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Abstract

We have directly detected millimeter wave (mm-wave) free-space superradiant emission from

Rydberg states (principal quantum number n ∼ 30) of barium atoms in single-shot experiments.

We trigger the cooperative effects with a weak initial pulse and detect the time-dependent amplitude

and phase of the emitted radiation with single-shot sensitivity and 20 ps time resolution. This allows

measurement and shot-by-shot analysis of the statistical distribution of decay rates, time-delays,

and time-dependent frequency shifts. Cooperative line shifts and decay rates are observed that

exceed the 250 kHz Doppler width by a factor of 20 and the 50 Hz spontaneous emission rate by

a factor of 105.

∗ rwfield@mit.edu
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I. INTRODUCTION

The interaction of light and matter in dense atomic samples is one of the most funda-

mental problems in atomic physics. In particular, superradiance, the collective, coherent

emission from an ensemble of electric dipoles, has been a topic of interest in quantum optics

since the original description of the phenomenon by Dicke.[1] Any description of superradi-

ance requires consideration of a combination of quantum electrodynamics, many-body the-

ory, and non-linear optics to fully describe the phenomenon in the richness of its details.[2]

Aside from studies of the collective Lamb shift in single-photon superradiance,[3–7] little

attention beyond a mean field model has been directed at the time-dependent behavior of

the frequency of the emitted field.[8, 9] The presently observed behavior contains potential

insights into the many-body physics involved and has implications for applications of super-

radiance to quantum technologies, such as electric field sensing,[10] quantum information

storage,[11–14] and narrow linewidth lasers.[15–18]

Transitions between Rydberg states are unique in that they can have both long wave-

lengths and extremely large electric dipole transition moments. This makes them uniquely

well suited for the observation of collective effects at relatively low atom number densities

(ρ ∼ 106 cm−3). For Rydberg states with n ∼ 30, ∆n = 1 transitions lie at ∼300 GHz

(λ ∼ 1 mm) and have transition moments on the order of 500 debye.[19] As a result, in-

vestigations of cooperative effects in Rydberg states can sample much higher optical depths

(OD = ρλ2L ≈ 106, where L is the characteristic length of the sample) than Bose-Einstein

condensates or ensembles of atoms trapped in a magneto-optical trap.[20, 21]

In previous studies, the total number of atoms in a single Rydberg state has been too

small to permit direct, free-space detection of the emitted electromagnetic field in a single

shot. Typical studies of collective effects in ensembles of atoms in Rydberg states have

primarily relied on state-selective field ionization detection in order to infer indirectly that

superradiance has occurred.[22–25] However, direct detection of the emitted electric field

was achieved in cavity-based maser experiments in the 1980s. But those experiments were

sensitive only to the intensity of the emission, not to any frequency effects due to the

constraints by the cavity.[26, 27] Free Induction Decay (FID) detected experiments have

been able to detect superradiance as the leading source of homogeneous broadening[28, 29]

and directly observe superradiance while averaging away shot-to-shot fluctuations.[30]
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Recent improvements in mm-wave technology [28, 29, 31–33] and atomic beam sources

[30, 34, 35] have enabled direct observation of free space superradiance in a single shot. In

this paper, we report direct, frequency-resolved, heterodyne detection of the time-dependent

emitted oscillating electric field that arises from superradiance in a sample of barium atoms

initially prepared in a single, laser-populated initial Rydberg state. Similar to single-atom

or single-molecule spectroscopy, single-shot detection of the emitted field preserves the fre-

quency domain effects generated by shot-to-shot variations in a sample of 100% initially-

oriented dipoles. We observe cooperative line shifts of the emission frequency thousands of

times larger than the natural decay width. Additionally, the sensitivity of the experiment

allows us to observe the evolution of the sample from initial superradiant emission into

long-lived, coherent, cooperative emission.

II. THEORETICAL BACKGROUND

As first considered by Dicke [1], a collection of N coherently prepared two-level systems

with physical separation much smaller than a wavelength can be described as a single spin

S = N/2 system. The evolution of this system is described classically by a vector evolving

on the Bloch sphere analogous to a classical damped pendulum [2]. If the system is inverted,

it remains stationary until the first spontaneous emission event occurs or an on-resonance

oscillating electric field (potentially from a blackbody emitter) is encountered. This first

event tilts the Bloch vector by an angle θi from the z-axis (see Fig. 1b) and initiates

evolution according to the equations:[2]

dθ

dt
=

sin(θ(t))

2TR

(1a)

N̄(t) =
Nu −Nl

2
=

N

2
cos (θ(t)) (1b)

θ(t = 0) = θi (1c)

where θ is the angle between the Bloch vector and the z-axis, N̄ is half the difference

in population between the upper (Nu) and lower (Nl) states, and TR is the characteristic

superradiance time given by[36]
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TR =
8π

ρλ2LA21

(2)

where A21 is the Einstein A coefficient for the transition. The corresponding radiated field

amplitude is:

I(t) = −h̄ω0

dN̄

dt
=

h̄ω0N

2TR

sech2

[

1

2TR

(t + TD)

]

(3)

where TD is the characteristic delay time given by TD = −2TR log(θi/2) and h̄ω0 is the

energy difference between the two states. However, these equations are correct only for a

sample length much shorter than a wavelength. For extended sample geometries, as in our

experiments, Eq. (3) remains a very good approximation for the evolution of the electric field

amplitude, with a correction that the characteristic evolution time changes from 2TR to 4TR

due to interference between emission from spatially separated portions of the sample.[23]

Further, these equations describe superradiance from a purely classical perspective, again

a good approximation for the data presented in this paper. The classical theory, however,

has no mechanism to describe frequency effects of superradiance, such as line shifts and

line broadenings, of the sort we observe. The quantum mechanical theory that can treat

these effects is only recently developed.[9, 37] Line shifts and line broadenings are naturally

accounted for in the quantum mechanical theory in the form of second-order correlations in

the electric field generated by the superradiant sample.[37] Comparisons can currently only

be made at a qualitative level as quantum mechanical calculations for optical depths greater

than ∼ 104 suffer from numerical instability. For a more complete fundamental description

of superradiance and cooperative effects, both classical and quantum mechanical, we refer

interested readers to previous comprehensive reviews.[2, 9]

Ensembles of Rydberg states have a number of special features that set them apart from

the non-interacting two-level systems that are typically treated theoretically. Foremost

among these are the presence of strong long-range dipole-dipole interactions between emit-

ters. These interactions are the origin of several seemingly distinct quantum many-body

phenomena, such as Rydberg blockade, Förster resonances, and long-range dipole-bound

states. Superradiance is another manifestiation of dipole-dipole interactions, and differs

from the above in that the fundamental interactions are between transition dipole moments

[9]. These interactions could be observed in any system, but are particularly strong in
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ensembles of atoms in Rydberg states due to the extremely large ∆n = 1 electric dipole

transition moments between Rydberg states.

However, observation of superradiance in ensembles of Rydberg states can be made diffi-

cult by other broadening and dephasing mechanisms [21]. In particular, the unique signature

of superradiance, namely the initial increase in the radiated electric field as opposed to the

usual monotonic exponential decrease of radiated electric field, can be obscured if other de-

phasing mechanisms operate on significantly shorter time scales than TR. Long range dipole-

dipole mediated Rydberg-Rydberg collisions homogeneously dephase individual emitters at

a rate of[38]

γdd =
πµ2ρ

4ǫ0h̄
(4)

compared to a superradiant decay rate of

γSR =
1

TR

=
πµ2ρ

3ǫ0h̄

L

λ
(5)

The two rates are essentially equivalent to within a geometric factor of L/λ. For extended

sample geometries, as in our experiments, L ≫ λ, and the superradiant decay rate can be

orders of magnitude larger than the rate of homogeneous dipole-dipole dephasing. Other Ry-

dberg superradiance experiments that take place in, for example, magneto-optical traps,[21]

may sample higher absolute densities, but do not observe superradiance effects due to this

competing dephasing rate. Other homogeneous dephasing factors, such as interactions of

the Rydberg sample with blackbody radiation[39] and pressure broadening from collisions

with neutral buffer gas atoms [40] are also significantly slower than the superradiant decay

rate.[29]

Inhomogeneous broadening effects can inhibit superradiance by destroying the exchange

symmetry that underlies collective emission and superradiance.[41] Rydberg states in par-

ticular, due to their very large polarizabilities, can be exceptionally sensitive to inhomoge-

neous electric and magnetic fields, and control of these fields is discussed in the following

section. Dipole-dipole interactions can introduce inhomogeneous broadening in frozen en-

sembles through variations in the transition frequency across the sample, and could be

sampled by measuring the superradiant emission, or lack thereof.
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III. EXPERIMENTAL APPARATUS AND PROCEDURE

We generate an atomic beam of barium atoms using a neon buffer gas cooled atomic beam

similar to that described in reference [30] and summarized briefly here. Barium atoms are

generated by ablation of a barium metal target inside a buffer gas cell with a 50 mJ/pulse

of the 1064 nm fundamental of a Q-switched Nd:YAG laser focused to a 1 mm2 spot size.

The ablation plume of Ba atoms is entrained in a 20 SCCM (standard cubic centimeters

per minute) flow of 20 K neon (∼ 10 mtorr steady-state pressure inside the cell) and is

hydrodynamically expanded into vacuum, then through a 2 cm diameter skimmer held at

6 K, to form a loosely collimated atomic Ba beam. This beam is crossed by the laser and

mm-wave pulses in a separate chamber 15 cm downstream from the ablation region. This

beam has a lab frame velocity of 180 m/s, transverse translational temperature of 5 K,

and transverse Doppler width of 250 kHz at 300 GHz. Atoms are excited into Rydberg

states by pumping the 6s2 1S0 → 6s30p 1P1 transition with a 238.812 nm, 7.5 ns laser pulse

produced by the doubled output of a seeded Nd:YAG-pumped dye laser. This typically

excites 3 · 108 to 1.5 · 109 total atoms into a single Rydberg state within a volume of 30 cm3

(1 · 107 < ρ < 5 · 107cm−3) and characteristic length of 15 cm in the pencil shaped geometry.

The length of the sample is determined by the divergence of the atomic beam[42] and the

cross-sectional area of the sample is determined by the beam waist of the mm-waves of 0.75

cm. The total optical depth in this experiment is therefore (for λ ∼ 1 mm) 1 · 106 < OD

< 5 · 106, due to the high density provided by the buffer gas source, and L/λ is 150, due to

the large characteristic length of the system.

Immediately following excitation to the Rydberg state, a 10 ns mm-wave pulse, on res-

onance with the 6s30p1P1 → 6s28d1D2 (A21 ≈ 50 Hz) transition at 279.776 GHz, triggers

the superradiant emission (with the 1P1 state as the upper state and the 1D2 state as the

lower state). This pulse is formed using a Virginia Diodes Active Multiplier Chain (AMC)

to multiply the frequency output from a 12 GS/s Agilent Arbitrary Waveform Generator

(AWG) mixed with a fixed-frequency 8.8 GHz local oscillator (LO). The mm-wave pulse

energy is 0.3 pJ (∼ 0.1 V/cm), which causes to a θi = π/40 initial tip angle of the Bloch

vector. The time delay between initial excitation and initiation of superradiance (<10 ns) is

much shorter than the typical time required for a spontaneous emission event to occur (∼20

ms) or for an on-resonance blackbody photon to interact with the system (∼10 µs). We
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FIG. 1. a) Schematic diagram of the experimental setup. Details of the mm-wave generation and

ablation conditions are included in the text. b) The Bloch angle formalism for describing mean-

field superradiance. c) Energy level diagram. The dotted arrow connecting the 6s30p and 6s30s

states indicates the origin of the superradiant emission is spontaneous rather than triggered.

take the Bloch vector tip angle to be determined entirely by this initiating mm-wave pulse.

We detect the subsequent superradiant pulse at 279.776 GHz directly in the time domain by

heterodyning against an LO set to 277.200 GHz. This radiation is generated by the same

AWG and 8.8 GHz LO, using a second AMC for multiplication. The resultant output is

recorded on a 50 GS/s oscilloscope. The mm-wave radiation is generated and detected in

polarization sensitive waveguide components, thus only mm-waves of the same polarization

as the source are detected.

In order to avoid creating standing waves and unintentional etalons that could modify

the frequency of the superradiant emission, all mm-wave components outside the vacuum

chamber are positioned with their faces tilted slightly away from normal to the propagation

direction of the radiation. The largest remaining source of standing waves is the weak cavity

formed between the microwave transmission and receiving horns, 90 cm apart. The largest

cavity induced fluctuations in our instrument response are on the order of 20% of the full

field amplitude, indicating a cavity with finesse ≪ 1 and a negligible contribution from

standing waves. Additionally, the Earth’s magnetic field is compensated (to the 0.1 Gauss

level) with a set of Helmholtz coils surrounding the vacuum chamber. A stray field of 0.1

Gauss would cause to a ∼ 150 kHz Zeeman splitting, much smaller than the 250 kHz Doppler

broadening.
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The primary source of inhomogeneous electric fields are ions formed via multiphoton ion-

ization of ground state Ba atoms; multiphoton ionization is minimized by carefully reducing

the amplified spontaneous emission from the pulsed dye laser (reduced below 1% of total

fundamental output power). Ions formed in the ablation process and swept downstream with

the rest of the ablatant could also produce an imhomogeneous electric field, and we have op-

timized the ablation to reduce the ion density in the active region to <106 cm−3, monitored

by laser induced fluorescence spectroscopy on the Ba+ ion 6s-6p transition, corresponding

to an inhomogeneous broadening of ∼ 10 kHz, far less than the Doppler broadening. FID-

detection, unlike ion-detection, requires no high-voltage-biased components, thus unwanted

homogeneous electric fields are negligible in the interaction region.

A schematic representation of the experiment and level diagram are shown in Figs. 1a

and 1c. The data discussed here are from 111 single shots, of which 56 had a signal to noise

ratio large enough to be individually fitted. The largest effect on the signal to noise ratio of

each shot was the shot-to-shot variation in Rydberg density that results from variations in

both the ablation laser intensity and the dye laser intensity.

IV. RESULTS AND ANALYSIS

An example of the raw data from the oscilloscope is shown in Fig. 2a. The initial dashed-

boxed peak is the initial mm-wave tipping pulse, while the second, larger, and broader peak

is the superradiant emission. A zoom-in on the emission from the superradiant emission

is displayed in Fig. 2b. Due to our 20 GHz detection bandwidth, most of the noise is at

frequencies far from the resonance frequency, thus we make use of post-experimental digital

filtering methods to improve the signal to noise ratio. Briefly, we independently measure

the resonance frequency at low density (279.776 GHz) and multiply the signal by a sine

and a cosine wave at that frequency to extract, respectively, the in-phase and quadrature

components of the signal. We then use a 25 MHz classic type I finite impulse response (FIR)

zero-phase low-pass filter to remove the high frequency noise [43]. A full discussion of this

filter can be found in Appendix A.

We calculate the time-dependent radiated electric field amplitude and phase indepen-

dently with I(t) = s2 + c2 and φ(t) = tan−1 (s/c), where s and c are the in-phase and

quadrature components of the signal. The phase is calculated using a four quadrant arct-
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FIG. 2. a) Raw single-shot data trace recorded in the experiment. The dashed-boxed feature is the

tipping pulse that initiates the superradiance, and the larger feature is the superradiant emission.

b) A zoom-in of the solid-boxed portion of the raw data trace from part a.

angent function. After filtering, we fit the time-domain field amplitude to Eq. (3) in order

to determine the optical depth of the sample on a shot-by-shot basis. Figure (3a) is an

example of a fitted filtered signal. The width and delay of the signal (TR and TD) are

independently fitted simultaneously. In order to confirm that the model used to interpret

the data is appropriate, we plot TR vs. TD, and the results are shown in Figure (4). Since

TD = −2TR log(θi/2), we expect a linear correlation with a slope that is directly related to

the initial tipping angle of the triggering pulse. The linear correlation between TR and TD

is clear, and the tipping angle extracted from the relationship between TR and TD matches

the independently measured value of θi of π/40.

Figure (3b) shows the Fourier transform of an unfiltered signal from Fig. 2a, gated to

exclude the initial tipping pulse, and a fitted lineshape. Two features are prominent. First,

the broad feature is the signal associated with the superradiant burst of radiation. It has a

width of 6 MHz and is shifted to 2 MHz below the low density transition frequency. The

narrow feature is the signal emitted after 500 ns, which is after the superradiant evolution has

concluded, with width (∼250 kHz) consistent with Doppler broadening and no observable

shift from the transition frequency at low density. The fitted lineshape is the sum of a

narrow Gaussian peak, centered at the low-density resonance, and a hyperbolic secant peak,

the center frequency of which was allowed to vary in the fit. When performing a Fourier

transform with a time gate that excludes both the initial tipping pulse and the superradiant

pulse, only the narrow feature remained. An intentional decrease of the sample density
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FIG. 3. a) The digitally filtered electric field amplitude profile is shown in blue, and the fit to the

mean-field emission functional form is shown in red. The boxed feature is the tipping pulse that

triggers the superradiance. b) The Fourier transform of the raw data from part a. The blue points

are the data and the red line is the fit to a sum of the two lineshape functions, as described in the

text.
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FIG. 4. Relationship between the separate fitting parameters TR (characteristic superradiance

emission time) and TD (superradiance delay time). Blue points are the data and the green line is

the best fit to the data. Error bars represent 95% confidence intervals.

leads to a matched amplitude reduction of both broad and narrow signals, indicating that

the narrow feature is fully cooperative in nature, rather than having been generated in low

density portions of the sample. However, this emission from low density regions cannot be

ruled out. We defer assignment of the source of this signal to a following paper.

The shot-to-shot variation in the number of excited atoms permits observation of the

optical depth dependence of the frequency width and shift, using the optical depth as de-

termined from time domain fits of TR using Eq. (3). The width of the superradiant feature
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varies linearly (fitting quality R2 = 0.87) with optical depth, as shown in Fig. 5a. This

is expected, as TR is inversely proportional to optical depth. However, the width is con-

sistently larger than the Fourier transform limited linewidth of a time domain hyperbolic

secant signal with characteristic width TR. In Fig. 5a, the solid green line is the result of

a linear fit of the optical depth vs. linewidth while the dashed red line displays what the

width would be if it were Fourier transform limited. The observed excess frequency width

could be due to either a frequency chirp during the emission process, or a dephasing process

(e.g. inhomogeneous dipole-dipole broadening). Since we directly detect the emitted electric

field amplitude in the time domain, any dephasing process would have been immediately

apparent as a shortening of the emitted superradiant pulse due to destructive interference.

Therefore, the excess width implicates a the frequency chirp across the linewidth of the

emission feature.

This chirp is most directly measured by observing the accumulated phase of the emitted

radiation, because the instantaneous frequency is determined by the time derivative of the

phase. The accumulated phase is directly sampled by our methods of detection and filtering.

The blue solid trace in Fig. 6 displays the phase evolution of the single-shot data trace in

Fig. 2a. In the absence of a model for the frequency and hence the phase evolution of the

sample, the phase evolution was fit to a series of lineshape functions (Gaussian, Lorentzian,

hyperbolic secant) and the derivative of each was computed in order to determine the fre-

quency as a function of time. Qualitatively, each lineshpae fit model produced the same

results. The frequency evolution determined from the Gaussian fit is shown in the inset to

Fig. 6, plotted relative to the low density emission frequency. The previously discussed fre-

quency chirp implied by the excess frequency-domain width is clearly present. Additionally,

the time at which the maximum in the phase evolution occurs and the frequency crosses

through the low-density resonance frequency does not coincide with the envelope of the field

amplitude in the time domain. The FWHM of the superradiant emission amplitude is dis-

played by the green dashed lines in Fig. 6 to demonstrate this offset. This mismatch between

the phase evolution and the electric field envelope causes the frequency shift observed in the

frequency domain. This is because the emission is most intense while the frequency is shifted

away from the low-density value, despite the fact that the chirp is symmetric around the

low-density frequency. In a fully quantum mechanical many-body treatment, as in [9, 37],

both a chirp and an overall shift to lower frequencies are predicted during the maximum

11



0 1 2 3 4
0

2

4

6

8

Optical Depth

Li
ne

w
id

th
 (

M
H

z)

 

 

Data
Best Fit Line
FT−Limited Line

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

Optical Depth

Li
ne

 S
hi

ft 
(M

H
z)

 

 

Data
Best Fit Line

b)

a)

5 × 106

5 × 106

R2 = 0.87

R2 = 0.38

FIG. 5. a) Observed relationship between the optical depth of a superradiant sample and the

linewidth of the emitted radiation. Blue points are the data, the green line is the best fit to the

data, and the red dashed line is the expected linewidth if the emission were Fourier transform

limited. Error bars represent 95% confidence intervals. b) Observed relationship between the

optical depth of a superradiant sample and the frequency shift. Blue points are the data and the

green line is the best fit to the data. Error bars represent 95% confidence intervals.

amplitude of the superradiant emission. These calculations predict a large red shift during

the peak amplitude of the superradiant emission that chirps towards a long-lived blue shift

at long times, in qualitatively agreement with our observations. Comparisons can only be

made at a qualitative level due to the vastly larger optical depth in our experiment than is

currently tractable in simulations.

It was not possible to establish a relationship between Rydberg optical depth and the
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FIG. 6. The recorded phase as a function of time, obtained by demodulation at the low-density

resonance frequency. The green dashed lines indicate the FWHM of the superradiant emission

field amplitude. A positive slope indicates a frequency that is shifted lower than the resonance

frequency, while a negative slope indicates a shift to higher than the resonance frequency. The inset

shows a fitted frequency evolution associated with the displayed phase evolution, as explained in

the text, and the green dashed lines in the inset indicate the FWHM of the superradiant emission

amplitude. The low-density resonance frequency is taken as 0.

observed frequency shift in this work. Quantum many-body calculations indicate that

the induced superradiant lineshift depends predominantly on the relative density (RD =

ρλ3 =ODλ/L) instead of the optical depth[37]. The 6s30s1S0 state lies ∼4 cm−1 below the

6s30p1P1 state, as shown in Fig. 1b, and the 6s30p state decays superradiantly to the 6s30s

state without a trigger pulse. This population decay is triggered by a black-body photon

(or a much rarer spontaneous emission event), and originates both at a random location in

the atomic sample and at an uncontrolled time in the experiment. Therefore, the spatial

distribution of emitters taking part in the triggered superradiance changes on a shot-by-shot

basis, as does the length of the sample and all propagation effects. This partitioning between

triggered and untriggered superradiance makes it impossible to establish a quantitative rela-

tionship between number density, geometry, and frequency shift. Our data show that there

is only a weak dependence (R2 = 0.38) of frequency shift on optical depth, as shown in Fig.

5b which indicates the cooperative nature of the shift, but that a quantity other than optical

depth controls the exact value of the frequency shift.
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V. CONCLUSION

We have directly observed the time-dependence of the mm-wave superradiant emitted

electric field from an extended free space sample of Rydberg atoms, including the time-

dependent phase and frequency responses of our unprecedentedly highly cooperative system.

The relatively long wavelength and large electric dipole transition moments associated with

Rydberg-Rydberg transitions allows for the generation of a 100% oriented dipolar gas with an

extremely large optical depth, while the absence of a cavity in the system allows observation

of both a frequency chirp and an overall frequency shift of the superradiant signal by ∼ 105

times its natural linewidth. Additionally, after the superradiante emission, we observe long-

lived, coherent emission, the source of which remains to be determined.

Further work is necessary, both experimentally and theoretically, to more completely de-

scribe both the frequency effects and the source of the long-lived emission. Shot-to-shot

geometry variations due to uncontrolled superradiant are the primary limiting factor in the

experiment. These variations can be minimized by exciting directly to an ns Rydberg state

and investigating the superradiant emission generated to a single n’p state. With the fluctua-

tions reduced, the relationships between the induced superradiant lineshift and experimental

parameters can be accuaretly determined, and a more in-depth time-dependent analysis of

the long-lived radiation can be carried out. Multi-photon excitation schemes to access ns

Rydberg states also permit careful shaping of the active experimental volume, which would

permit separation of the effects of optical depth and relative density on the induced super-

radiant lineshift. Our use of heterodyne-detected mm-wave transitions between Rydberg

states provides a method with high tunability of relevant parameters (optical depth, char-

acteristic system size, dipole-dipole coupling, etc.), which is capable of fully sampling the

quantum many-body effects shown here in different parameter regimes.

Appendix: Zero-phase filtering in a rotating frame

The electric field that reaches the detector is generated jointly by the mm-wave source and

by the sample. It contains the effects of emission and absorption from many transitions in the

sample including those directly excited by the radiation and radiation from levels populated
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by one or more cascade transitions. A number of these separate transitions can occur within

the bandwidth of our detection system, but others are not detected. We have identified the

strongest transitions within our detection bandwidth and want to restrict our observations

to the signals from directly-excited transitions. These are most clearly represented when

referred to a rotating frame at a frequency near the natural transition frequency and when

the noise from remote frequency elements is eliminated using a narrow-bandwidth filter that

preserves the transition dynamics.

The superradiance dynamics of a particular transition is detected by two linked rotating

frame transformations. The first step is done in hardware through heterodyne detection in

a subharmonically-pumped mixer which produces a signal proportional to the product of

the electric field from the sample (RF) and a local oscillator (LO) generated by frequency

multiplication in the mixer. The second step is a dual-phase rotating-frame transformation in

software that is specific to the frequency of a selected transition in the hardware bandwidth.

The software transformation consists of dual-phase mixing with a demodulation waveform

(D) at frequency ωD . The excess noise is then removed by a phase-linear low pass filter

with a bandwidth on the order of tens of MHz chosen for fidelity to the observed dynamics.

The combined steps allow faithful recovery of a signal proportional to the electric field that

reaches the detector from the selected transition. It is computed in a rotating frame at the

combined LO+D frequencies with a phase reference that is known relative to the applied

exciting mm-wave electric field [30].

At each rotating frame transformation, high frequency terms are discarded in the rotating

wave approximation. For the first rotating frame transformation, the voltage output from

the subharmonic mixer is

E1(t) = 〈ELO(t)ERF (t)〉

=
1

2
SLOSRF (t) cos(φRF (t)− φLO(t))

=
1

2
SLOSRF (t) cos(φ1(t))

(A.1)

The LO and RF electric fields contain constant or slowly-varying electric field amplitudes

SLO and SRF (t), with frequency and phase factors:
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ELO(t) = SLO sin(φLO(t)) (A.2a)

φLO(t) = ωLOt− ζLO (A.2b)

ERF (t) = SRF (t) sin(φRF (t)) (A.2c)

φRF (t) = ωRF t− ζRF (A.2d)

φ1(t) = φRF (t)− φLO(t) (A.2e)

The phases φLO(t), φRF (t) are defined at the detector location so the spatial dependence

is omitted, as is the atomic speed dependence, which generates the Doppler effect. The LO

is constant in frequency and ζLO is a constant phase offset. For the RF field, only φRF (t)

is observed, so we choose to allow the frequency to vary during the emission, while the RF

reference phase ζRF is a constant that can be determined from the signal at a specified time

that is a characteristic of the experimental setup. E1(t) can only be detected within the

IF output bandwidth of our mixer-preamp-oscilloscope system (18 GHz, digitized at 20 ps

steps). Detection is in double-sideband (DSB) mode (detects both sides of LO) so there is an

ambiguity in RF frequency which is resolved by varying the LO frequency or by approximate

knowledge of the RF. DSB detection results in 3 dB excess noise at each frequency from

the matching sideband, but in compensation the detection system is free of complexity, and

the effective frequency coverage is doubled. Since both phase and frequency information are

available in E1(t), while the LO and RF are ultimately derived from the same stable clock,

and the sign of the RF-LO differnce frequency is known, the RF field is constructible from

E1(t). E1(t) is digitized by the fast oscilloscope in 20 ps steps, corresponding to a Nyquist

rate of 25 GHz.

The second rotating frame transformation to the frequency of one selected transition

in E1(t) is performed in software by selecting low frequency terms after convolving with

a demodulation sinusoid (D). Both sine and cosine are used, to maintain S/N quality and

most clearly preserve phase information.

E2c(t) = 〈E1(t) cos(φD(t))〉 =
SLO

4
SRF (t) cos(ω∆(t)− ζ∆) (A.3a)

E2s(t) = 〈E1(t) sin(φD(t))〉 = −
SLO

4
SRF (t) sin(ω∆(t)− ζ∆) (A.3b)
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where the phase and frequency terms above are defined by

ωD
∼= ωRF (t)− ωLO (A.4a)

φD(t) = ωDt (A.4b)

ω∆(t) = ωRF (t)− ωLO − ωD (A.4c)

ζ∆ = ζRF − ζLO (A.4d)

and where ω∆(t) ≈ ωD. The frequency scale in the E2 terms is centered at the transition

frequency but they are computed on the same very fine time grid as E1 (20 ps interval,

Nyquist frequency 25 GHz) and contain noise from the entire 18 GHz bandwidth.

To reduce noise and smooth the time resolution, a classic type I finite impulse response

(FIR) low-pass filter is used [43]. FIR filters are implemented by a convolution of the

time sequence with a fixed bank of coefficients. The single-pass nature of the filter results

in a fixed time delay from signal to output, and an effective degredation in time resolu-

tion. These filters are described as phase-linear; the constant time delay is equivalent to a

linearly-increasing phase delay as a function of bandpass frequency. Different frequencies

are differently attenuated, but the time delay is independent of frequency, so the signal is

smoothed but not distorted.

There are two parameters in a type I FIR low-pass filter: (1) cutoff frequency as a fraction

of the Nyquist rate (glp), and (2) filter order, Nlp (number of coefficients is Nlp + 1). The

filter order determines the degree of sidelobe suppression. Choosing the filter order to be

an even number makes the time delay an even number of time steps. We choose the filter

order as

Nlp = 2

⌈

1

2glp

⌉

, glp =
νlp
νNyq

, νNyq =
1

2tstep
(A.5)

The number of points which depend on unknown values before or after the available data,

and thus should be deleted from the output, is Nlp/2 for a single-pass type I FIR filter.

To eliminate the time delay of a linear phase FIR filter, a zero-phase double-pass imple-

mentation can be used. On the saved data stream, the FIR filter is applied forward and

then backward. The result is an output which remains perfectly aligned with the original

time scale. For the forward-backward zero-phase filter, the suppression ratio of spurious
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FIG. 7. Frequency response of a typical 25 MHz zero-phase filter.

features in the stop band is squared (doubled in dB terms) while the ripple in the passband

is negligibly affected. The cost involved in this convenient usage is a doubling of the size of

the compact support of the filter, requiring that Nlp points be omitted from the output.

As an example of a typical filter applicable to superradiant features following the excita-

tion pulse, we show the frequency response of a 25 MHz zero-phase filter in Figure 7. With

νlp = 25 MHz, tstep = 20 ps, νNyq=25 GHz, then glp = 0.001, Nlp = 1000. The time span

that must be deleted from the beginning and end of the data is then 40 ns, compared to a

full data sample of 4 µs. Since the mm-wave level is zero before the excitation pulse, the

pre-trigger data can be zero-filled to minimize the importance of the initial delay. Stopband

suppression for commercial zero-phase filters with the filter order given in equation (A.5) is

better than 10−5. These filtering methods are available in Matlab, using fir1 for filter design,

filter and filtfilt for linear-phase and zero-phase filtering, and freqz for the computation of

the frequency and phase response.
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