momentum distribution of
a spinor gas, all we need to do is to calculate the spin cor-
relation functions Sr(σ

′, σ) or Sκ(σ′, σ) and plug it into
Eqs. (13) and (14). For 1D system, Matrix Product State
(MPS) is a representation that efficiently captures the bi-
partite entanglement, and many powerful methods based
on this representation such as Density Matrix Renor-
malization Group (DMRG) and Time-Evolving Block
Decimation (TEBD) have been developed to calculate
the ground state and the time evolution. We calculate
the ground state Sr(σ

′, σ) using the infinite system size
TEBD (iTEBD) method [37, 38]. We first calculate the
A, B tensors (two sites in one unit cell), which are build-
ing blocks in Matrix Product States(MPS), using iTEBD.
Note that Sr(σ

′, σ) is the correlation function contain-
ing a loop permutation operator (m...m + r), so we use
the tensor contraction geometry schematically shown in
Fig. 1 to calculate Sr(σ

′, σ), and then take the Fourier
transform to obtain Sκ(σ′, σ).

A A

�

�0

m m+1 m+2
BB

B* B*A* …

…

…

A

A*B*

B

B*

m+r m+r+1m-1

……

FIG. 1: The tensor contraction geometry for calculating
Sr(σ

′, σ) for an even r case. A and B tensors, which are
building blocks in MPS (two sites in a unit cell), are calcu-
lated using the iTEBD method. Note that for a finite periodic
boundary condition system, we also need to contract the re-
maining tensors outside the correlation range m to m + r.
Starting from the mth site with either A tensor or B tensor
gives the same result.

As examples, we consider a spin-1/2 and a spin-1 Fermi
gases with spin-independent interaction with N = 201.
The corresponding spin-chain models in the strong in-
teraction limit are the SU(2) and the SU(3) Sutherland
models, respectively [36]. The spin correlation functions
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Sr =
∑
σ Sr(σ, σ) and Sκ =

∑
σ S

κ(σ, σ) are plotted in
Fig. 2(a) and (b), respectively. The total momentum
distribution functions ρ(p) =

∑
σ ρσ(p) for the spinor

gas are shown in Fig. 2(d). The spinor quantum gas
in strongly repulsive regime has been studied within the
context of spin-incoherent Luttinger liquid [39], and the
ground state momentum distribution for SU(2) case has
been studied in Ref. [40–42], the result in Fig. 2(d) can
be compared with Fig. 3 in Ref. [40] which is for a lattice
system and for up to 32 sites with a quarter filling (note
that their definition of kF differs from ours by a factor of
2). Here we want to mention that a sophisticated method
developed in Ref. [42] can be used to efficiently calculate
ρ(p) for homogeneous spin-1/2 fermions, but our method
is more flexible and much more general as it deals with
bosonic or fermionic systems with arbitrary spin.
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FIG. 2: (color online) Spin correlation function and momen-
tum distribution of translational invariant system. (a) Sr
calculated by iTEBD for an infinite chain. (b) Sκ obtained
by Fourier transform of Sr with r up to 10000. (c) Momen-
tum distribution of hard-core anyon gas ρκ(p) for N=201. (d)
Momentum distribution (summed over all spin components)
of the spinor gases for N=201 particles. Note that in Eq. (14),
ρκ(p) and Sκ are not generally real valued as in (b)(c), but
we can rearrange ρr(y) and Sr to make them real [43].

IV. TRAPPED SYSTEM

For trapped systems, the OBDM is calculated using
Eq. (12), where ρκ

′,κ(x′, x) is defined with Eq. (10). Un-
like in the homogeneous system, we now need both the
diagonal elements with κ = κ′ and the off-diagonal ele-
ments with κ 6= κ′, the latter of which can be regarded
as a straightforward generalization of the OBDM of a
spinless anyon gas. For the case that ϕ is a slater deter-
minant composed of single particle wave functions φj(x)
with j = 1, 2, ..., N simply being labels, which means we

can separate the coordinate x as

ϕ(x1, ..., xN−1, x)

=
1√
N !

∑
P

(−1)PP (φ1(x1)φ2(x2)...φN−1(xN−1)φN (x))

=
1√
N !

N∑
n=1

(−1)N−nφn(x)det
[
φ
x1,...,xN−1

1,...,n−1,n+1,...,N

]
,

(15)

similarly for ϕ∗(x1, ..., xN−1, x
′). We need to substi-

tute them into Eq. (10). First combine the fully sym-

metric direct product function
∏N−1
j=1 Aκ(xj − x) with

det
[
φ
x1,...,xN−1

1,...,n−1,n+1,...,N

]
to form a new determinant

N−1∏
j=1

Aκ(xj − x)det
[
φ
x1,...,xN−1

1,...,n−1,n+1,...,N

]
=det

[
(Aκ(x) ◦ φ)

x1,...,xN−1

1,...,n−1,n+1,...,N

]
,

(16)

where Aκ(x) ◦ φ means using Aκ(t − x)φk(t) as basis of
the slater determinant. Next using the identity∫

dx1...dxN−1det
[
(Aκ

′∗(x′) ◦ φ)
x1,...xN−1

1,...,m−1,m+1,...,N

]
· det

[
(Aκ(x) ◦ φ)

x1,...xN−1

1,...,n−1,n+1,...,N

]
=(N − 1)! det

[
Φ̂(m,n)

]
,

(17)

which can be easily proved, where (m,n) stands for mi-
nor, which is the determinant of a matrix after deleting
its mth row and nth column, and the matrix Φ̂ depends
on κ′, κ, x′, x, with its elements given by

Φ̂κ
′,κ
k,l (x′, x) =

∫ ∞
−∞

dtAκ
′∗(t− x′)Aκ(t− x)φ∗k(t)φl(t) ,

(18)
where φk,l are single-particle wave functions and k, l =
1, 2, ..., N . Finally putting Eqs. (15) ∼ (17) together,
Eq. (10) can be written into a form with only minors of
a determinant:

ρκ
′,κ(x′, x) =

∑
m,n

(−1)m−nφ∗m(x′)φn(x)det
[
Φ̂(m,n)

]
.

(19)
The expression Eq. (19) is much simpler than the previ-
ous formulas for OBDM as reported in Ref. [21], which
rely on the calculation of Taylor coefficients of matrix de-
terminants using sophisticated methods [3, 8, 14, 15, 21].

A. Harmonically Trapped System

For the most experimentally relevant harmonically
trapped systems, an even simpler form of the OBDM
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can be obtained as follows. Note that wave function ϕ of
a harmonically trapped spinless fermion can be written
into a Vandermonde determinant form:

ϕ(x1, ..., xN ) =
1√
N !

det
[
φx1,...,xN

0,1,...,N−1

]
=C

1/2
N

N∏
j=1

e−x
2
j/2

∏
1≤j<k≤N

(xj − xk) ,

(20)

where φx1,...,xN

0,1,...,N−1 means the slater determinant uses sin-

gle particle harmonic oscillator wave functions φk(x)(k =

0, 1, ..., N − 1) as basis. And

CN =
2N(N−1)/2

πN/2
[∏N

n=1 n!
] (21)

is a normalization constant. This leads to

ϕ(x1, ..., xN−1, x) = C
1/2
N e−x

2/2
N−1∏
j=1

(xj − x)

N−1∏
j=1

e−x
2
j/2

∏
1≤j<k≤N−1

(xj − xk) , (22)

which after substituting into Eq. (10), and using the N − 1 version of Eq. (20), we have

ρκ
′
,κ(x′, x) = NCNe

− x′2+x2

2

∫
dx1...dxN−1

N−1∏
j=1

Aκ
′∗(xj − x′)(xj − x′)Aκ(xj − x)(xj − x)

N−1∏
j=1

e−x
2
j

∏
1≤j<k≤N−1

(xj − xk)2

=
NCNe

− x′2+x2

2

CN−1(N − 1)!

∫
dx1...dxN−1

N−1∏
j=1

Aκ
′∗(xj − x′)(xj − x′)Aκ(xj − x)(xj − x)

(
det
[
φ
x1,...,xN−1

0,1,...,N−2)
])2

.

Now by using a similar procedure as in arbitrary trapping
potential case that leads to Eq. (19), we can combine the

product of
∏N−1
j=1 Aκ

′∗(xj−x′)(xj−x′)Aκ(xj−x)(xj−x)
into the square of a determinant to form a square of a new
determinant, and then carry out the (N−1)-dimensional
integral. Finally we arrive at the following:

ρκ
′,κ(x′, x) =

e−(x′2+x2)/2

π1/2
det
(
B̂
)
, (23)

where the elements of the matrix B̂ are

B̂κ
′,κ
k,l (x′, x) = 2/

√
(k + 1)(l + 1)

×
∫ ∞
−∞

dtAκ
′∗(t− x′)Aκ(t− x)(t− x′)(t− x)φ∗k(t)φl(t),

(24)

where φk,l are single particle eigen wave functions of har-
monic oscillator, and k, l = 0, 1, ..., N − 2.

The OBDM of a hamonically trapped hard-core spin-
less anyon gas ρκ(x′, x) = ρκ,κ(x′, x) have been investi-
gated previously [32, 33] (for hard-core spinless Bose gas,
see Ref. [34, 35]).

B. Impurity in a Tonks-Girardeau Gas

As a concrete example, we consider a recent exper-
iment [20] where Bloch oscillation of a single impurity

atom moving in the background of a strongly interact-
ing spinless Bose gas (i.e., the Tonks-Girardeau gas) is
observed. Here, we explain this phenomenon using the
strong coupling ansatz with the spin-chain model theory,
which is a different perspective from previous theoretical
studies [44–47].

We model the system as a spin-1/2 Bose gas with
atomic mass m, confined in a harmonic trap with trap-
ping potential ω, with one spin-↓ atom as the impurity
and (N − 1) spin-↑ atoms as the background. Strong re-
pulsive interaction exists between the background atoms,
and also between the background and the impurity
atoms. In this strong interaction regime, we can write
down a spin-chain model. However, for this particular
system with one single impurity, we can model the dy-
namics of the impurity atom as if it hops on an effective
lattice under the influence of a constant force F . It can be
easily proved that the Hilbert space of this one atom hop-
ping model and that of the spin-chain model governed by
Hamiltonian (2) with one spin impurity are equivalent.
The Hamiltonian of the one atom hopping model takes
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the following form (setting ~ = m = ω = 1)

Hsc =− π√
2Nγi

N−1∑
j=1

Cj

[
c†jcj+1 + h.c.

]

+

[
1

π

√
2N

]3

F
N−1∑
j=1

Djnj ,

(25)

where γi = mgi/~2n1D is the dimensionless interaction

constant, with n1D =
√

2N/π the density at trap cen-
ter, and gi the contact interaction strength between the
impurity and the background atoms [48]. Hsc is a single-

atom Hamiltonian. c†j and cj are creation and annihi-

lation operators for this single atom, and nj = c†jcj are

local density operators. The first line of (25) represents
the kinetic term and the second line the force term. The
coupling coefficients Cj can be calculated using a special
local density approximation method [49]. The force on
the impurity is modeled as a magnetic gradient and rep-
resented by the second line in (25) where F = mF/~2n3

1D
and Dj = Cj−1 − Cj (assuming C0 = CN = 0) [8].

We take the initial spin state to be the ground state
of Hamiltonian (25) in the absence of the force term,
which subsequently evolves in time under the full Hamil-
tonian (25). With the instantaneous spin state obtained
by solving the Schrödinger equation [50], and using the
method outlined above, we can calculate the momentum
distribution of the impurity spin which we plot on the
left panel of Fig. 3. The initial momentum distribution
is peaked at p = 0 as expected. This peak moves to-
wards the Fermi point ~kF as the impurity is under the
influence of the force. When the peak reaches ~kF , it dis-
appears and re-emerges at the other Fermi point −~kF .
Thus the impurity atom carries out the Bloch oscillation.
Our calculation agrees qualitatively with the experiment
of Ref. [20].

Another interesting aspect of this experiment is that
the measured momentum distribution of the impurity
atom is approximately the momentum distribution of a
hard-core anyon gas with a time-dependent statistical
parameter κ. To see this, let us ignore the trapping
potential, which is not essential for the Bloch oscilla-
tion dynamics, and assume that the system is homoge-
neous for simplicity. In this case, the initial spin state
has exactly zero momentum with Sκ = δκ,0/N . If γi is
sufficiently large, we may ignore the hopping term, i.e.,
the first line of Hamiltonian (25). Under this approxi-
mation, the spin correlation function evolves simply as
Sκ(t) = δκ,Ft/~kF /N . According to Eq. (14), the mo-
mentum distribution of the impurity atom at time t is
thus given by

ρ(p, t) =
1

N
ρFt/~kF (p) ,

which is exactly the momentum distribution of a hard-
core anyon gas with a time-dependent statistical param-
eter κ = Ft/~kF . On the right panel of Fig. 3, we re-
plotted the momentum distribution of the impurity atom

obtained above at several different times (solid lines), and
compared them with the momentum distribution of a ho-
mogeneous hard-core anyon gas with its density given by
n1D, particle number N , and κ = Ft/~kF (dash-dotted
lines). Good qualitative agreement can be seen. The
main difference is that the distribution of the trapped
impurity atom has a rounded peak, which can be mainly
attributed to the effect of the trapping potential.

FIG. 3: (color online) Left panel: evolution of the mo-
mentum distribution of the impurity atom. Here we take
N = 60, γi = 12, and F = 1. tF = ~/EF = 1/N , and

kF = n1Dπ =
√

2N is the Fermi momentum. All quanti-
ties are expressed in the dimensionless unit system defined by
~ = m = ω = 1. Right panel: the solid lines replot the mo-
mentum distribution of the impurity atom from the left panel
at four different times; the dash-dotted line is the momentum
distribution of a homogeneous hard-core anyon gas, ρκ(p)/N ,
with statistical parameter κ = Ft/~kF . The anyon gas con-
sists N particles confined in a region with length L (periodic
boundary condition is assumed) such that its density is given
by N/L = n1D.

V. CONCLUSION

In conclusion, we have shown that the OBDM of a 1D
strongly interacting spinor quantum gas and that of the
spinless hard-core anyons are related to each other by
a Fourier transform. This allows us to write down the
OBDM of a strongly interacting spinor gas in a simple
form as represented by Eq. (12), which is valid for sys-
tems with arbitrary spin and arbitrary trapping poten-
tials. For certain special cases, such as homogeneous or
harmonically trapped systems, the OBDM of the anyon
gas possess closed forms, which allows us to efficiently
calculate the OBDM of a spinor gas with much larger
particle numbers than what was previously possible. The
OBDM is essentially a nonlocal correlation function, with
which one can easily calculate the momentum distribu-
tion of the system, as illustrated in this work. Momen-
tum distributions of cold atoms are routinely measured
in experiment. They provide crucial information about
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the quantum states of the system. Our work therefore
not only provides a powerful method to calculate these
quantities very efficiently, but will also shed new light
onto 1D quantum many-body systems in the strong in-
teraction limit.
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