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We calculate the parameters of the recently-derived many-channel Hubbard model that is pre-
dicted to describe ultracold nonreactive molecules in an optical lattice, going beyond the approxima-
tions used in Doçaj et al. [Phys. Rev. Lett. 116, 135301 (2016)]. Although those approximations
are expected to capture the qualitative structure of the model parameters, finer details and quan-
titative values are less certain. To set expectations for experiments, whose results depend on the
model parameters, we describe the approximations’ regime of validity and the likelihood that ex-
periments will be in this regime, discuss the impact that the failure of these approximations would
have on the predicted model, and develop theories going beyond these approximations. Not only
is it necessary to know the model parameters in order to describe experiments, but the connection
that we elucidate between these parameters and the underlying assumptions that are used to derive
them will allow molecule experiments to probe new physics. For example, transition state theory,
which is used across chemistry and chemical physics, plays a key role in our determination of lattice
parameters, thus connecting its physical assumptions to highly accurate experimental investigation.
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I. INTRODUCTION

Ultracold nonreactive molecules (NRMs) have a unique
interaction structure involving many interaction channels
that was elucidated in Refs. [1, 2]. Following successes
in creating ultracold chemically reactive molecules [3–6],
three ultracold dipolar NRMs have recently been pro-
duced (RbCs [7–12], NaK [13–16], and NaRb [17, 18]), as
have several homonuclear species [19–25]. Although the
homonuclear molecules lack a dipole moment, the rich
collisional physics is just as important as in the dipo-
lar NRMs. An emerging direction is to place the NRMs
in an optical lattice, which is predicted to manifest a
greater variety of many-body behaviors [26–28]. Besides
displaying a wealth of many-body phenomena, an opti-
cal lattice provides a natural means to produce NRMs at
high density from a dual-species gas of ultracold atoms
by Feshbach association [29–32].

Anticipating these lattice experiments, Ref. [33] deter-
mined the form of the effective lattice model when ultra-
cold NRMs are placed in a deep optical lattice. However,
it provided only a formal calculation of the parameters
appearing in this lattice model in terms of the solutions
of a challenging four-atom problem. Ref. [34] was able
to predict the structure and estimate these parameters’
values by relying on several approximations.

While these approximations are realistic, they are un-
controlled and may miss some structure. Similarly, while
they likely are accurate for order-of-magnitude estimates,
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they are not likely to be quantitative. Gaining confi-
dence in the structure and values of the model param-
eters therefore requires either more microscopic theories
or experimental characterization. Quantitatively deter-
mining the parameters is not only interesting but also ur-
gent, given the rapid pace of experimental progress in the
last two years [9–18]. In addition to understanding com-
plex many-body physics, elucidating the complex short-
range interactions of NRMs is also essential for under-
standing the practical limitations of evaporative cooling
schemes [35, 36].

This paper presents three types of results. First, we
determine the lattice model parameters appearing in
Ref. [33] within the framework of approximations that
were used in Ref. [34]. Second, we describe these ap-
proximations’ expected region of validity. Third, we an-
ticipate possible deviations from the approximations and
provide methods to systematically improve them.

Experiments can test the theory that is built on the ap-
proximations presented herein, and this will have impor-
tant consequences whether or not the theory accurately
predicts measurements. In particular, as discussed in
more detail in Ref. [34], lattice modulation spectroscopy
can be used to determine the parameters of the effec-
tive model Eq. (1) below. These effective parameters
can then be compared with the approximation frame-
work described herein for agreement without the need
for high-accuracy calculations or the reconstruction of an
explicit four-atom potential energy surface. If agreement
is found, the theory will establish an effective theory to
study a new regime of many-body physics. The poten-
tially more exciting possibility is a disagreement, which
will reveal that some cherished approximation has pre-
viously unknown limitations. This could have important
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implications even beyond ultracold physics, for example
to chemistry, since the lattice model parameters connect
chemical properties to many-body observables in the lat-
tice. These properties characterize the bimolecular colli-
sional complexes (BCCs): for example, their energies and
their rates of dissociation, the central quantity in their
chemical kinetics.

An example of such an important connection to chem-
istry is our use of transition state theory (TST) to de-
termine a dissociation rate of the bimolecular complexes.
Given its wide use in chemistry, understanding the ac-
curacy of TST in a controlled manner is an important
goal in that field [37]. Ultracold lattice experiments could
test this well-motivated, but uncontrolled, approximation
with unprecedented flexibility and accuracy. In particu-
lar, as argued in Refs. [33, 34], a deep optical lattice in
which each lattice site is decoupled from the others al-
lows for a “chemical reaction microscope” that probes the
BCCs’ properties at an extremely high energy resolution
– potentially sub-nanoKelvin, even in a gas at hundreds
of nanoKelvin! This energy resolution is orders of mag-
nitude better than the already-extraordinary resolution
provided by an ultracold trapped gas in the absence of a
lattice. This results from the lattice’s precisely quantized
energy: The fraction of molecules that are thermally ex-
cited is very small, and their contribution to the spec-
trum might even be relegated to sidebands that could be
filtered out. Thus, there is no thermal smearing of the
spectrum, and its resolution is limited only by coherence
time of system.

The structure of this paper is as follows. Sec. II re-
views the complexity of molecular collisions and the ba-
sic results of Refs. [33, 34]. The focus is the solution
of two NRMs in a harmonic well, from which the ef-
fective lattice model parameters for NRMs in an opti-
cal lattice is obtained. Sec. III begins our main new
results. Its subsections describe each of the approxi-
mations used in Ref. [34], their regime of validity, the
likelihood of the NRMs of current experimental inter-
est being in this regime of validity, and methods to go
beyond these approximations. Specifically, Sec. III A fo-
cuses on the assumed separation between the three key
length scales: “short ranges” where multi-channel inter-
actions are important, the van der Waals length, and
the harmonic oscillator length characterizing one site of
a deep optical lattice. Secs. III B, III C, III D, and III E
focus on the approximations to the molecular interac-
tions: random matrix theory (RMT) used to treat the
short-range chaotic motion (Sec. III B), methods to de-
termine the coupling parameters appearing in the two-
body Hamiltonian (Sec. III C), quantum defect theory
(QDT) used to describe the effects of the van der Waals
tail of the potential (Sec. III D), and transition state the-
ory (TST) used to obtain the strength of coupling of the
short-range BCCs to the two-molecule scattering con-
tinuum, specifically the Rice-Ramsperger-Kassel-Marcus
(RRKM) approximation (Sec. III E). We refer to this
collection of approximations for the molecular interac-
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FIG. 1. Separation between the chaotic (R ∼< rsr)

and regular (R ∼> rsr) regions of intermolecular scat-
tering. For extreme separations r � RvdW the molecules
propagate ballistically. As the molecules approach each other
within the van der Waals potential but still remain in the
non-chaotic, single channel region (i.e. rsr ∼< R ∼< RvdW), in-
termolecular interactions curve the trajectories but preserve
their regularity. Finally, molecules approach within a range
R ∼< rsr, and the trajectories of the constituent atoms become
a chaotic tangle, mixing many internal rovibrational states.
This chaotic tangle of trajectories can also be described as a
superposition of bound states, the bimolecular collision com-
plexes.

tions as RMT+QDT+TST. The final two subsections of
Sec. III discuss best estimates of and the uncertainties in
parameters appearing in the theory: the BCC density of
states (per unit energy) and van der Waals length RvdW

in Sec. III F, and the BCCs’ polarizability in Sec. IV D.
Sec. V concludes.

II. OVERVIEW OF NONREACTIVE
MOLECULES IN AN OPTICAL LATTICE

Reference [33] derived the form of the effective lattice
Hamiltonian for NRMs in a deep lattice with site occu-
pation at most two, finding the multi-channel Hubbard
model

Ĥ =− J
∑
〈i,j〉,s

[
ĉ†i,sĉj,s + H.c.

]
+
∑
i

(∑
α

Uαn̂i,α +
3ω

2
n̂i

)
.

(1)

The parameters are described briefly here, with more
complete definitions and discussion postponed until they
are used in this paper. This model follows from a mi-
croscopic analysis by taking advantage of the separation
of length scales illustrated in Fig. 1. In particular, the
interaction is relevant only at distances comparable to or
shorter than the van der Waals length RvdW. Further-
more, RvdW is much less than the harmonic oscillator
length lho =

√
~/(µω) where µ = m/2 is the reduced
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mass for two (identical) molecules of mass m, and ω is the
angular frequency associated with the harmonic oscillator
potential that approximates a single site of a deep lattice.
The single-molecule tunneling J is controlled, as it is for
atoms, via the optical lattice depth, s indexes the en-
ergetically available states of free NRMs (e.g., hyperfine
states [12, 15, 38], rotational excitations, or vibrational
levels), and the Uα are determined by the eigenenergies
Eα of the two NRMs in a harmonic oscillator. Specif-
ically, Uα = Eα − 3ω/2 where Eα is the eigenenergy
associated with eigenstate |α〉 of the relative coordinate
Hamiltonian

Ĥrel =
∑
n

εn |n〉〈n|+
∑
b

νb |b〉〈b|+
∑
nb

(Wnb |n〉〈b|+ H.c.) ,

(2)

where εn = (2n+ 3/2)ω and

Wnb = wbMn/l
3/2
ho , (3)

with

Mn =

√
Γ(n+ 3/2)

Γ(n+ 1)
. (4)

Here, lho =
√

1/(µω) is the harmonic oscillator length
with µ = m/2 the reduced mass and m the mass of a
single molecule, the |b〉 are short-ranged two-NRM bound
states, and the |n〉 are harmonic oscillator eigenstates.
The creation operators in Eq. (1) are modified from their
usual form, and act on the on-site Fock states on site i
as

ĉ†i,s |0〉i = |s〉i , (5)

ĉ†i,s |s′〉 = Ps,s′
√

1 + δs,s′
∑
α

Os,s′α |α〉i , (6)

ĉ†i,s |α〉i = 0, (7)

where |s〉i is the state with a single molecule in state
s in the lowest harmonic oscillator state, |s, s′〉i is the
state with two molecules in the lowest energy relative
harmonic oscillator eigenstate on site i, and Ps,s′ is a fac-
tor to account for fermionic exchange and Pauli blocking
(see Ref. [33]). The overlap factors Os,s′α ≡ 〈α|s, s′〉 give
the weight of a particular relative coordinate eigenstate
|α〉 on the open-channel state |s, s′〉, and reduce the tun-
neling rate of an NRM onto a site containing an NRM
compared to its “bare” value J .

In this paper, we determine the νb and wb, and from
these we determine the lattice model parameters Uα and
Oα, as discussed in the next section. Because accurately
solving a realistic model of interacting atoms to deter-
mine the Uα and Oα is out of present reach (see Ref. [33]
for a formal discussion), we employ approximations. We
begin in Sec. III by introducing the “standard suite of ap-
proximations” (RMT+QDT+TST) of Ref. [34]. We go
into considerable depth into the formulation of these ap-
proximations and their regimes of validity. Then Sec. IV

discusses when these approximations may be insufficient,
and describes more accurate theories that may be em-
ployed.

III. APPROXIMATIONS USED TO OBTAIN
PARAMETERS OF THE EFFECTIVE

HAMILTONIAN

A formal derivation of the form of Eq. (1), as pre-
sented in Ref. [33], requires only the separation of length
scales shown in Fig. 1. However, the determination of
the parameters appearing in this model through micro-
scopic means is extraordinarily difficult, and so approxi-
mate means to determine these parameters are highly de-
sirable. An overview of the standard RMT+QDT+TST
suite of approximations to determine the model parame-
ters was outlined in Sec. II.

Despite the multiple approximations used, the
RMT+QDT+TST fit together in a fairly simple way:

• We combine approximations, each treating different
intermolecular separations, using the separation of
lengths between multi- and single-channel interac-
tions, and the harmonic oscillator. [Sec. III A]

• RMT approximates the short distance R ∼< rsr

physics where the scattering is chaotic and involves
numerous interaction channels. [Sec. III B]

• QDT approximates the propagation of the
molecules through the vdW potential that charac-
terizes the large-R tail of the intermolecular inter-
actions for R� rsr. [Sec. III D]

• TST sets the energy scale with which the short
range BCCs (RMT bound states) couple to the
outer region. [Sec. III E and III C]

• Under these approximations, the lattice model pa-
rameters depend on only two NRM properties, the
van der Waals length RvdW and the BCCs’ density
of states ρb. [Sec. III F discusses the known val-
ues of these parameters and methods to estimate
them.]

The relevant length scales and energies will be defined
more precisely in their respective subsections.

The following subsections discuss the physical content
of each of these approximations in depth, under what as-
sumptions they are valid, and in some detail uses them to
derive the effective lattice model parameters. After the
present section describes the standard suite of approxi-
mations used to obtain the model parameters, Sec. IV
will discuss possible modes of failure of these approxima-
tions, and the exciting possibility of testing the approxi-
mations in experiments.
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A. Separation of length scales

1. Separation of length scales: overview and consequences

Three length scales are crucial for NRMs in a single
lattice site: rsr, RvdW, and lho. These are defined such
that

• rsr separates short-range scattering – plausibly
chaotic and where multiple adiabatic channels are
coupled – from long-range scattering that consists
of propagation within the open channel. A typical
value (for RbCs) is roughly rsr ∼ 4nm [39].

• RvdW is the characteristic length scale associated to
the van der Waals potential V (R) = −C6/R

6; this
is RvdW = (2µC6)1/4. A typical value (for RbCs)
is roughly RvdW ∼ 25nm [39, 40].

• lho =
√

1/(µω) is the characteristic length scale
associated with the harmonic trap. Typical values
for optical lattices where both tunneling and inter-
actions are relevant are lho ∼> 100nm. (This lho

would arise for typical numbers µ ∼ 100amu and
ω ∼ 2π × 10kHz, where amu is the atomic mass
unit.)

The methods used to obtain these values, their depen-
dence on molecular species and other parameters, and
their uncertainties are explained in Sec. III F.

The derivation in Ref. [34] and Sec. II assumed the
separation of lengths rsr � RvdW � lho, as illustrated in
Fig. 1. There is little difference in our assumption of this
separation of lengths for NRMs and the corresponding
assumptions that are made for ultracold atoms in an op-
tical lattice that lead to the Hubbard model. For atoms,
the separation between the lengths {rsr, RvdW} � lho is
what enables one to use a pseudopotential parameterized
by a scattering length to describe the interatomic inter-
actions in a lattice and derive the conventional Hubbard
U [41]. For NRMs, the primary difference with atoms is
not due to any difference in this separation of scales, but
rather the complex, energy-dependent interaction physics
occurring for R ∼< rsr.

To understand how these separations appear in and
impact the calculation, we consider three regions of inter-
molecular separation, depicted in Fig. 1, and summarized
as follows:

• Region 1: intermolecular separations R such that
R < r12. We will choose r12 such that in this re-
gion R� RvdW. This enables two approximations:
One can treat the dynamics as chaotic, due to the
complexity of the potential in this region, and one
can ignore the effects of the harmonic oscillator po-
tential since it is constant over this region.

• Region 2: r12 < R < r23. We will choose r12 and
r23 such that rsr � R� lho in this region, so that

one can solve for the wavefunction in a single chan-
nel vdW potential, ignoring the short range physics
and treating the trap potential as a constant.

• Region 3: R > r23. We will choose r23 such that
R � RvdW in this region (and therefore R � rsr

as well). Here, one can calculate the wavefunctions
in the presence of the trap potential only.

Importantly, one can choose the r12 and r23 such that the
requisite inequalities in each region are simultaneously
satisfied. To create the regions in such a manner, we
choose r12 =

√
rsrRvdW and r23 =

√
RvdWlho.

In Region 1, the separation R � {RvdW, lho} allows
us to calculate the wavefunctions by taking the dynamics
to be chaotic, and it allows us to ignore the trap poten-
tial, since it is effectively constant over this region. More-
over, it allows us to treat this region “classically” in the
sense that we can ignore the near-threshold effects (e.g.
Wigner laws) arising from the large-r vdW tail. These
become important when the (relative coordinate) kinetic
energy gives a de Broglie wavelength comparable to the
length scale on which the potential varies (e.g. RvdW).
However, at short-range, the potential is so deep that the
kinetic energy is large and the de Broglie wavelength is
small compared to RvdW. This classicality is a necessary
requirement to apply the TST to calculate νbs and wbs
(see Sec. III E).

In Region 2, the separation R � rsr ensures that
one can calculate the eigenstates including only the open
channel potential and ignoring the interchannel cou-
plings. The separation R � lho allows one to approx-
imate the open channel potential as a −C6/R

6 potential.
Consequently, the wavefunction in this region is the so-
lution to a single-channel problem in the vdW potential.
This wavefunction can be calculated using QDT, which is
designed to solve such a problem with arbitrary bound-
ary conditions (see Sec. III D).

In Region 3, the separation R� RvdW makes the ba-
sis of harmonic oscillator eigenstates |n〉 natural. In the
absence of the short-range interactions at R ∼< RvdW,
the |n〉 would be eigenstates and the Hamiltonian would
be diagonal in this basis. The short-range interactions
introduce matrix elements between these eigenstates and
closed channel bound states |b〉 (and in principle between
the |n〉), but these matrix elements may be taken to be
confined near the origin at a spatial scale much less than
lho. Therefore, the harmonic oscillator eigenstates may
be treated as constant over the length scale on which
the interaction potential varies. This separation was em-

ployed in Sec. II to factor Wnb = wbMn/l
3/2
ho in Eq. (3),

which is derived in detail in Ref. [33].
Consequences of the separation of lengths are apparent

in Fig. 2(a), which shows the results for the eigenener-
gies of two NRMs on one lattice site, Eα, and the asso-
ciated interaction parameters Uα calculated within the
suite of approximations that we present here. One con-
sequence of the separation of lengths is that the bound
state energies, which hybridize with the oscillator states,
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FIG. 2. Eigenvalues Eα (top row) and effective interactions Uα (bottom row) as a function of trap frequency
ω. Darkness (i.e. opacity) is set proportional to the open-channel weight Oα, indicating the importance of the corresponding
state to the lattice model physics. (a) Gaussian Orthogonal Ensemble (GOE) for parameters corresponding roughly to RbCs
[eigenvalues are from Hamiltonians sampled from Eq. (9)]. (b) Independent levels (Poisson statistics) [Eq. (43)]. (c) Broad
resonance on GOE background. (d) Two-ensemble model [Eq. (45)]. Parameters used to generate these plots are discussed in
the main text.

are ω-independent. A second consequence is that the en-
ergy splittings of the avoided crossings and the typical
Uα acquire the characteristic n- and ω-dependences of
Wnb. In particular, the panel shows demonstrates that
width of the resonances and typical size of the Uαs clearly
increases with increasing ω and with increasing n, as ex-
pected from Wnb’s dependence on n and lho. The figures
were generated with parameters RvdW = 25nm, a re-
duced mass of µ = 110amu, and ρb = 1/(2π× 20Hz). To
numerically sample the GOE we used 500 bound states
and we included 100 harmonic oscillator states. The re-
maining panels go beyond this standard suite of approx-
imations and are discussed in detail in Sec. IV.

B. Random matrix theory for bimolecular
complexes (bound states)

As Fig. 1 suggests, at short ranges R ∼< rsr, the dy-
namics is chaotic and involves many interaction channels.
While this situation may appear extremely complicated,
it suggests taking advantage of the ability of chaos to
smear out detailed structure in dynamics. The tool we
use to do this is RMT applied at these short ranges, in
particular to the bound state energies νb and their cou-
plings to longer range states wb. This section discusses
the physical origin of the RMT and when this approxi-
mation is expected to be valid.

1. Physical origin of RMT: which Hamiltonian is being
treated as a random matrix?

At the broadest level, RMT is expected to describe the
statistical properties of generic observables in quantum
mechanical systems when the classical dynamics of the
system is chaotic (although this has not been proven rig-
orously). This conjecture is sometimes referred to as the
Bohigas-Giannoni-Schmit conjecture [42]. One formula-
tion of the key statement of RMT is that the Hamiltonian
of the system is a random matrix sampled from some
probability distribution.

It is plausible that chaotic dynamics and therefore
RMT will somehow manifest in ultracold molecular scat-
tering. Many examples of chaotic scattering between
particles in physics are known, spanning from com-
plex ultracold atoms at nanoKelvin temperatures [43–
45] to interactions within the nucleus at energies of
∼ 10MeV ∼ 1011K [46]. Remarkably this unifies the
physics of these collisions occurring at energies sepa-
rated by nearly twenty orders of magnitude! Molecular
scattering is usually expected to be chaotic for complex
molecules, but it is less clear how chaotic the scattering of
simple diatomic molecules is. Nevertheless, the complex-
ity of the interatomic potentials and significant number
of particles involved (four atoms, many more electrons)
plausibly will lead to chaos. This suggestive observa-
tion has been corroborated by observation of chaotic dy-
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namics in classical molecular dynamics simulations of di-
atomic molecule scattering using model potentials [47],
as well through level spacing analysis in other complex
systems, such as atom-molecule [48] and alkaline-earth
collisions [49].

Despite the chaotic scattering, at first blush it is un-
clear that a random matrix approach will be useful in this
situation: The dynamics is obviously not fully chaotic
since once the particles have scattered and are well out-
side the range of the intermolecular interaction potential,
they simply propagate ballistically. Therefore, we need
to consider carefully exactly what Hamiltonian is being
treated as a random matrix and how it combines with
the other, non-chaotic, parts of the Hamiltonian.

To apply RMT we note the separation of scales of the
scattering problem between small-separation chaotic dy-
namics and large-separation regular (and eventually bal-
listic) dynamics, which is illustrated in Fig. 1. At short
distances R ∼< rsr, the classical dynamics indeed appears
chaotic [47]. Furthermore, this short-range regime al-
lows strong coupling between the interaction channels.
Outside this, the interactions are much simpler (single
channel van der Waals or simply negligible). Therefore,
it is useful to decompose the full Hilbert space of four
atoms (two molecules) H2m into a direct sum of two
terms: H2m = Hb + Hlr. Here Hb is a “short range
Hilbert space” consisting of the four-atom wavefunctions
with support on configurations where all four atoms are
within rsr of each other1 (there is some freedom in this
choice). Conversely, Hlr is the Hilbert space of wavefunc-
tions with support on configurations where at least two
atoms are more than rsr apart.

We can associate a Hamiltonian with each of these
Hilbert spaces. The total relative coordinate Hamilto-
nian is

Ĥrel = Ĥb + Ĥlr + Ĥcpl, (8)

where Ĥb is Ĥrel projected onto Hb, Ĥlr is Ĥrel projected
onto Hlr, and Ĥcpl is the remaining part of the Hamil-
tonian, which couples the short- and long-ranged Hilbert
spaces. Choosing a basis |b〉 of eigenstates of Ĥb and a

basis |n〉 of eigenstates of Ĥlr, the three terms in this
equation map onto the three terms in Eq. (2). Note that
we are not assuming that Eq. (2) holds; rather, we are

starting from a Ĥrel for which only general properties are
known, and deriving Eq. (2) and the form of its couplings

from it. A microscopic description of such an Ĥrel was
provided in Ref. [33].

Under the assumption that Ĥb describes fully chaotic
dynamics, its statistical properties are expected to be
well-described by RMT [46, 50, 51]. RMT states that

Ĥb can be taken to be sampled from a probability distri-

1 The notation Hb is to hint that this is where the bound states
live, as will become central later.

bution

P (Ĥb) = NHe−Tr Ĥ2
b/2σ

2

, (9)

with NH ensuring normalization of the probability dis-
tribution. The GOE distribution is chosen because it is
the random matrix ensemble that describes models with
time-reversal symmetry. Even if the experiments are per-
formed in a magnetic field, for any realistic values in an
ultracold experiment this field is too weak to strongly
mix scattering channels, so the GOE remains appropri-
ate. This result together with Eq. (8) (and the structure
of the Hilbert spaces on which the Hamiltonians in that
equation were defined to act) allows us to determine the
νbs and the wbs, up to an overall scale for the wb (which
will be determined from TST in Sec. III E.)

2. Determining model parameters from RMT

Determining νbs. Since the νbs are defined – by
Eq. (2) – as the eigenvalues of Ĥb, we sample Ĥb

according to Eq. (9) and solve for its Nb eigenvalues
νb. One finds that the average density of eigenvalues
approaches a semicircle on (−√2Nbσ,

√
2Nbσ), namely

ρsc
b (ν) = 1

πσ2

√
2Nbσ2 − ν2, the so-called Wigner semicir-

cle distribution [51]. We wish to mimic a distribution of
eigenvalues of the NRM bound states that is uniform over
the energy range that is relevant to the lattice physics.
Thus we choose a large enough semicircle (large enough
Nb) such that the distribution is roughly constant over
the relevant scale. At the peak the Wigner semicircle
density of states is equal to ρsc

b (0) =
√

2Nb/(πσ), so we
choose

σ =

√
2Nb
πρb

(10)

to ensure the proper density of bound states near zero
energy.

Another interesting characteristic of the eigenvalues is
the level spacing distribution. This is the probability dis-

tribution p(∆ν) of the difference ∆ν(j) = ν
(j)
b − ν

(j−1)
b ,

where j indexes the eigenvalues from lowest to highest,
with the distribution taken over the ensemble of all j
and all Ĥb via Eq. (9). This distribution is shown in
Fig. 3(a) and is well-approximated by the “Wigner sur-

mise” p(∆ν) = (π/2λ2)∆ν e−(π/4)(∆ν/λ)2 where λ is the
average level spacing. We note that higher order corre-
lations between the levels (three level distributions, etc.)
are also nontrivial [51].

Determining wbs. Obtaining the statistical distri-
bution of the wbs requires a little more effort. Note
that the wbs are given in terms of the matrix elements
Wnb = 〈b|Ĥrel|n〉 of Eq. (2) by

wb =
l
3/2
ho

Mn
Wnb. (11)

We make further progress by realizing that the Wnbs are
matrix elements involving |b〉’s, states that we are taking
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(a) Single GOE

(b) Poisson distribution

(c) Double GOE

�⌫ (1/⇢b)

�⌫ (1/⇢
(2)
b )

FIG. 3. Probability distribution of nearest-level spac-
ings ∆ in different matrix ensembles. (a) Random ma-
trix theory Gaussian Orthogonal Ensemble (GOE) [eigenval-
ues are from Hamiltonians sampled from Eq. (9)]. (b) In-
dependent levels (Poisson statistics) [Eq. (43)]. (c) Two-

ensemble model [Eq. (45)] for ρ
(1)
b /ρ

(2)
b = 0.1, 1.0, 10.0 from

“left to right” (blue, orange, and green, respectively).

to be the eigenvectors of the Hamiltonian Ĥb that we are
sampling with the RMT. In particular, note that Wnb is
the matrix element between this random vector |b〉 and

the vector 〈v| ≡ 〈n|Ĥrel, i.e.

Wnb = 〈v|b〉 . (12)

To determine Wnb’s distribution, the task at hand is:
Given a vector |v〉 (not necessarily normalized), deter-
mine the distribution of overlaps of the random eigen-
vectors |b〉 with |v〉. To do this, it is helpful to write

|v〉 = Nv |ṽ〉 where Nv =
√
〈v|v〉 (so |ṽ〉 is the normal-

ized state). Then one has

Wnb = Nv 〈ṽ|b〉 . (13)

We can write the vector |b〉 as

|b〉 = b1 |ṽ〉+ b2 |v2〉+ · · ·+ bM |vM 〉 (14)

where we have chosen an orthonormal basis consisting of
|ṽ〉 and M−1 additional vectors |vj=2,...,M 〉 for the short-

range Hilbert space Ĥb. Although this may be an infinite

dimensional Hilbert space, we handle this by considering
a finite basis of dimension M and let M → ∞. Now we
determine the distribution of 〈b|ṽ〉 = b1.

Since the probability distribution of Ĥb is invariant un-
der orthogonal transformations, so must be the probabil-
ity distribution of eigenstates |b〉. Consequently, we are
looking for the probability distribution of unit-magnitude
|b〉s that is invariant under orthogonal transformations.
Consider the probability distribution

Pb(b1, b2, . . . , bM ) = P (b) = Nbe−
∑

j |bj |
2/(2ξ2) (15)

for the components of |b〉, where Nb is a normalizing fac-
tor and ξ is a to-be-determined constant. This distribu-
tion is invariant under orthogonal transformations since
it depends only on the manifestly invariant inner product
of b with itself. To determine ξ, we enforce the condition
that the vectors b are normalized. One necessary condi-
tion for the normalization is that it holds on average: the
average normalization of the eigenstates should be unity.
Denoting averages over the ensemble Pb(b) with over-
bars, i.e. · · ·, requiring normalization on average implies
b2 = 1, so

1 =
∑
j

b2j = Mξ2 , (16)

and therefore

ξ = 1/
√
M. (17)

Although this ensures that the eigenstates are normal-
ized on average, it doesn’t ensure that each eigenstate
is normalized. On the contrary, it worryingly appears
that the normalization fluctuates since it is the sum of
M random numbers. However, the fluctuations of the
norm (b2)2− (b2)2 are O(1/

√
M), and are thus negligible

for M → ∞. This shows that the ensemble of |b〉s in
Eq. (15) gives the probability distribution of normalized
vectors that is invariant under orthogonal transforma-
tions, at least as M →∞.

The distribution Eq. (15) of b1 = 〈ṽ|b〉 and Eq. (13)

implies that PW (Wnb) = NW e−|Wnb|2/2(Nvξ)
2

,. Conse-
quently, Eq. (11) gives

Pw(wb) = Nwe−w
2
b/(2σ

2
w) (18)

with σw =
l
3/2
ho

Mn

Nv√
M

. Note that from the separation of

lengths discussion (see Secs. II, III A for more details, as
well as Ref. [33] for a microscopic viewpoint), we expect

Nv ∝Mn/l
3/2
ho so that σw does not depend on our choice

of n for this derivation and is independent of lho. This
calculation does not determine σw since we do not know
Nv/
√
M . (Note that Nv/

√
M is finite even as M → ∞

due to the M dependence of Nv.) The parameter σw
will be determined by a combination of QDT+TST in
Secs. III C, III D and III E.

In the continuum limit (ω → 0) this method of deter-
mining the short-range Hamiltonian and its couplings to
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the long range sector of the Hilbert space is equivalent
to that used to obtain the short-range scattering (via the
K-matrix) in Refs. [1, 2]. Ref. [46] provides a review in
other contexts. Although the Hamiltonian formulation
is equivalent to the scattering theory, the former is con-
venient for many purposes. For example, it allows for
straightforward building of the Hamiltonian as a matrix
in a basis and calculating its eigenvectors.

Figure 2(a)’s lattice model parameters Oα and Uα re-
flect the RMT distribution of νb and wb. The random
distribution of resonances is the reflection of the random
distribution of νbs, and the distribution of Uα is due to
the random distribution of wbs. The Oαs are largest
when the bound states come within wb of the open chan-
nel harmonic oscillator states, creating hybridized eigen-
states with significant weight on the open channel har-
monic oscillator state.

C. Determining σw: QDT+TST

This section describes the method that we have used to
obtain the scale of the couplings wb, i.e. σw in Eq. (18).
The structure of these couplings – that they are drawn
from the Gaussian distribution – follows from the RMT
as described in Sec. III B, but the standard deviation
of that distribution, σw, is undetermined from RMT.
In principle, σw could be determined by experimentally
measuring the Uα and Oα in the Hamiltonian Eq. (1) and
choosing the σw that reproduces their statistics. These
experiments remain to be done, and even after they are
it will be valuable to have expectations for the scale of
σw and its dependences on parameters such as the lattice
depth and molecular species.

Although one approach is to calculate the full four-
atom eigenstates from the microscopic Hamiltonian in-
cluding the relevant interatomic interactions, in practice
solving these equations is beyond the reach of current nu-
merical methods. In fact, even obtaining the interatomic
interaction potential appearing in the equations to suf-
ficient accuracy is challenging. Nevertheless, Ref. [33]
formally shows how the couplings may be obtained from
the solutions to the coupled-channel Schrödinger equa-
tion in principle, if one were able to solve for its eigen-
states. This is illuminating since it sheds light on what
the couplings are microscopically, and advances in nu-
merical algorithms may allow the problem to be solved
in the future.

To determine the σw we will relate wb to the dissoci-
ation rate γb of bound state |b〉. This inverts our usual
picture: rather than thinking of scattering – where two
incoming molecules in a scattering state couple to the
BCC (bound state) and then exits through an outgoing
scattering state – we start with the NRM in the bound
state and consider its dissociation. As Fig. 4 illustrates,
both of these processes are determined by the wb; adopt-
ing the latter perspective will make it easier to connect
the wb to physical properties.

To obtain γb, we will rely on approximations developed
in chemistry (TST) and low-energy scattering (QDT).
This approach is illustrated in Fig. 4. Imagine a molecule
initially in the BCC |b〉 in free space (no trap or lat-
tice). It decays with a rate γb into the continuum of two-
molecule states (where the two molecules are far apart).

Applying Fermi’s Golden Rule to Ĥrel for two molecules
in a lattice site, Eq. (2), taking |b〉 to be the initial state
and Wnb to be the perturbation, gives

γb = 2π
w2
b

l3ho

∑
n

M2
nδ(νb − εn). (19)

We consider the continuum (no-lattice) limit of this (ω →
0 while fixing the bound state energy νb), finding

γb =
πµ3/2√νbw2

b√
2

as ω → 0. (20)

We focus on the continuum limit because the approxima-
tions TST+QDT that we will apply later to calculate γb
apply to the dissociation of bound states into the con-
tinuum. One can solve this equation for wb given γb.
Actually, we will only be able to obtain the average dis-
sociation rate γb, but it turns out that within the RMT
this is all we need. The average dissociation rate (which
we will still call γb)

γb =
πµ3/2√νbσ2

w√
2

(21)

since w2
b = w2

b − (wb)
2 = σ2

w, denoting RMT averages
with · · ·. This allows us to solve for σw as

σw =

(
2

µ3νb

)1/4√
γb
π
. (22)

Once we determine γb, this will give us σw.

To determine γb, we turn to the TST+QDT combina-
tion of approximations. The TST+QDT approximations
relate γb to observable molecular properties, in particu-
lar ρb and RvdW. The TST determines the rate γTST

for the bound state to dissociate at short-range, e.g., to
leave the radius rsr, while the QDT determines the prob-
ability A(νb) for a pair of NRMs that have dissociated at
rsr to propagate out to R � RvdW. The decay rate γb
from BCC to two-molecule scattering states is obtained
by stitching these two approximations together, which
yields (see Sec. III D)

γb = γTSTA(νb). (23)

We discuss the QDT and TST factors in Sec. III D and
Sec. III E, respectively. Using those results to obtain
γb via Eq. (23), we will soon see that using this γb in
Eq. (22)determines σw in terms of molecular parameters,
given by Eq. (32).
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(a) Finite trap

Wnb

|bi

|n = 0i
|n = 1i

(b) Continuum 

Transition dividing 
surface

�

~!b

� ⇠ !b ⇠ 1/⇢b
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FIG. 4. Determining Wnb’s from TST. (a) The Wnb are the coupling between the closed channel bound state |b〉 and the
open channel harmonic oscillator states |n〉. (b) Wnb governs the dissociation rate γb of the BCC (bound state) |b〉 breaking
into two molecules in the absence of a trap (ω → 0). By approximating γb within TST+QDT, we calculate the Wnb. (c) The
essence of TST for the present barrierless reactions is that the bound state oscillates at frequency ωcc ∼ 1/ρb, passes through
the transition dividing surface (roughly where the vdW potential becomes negligible) with O(1) probability, and then never
recrosses this surface.

D. Quantum Defect Theory

In this section we calculate the propagation in the vdW
potential that gives the parameter A in Eq. (23). To de-
termine this requires solving the single-channel problem
in a vdW potential at low energy. We do this, obtain-
ing analytic expressions, using the framework of quantum
defect theory.

At the short intermolecular separations where the
BCCs are bound, typical kinetic and potential energies
are ∼ 103K, many orders of magnitude larger than the
10−3K energy scales associated with the excitations of in-
dividual, well-separated molecules. However, physics at
long-range is governed by a fundamentally different set
of channels (e.g. hyperfine levels) which are sensitive to
externally applied fields and threshold effects from low
collision energy. Multi-channel quantum defect theory
(MQDT) leverages this vast separation of length and en-
ergy scales in scattering problems by finding a represen-
tation of wavefunctions in the long-range tail of the po-
tential that depends only weakly on energy, and match-
ing these wavefunctions to short-range, strongly coupled
physics at a short-range “matching radius” rsr [52, 53].

In our particular case, the interaction potential’s ma-
trix elements (between various channels) at large separa-
tion is dominated by long-range interactions of the form

〈c|V (R) |c′〉 =

[
−C6

R6
+
Lc (Lc + 1)

2µR2
+ Ethresh;c

]
δc,c′

− C3 (c, c′)

R3
. (24)

Here, C6 is the van der Waals coefficient, the calculation
of which is described in Sec. III F, C3 (c, c′) is the coeffi-
cient of the anisotropic dipole-dipole interaction [54–56],
relevant when the two colliding molecules are polar, Lc
is the partial wave of the cth channel, µ = m/2 is the
reduced mass of two molecules, Ethresh;c is the thresh-

old energy of channel c, which may depend on other pa-
rameters, such as an external magnetic field, and the
channel index c is understood to encapsulate both in-
ternal degrees of freedom such as the rotational angular
momentum and rotational projections of the two collid-
ing molecules as well as the external orbital angular mo-
mentum and projection. For illustration, we take these
long-range channels to correspond to the rovibrational
ground state, so that the number of channels at long
range Nc is set by hyperfine degeneracy (black solid lines
in Fig. 5), and we can ignore the C3 part of the poten-
tial in zero electric field. In contrast, the C3 part of
the potential dominates for higher-lying channels which
do not correlate to both molecules in their rovibrational
ground state [56] (blue dashed lines in Fig. 5). Typical
values of the hyperfine degeneracy of a single molecule
are ∼ 10 − 40 for the alkali dimers [57]. This hyperfine
degeneracy is important when considering proper sym-
metrization of entrance channels, but the energy spacing
between nominally degenerate levels is much larger than
typical ultracold temperature scales (inset of Fig. 5), and
so plays little role. Here, we note that if open channels are
allowed to include rotational excitations, for example be-
cause molecules have been prepared in a rotational state
superposition using an external microwave field [15, 38],
the C3 part of the potential should be accounted for in
the MQDT. We leave this modification of MQDT to ac-
count for dipolar interactions for future work, and focus
on the case in which the open channel manifold has a
1/R6 long-range character.

Expanding the wavefunction in terms of a basis of N
states, which includes the hyperfine and partial wave
quantum numbers, as

ψ(R) = R−1
N∑
c=1

Φc (Ω)ψc (R) , (25)

where Ω contains all angular and internal degrees of free-
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dom, the radial Schrödinger equation becomes

N∑
c′=1

[(
− 1

2µ

d2

dR2
+
Lc (Lc + 1)

2µR2
+ Ethresh;c

)
δc,c′ + Vc,c′

]
ψc′ = Ecψc , (26)

for a given potential whose matrix elements in the channel space are Vc,c′ =
∑

Ω Φc(Ω)V (R)Φc′(Ω), and
∑

Ω indicates
a “sum” over all the relevant degrees of freedom. At long range, any solution of the radial Schrödinger equation can

be represented by a set of linearly independent pairs of reference wavefunctions (f̂c, ĝc), one for each channel, which
are solutions of the uncoupled long-range potential, i.e.,(

− 1

2µ

d2

dR2
+
Lc (Lc + 1)

2µR2
+ Ethresh;c −

C6

R6

){
f̂c
ĝc

}
= Ec

{
f̂c
ĝc

}
, (27)

Since these reference functions are used only as a basis to
propagate short-range wave functions out to long-range,
we do not have to impose the physical boundary condi-
tions that ψc → 0 as R → 0. Instead, we can choose
convenient boundary conditions such that the reference
pairs are analytic and only weakly dependent on energy
while remaining linearly independent [53]. The energy-

analytic reference functions (f̂c, ĝc) are connected to the
energy-nonanalytic base pair (fc, gc) which satisfy phys-
ical boundary conditions through the relation(

f
g

)
=

(
A1/2(E) 0

A−1/2(E)G(E) A−1/2(E)

)(
f̂
ĝ

)
, (28)

where each object is understood to be a matrix/vector
in the channel space. In particular, A(E) and G(E) are
diagonal matrices in channel space which characterize the
MQDT. In addition, MQDT requires a diagonal matrix of
phases η specifying phase shifts of (fc, gc) relative to free
particle solutions as R→∞. An optimal MQDT is then
constructed using the freedom of the choice of matching
radius rsr such that channels which are asymptotically
closed as R→∞ are classically open at rsr, and so do not
contribute energy dependence to the short-range, leading

to an energy-analytic reference pair (f̂ , ĝ).
The above MQDT prescription captures well the weak

energy dependence from channels which are classically
open at rsr, and so has been enormously useful for under-
standing atomic spectra, in which resonances have a rela-
tively low density. In contrast, the vast number of degrees
of freedom in which two molecules can exchange energy
at short range leads to a high density of channels that
are classically closed at rsr, and impart a rich resonance
structure to the short-range physics arising from channels
indicated as blue dashed lines in Fig. 5. As discussed in
Sec. III B, the microscopic description of the short-range
physics is exceedingly difficult to obtain, and so instead
we use a statistical model of resonances based on RMT.
Using the relation Eq. (28), the result of propagation of
the wavefunction from rsr through the van der Waals tail
of the long-range potential to a large separation R is to

Short-range Long-range

R

Incident
energy

E

rovibrational ground
state manifoldhigh

er rov
ibrat

ion
al channels

Matching boundary

kBT

rsr

P
ot

en
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E

n
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FIG. 5. (color online) Schematic of multi-channel quan-
tum defect theory. In multi-channel quantum defect the-
ory (MQDT), the separation coordinate space is divided into
short-range and long-range, parameterized with respect to rsr.
A set of reference wave functions for the manifold of low-
energy states (black solid lines) are constructed to minimize
the energy dependence of the coupling to short range, and
account for propagation in the 1/R6 van der Waals tail. Inset
shows that the separation between states in the lowest mani-
fold is generally much larger than the temperature. The cutoff
rsr is chosen so that the states in the lowest manifold which
are closed as R → ∞ are classically open at rsr. For NRMs,
where many channels (blue dashed lines) remain closed at
rsr, these channels impart a complex resonance structure to
the short-range physics. For polar NRMs, these higher-lying
channels also have a qualitatively different 1/R3 long-range
potential character.

modify the coupling strength at energy νb from its “bare”
value γTST to the value γ = A(νb)γTST [1].

For a given partial wave Lc, the low-energy behavior
of the MQDT parameter A(E) which modifies the reso-
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nance widths at short range is known analytically as [53]

A(E) =

(
π2−(2Lc+3/2)

Γ(Lc

2 + 5
4 )Γ(Lc + 1

2 )

)2

(RvdW

√
2µE)2Lc+1 .

(29)

Specializing to the Lc = 0 s-wave channel and using the
multiplication formula for the Gamma functions, we find

A(E) =
Γ(3/4)2

π
RvdW

√
2µE . (30)

Of all of the approximations discussed in this work
leading to our effective multi-channel Hubbard models,
MQDT is likely the most accurate. This is supported
by the exquisite accuracy of MQDT for atomic scatter-
ing calculations, and also by its success in atom-molecule
scattering problems where a higher density of short-range
resonances exist but high-precision, unbiased calculations
are still possible [58–60].

E. Transition state theory to determine bound
state-open channel couplings

In this section we determine the γTST factor in the
dissociation rate γb (which sets our couplings σw) for
two NRMs in a bound state to dissociate to a separation
r = rsr. We calculate this rate using TST, a standard
approximation used throughout chemistry [37, 61, 62].
While widely used, this approximation is probably the
least rigorously justified of any in our approach. At the
same time, given its broad importance in chemistry, it
is likely the most exciting of our approximations to test
and explore with ultracold NRMs. Implications if mea-
surements were to confirm or contradict the TST approx-
imation are discussed in Secs. IV C 1 and IV C 2, as are
alternative approximations that could be used in place of
the TST.

The TST dissociation rate γb is

γTST =
2

πρb
. (31)

In particular, this equation is that from the RRKM the-
ory applied to this barrierless reaction (the reaction is
unimolecular dissociation2) We make the rather strong
assumption that TST is valid for all of the bound states,
even with large angular momentum. While TST is well-
established, at least qualitatively, for averages over many
initial states. It is an important chemical question –
which must be answered in order to better understand
and control chemical reactions – to what extent the TST
is true for all bound states.

2 This nomenclature comes from thinking about the reactant as
the BCC and the products the two dissociated NRMs.

Now we have sufficient information to determine the
distribution of the couplings σw from Eq. (22). Specif-
ically, we use γTST from Eq. (31) and A from Eq. (30)
to determine the decay rate γb via Eq. (23). From this,
Eq. (22) yields

σw = 2
√
RvdW/π3µρbΓ(3/4). (32)

This approximation sets the scale for the width of the
resonances and typical Uαs in Fig. 2(a). One qualitative
consequence of this is to set the location of the crossover
between isolated resonances at small ω to overlapping
resonances. This is because when Wnb � 1/ρb, the
harmonic oscillator state |n〉 almost always couples to
a single bound state, while when Wnb � 1/ρb, it cou-
ples to many bound states. The crossover happens when

Wnbρb ∼ 1 or equivalently (ωρb)
3/4
√
RvdW(µ/ρb)1/2 ∼

1. Although the crossover occurs at quite small ω in
Fig. 2(a) (where the tight-binding assumptions of Eq. (1)
are invalid), for other molecules with smaller ρb or RvdW,
the crossover will occur at larger ω where Eq. (1) is accu-
rate. There also may be ways to shift the crossover, for
example by shielding the molecules from reaching short
range. This could be done using dipolar interactions
and anisotropic confinement, analogous to experiments
with reactive molecules in Refs. [63–65] or using other
proposed ideas to manipulate the intermolecular interac-
tion [66–68].

The key approximation made in TST is that there is
a surface in the configuration space of the NRMs such
that once the system crosses that surface it never re-
crosses [37]. TST in its usual formulation also assumes
that the dynamics is classical and that prior to undergo-
ing the dynamics of the reaction the system equilibrates
inside the dividing surface. With these assumptions, the
RRKM theory allows one to obtain the reaction rate γTST

from knowledge of only the energy at the potential energy
minimum and dividing surface, and the stable vibrational
frequencies at these points.

Figure 4 gives a simple way to understand the RRKM
bound state dissociation rate γb for the present case of
barrierless reactions, given by Eq. (31). The NRMs oscil-
late in a closed channel – as a simple picture, imagine this
is a harmonic oscillator with frequency ωcc. Then this fre-
quency is determined by the density of bound states ρb;
To see this, note that for a harmonic oscillator the density
of states is ρb = 1/ωcc, and the oscillations should occur
at ωcc = 1/ρcc. Since the density of states for a harmonic
oscillator is ρcc = 1/ωcc, the oscillations should occur at
frequency ωcc = 1/ρcc. With each oscillation, there is an
O(1) probability of escaping past the dividing surface, so
the dissociation rate is expected to be γb ∼ ωcc ∼ 1/ρb,
as confirmed by Eq. (31).

Although the predictions of TST are frequently in ac-
cord with experiments studying chemical reactions, there
are notable exceptions. Furthermore, even when there
is agreement it is murky to what extent the underlying
assumptions leading to the TST are valid and to what
the TST is valid on a state-by-state basis rather than
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averaged over many states. The assumption that the dy-
namics is classical should be accurate for r < rsr as long
as rsr is chosen small enough. This will ensure that the
potential energy is deep in this regime where the TST is
being applied, the kinetic energy consequently large, and
therefore the dynamics effectively classical (de Broglie
wavelength short). The validity of the assumption that
inside the dividing surface the system is locally equili-
brated is less clear.

As a consequence of these fundamental questions, it
is difficult to assess the likelihood of the TST failing.
A priori, large corrections to the TST dissociation rate
seem possible or even likely, although perhaps one should
hesitate in accepting this conclusion given the accuracy
of TST in predicting state-averaged reaction rates.

In the event that TST requires corrections, the γTST

factor appearing in the expression for σw will be altered
from 2/(πρb). This will, at the least, change the magni-
tude of the couplings as determined by σw. In fact, one
can imagine that the rate now becomes strongly depen-
dent on the bound state and one must take care to treat
different classes of states with different dissociation rates
and thus different couplings. For example, large angu-
lar momentum states might dissociate more slowly than
predicted by TST.

F. Calculating molecular scattering properties:
RvdW and ρb

As we have seen, within our framework the properties
of the Hamiltonian describing the statistical properties of
resonant collisions at short range depends universally on
the density of resonant states at zero energy ρb and the
van der Waals length RvdW. In this section, we provide
details on how these quantities are estimated.

1. Estimation of RvdW from the dispersion potential

We begin with a discussion of RvdW. RvdW depends
solely on C6, the coefficient of 1/R6 in the long-range
tail of the potential (see Eq. (24)). Given two molecules
in their electronic ground state and rovibrational states
|v1N1M1; v2N2M2〉, with M the projection of total an-
gular momentum J on a space-fixed coordinate axis,
the matrix elements of the 1/R6 dispersion potential in
the manifold of fixed {v1, N1, v2, N2} arises from second-
order degenerate perturbation theory in the dipole-dipole
potential Vdd as

〈v1N1M1; v2N2M2|Vdisp (R) |v1N1M
′
1; v2N2M

′
2〉 = −

′∑
γ1,γ2

〈v1N1M1; v2N2M2|Vdd|γ1; γ2〉〈γ1; γ2|Vdd|v1N1M
′
1; v2N2M

′
2〉

Eγ1 + Eγ2 − Ev1N1M1
− Ev2N2M2

,

(33)

where prime on the summation over γ1 and γ2 indicates
all states, including continuum states and electronic ex-
citations, whose combined energies (Eγ1 +Eγ2) are non-
degenerate with the energies of the degenerate manifold
(Ev1N1M1 + Ev2N2M2). The dipole-dipole potential has
the well-known form

Vdd =
d1 · d2 − 3 (d1 · eR) (d2 · eR)

R3
, (34)

with di the dipole operator of molecule i, R = |R| the
intermolecular separation, and eR = R/R a unit vector
in the direction of R. Because of the “bilinear” form of
Vdd on the dipole operators, the expectations of Vdd can
be related to expectations of diagonal elements of the dy-
namical polarizability tensor evaluated at pure imaginary
frequency α̃(iω), defined as

〈vNM |αqq (iω) |vNM〉 =

′∑
γ

Eγ − EvNM
(Eγ − EvNM )

2
+ (~ω)

2

× |〈γ|d · eq|vNM〉|2 . (35)

To wit, the isotropic scalar part of C6 may be written as

C iso
6 =

3~
π

∫ ∞
0

dω

2∏
j=1

〈vjNjMj |ᾱ(iω)|vjNjMj〉 , (36)

where ᾱ(iω) = Tr(α̃(iω))/3. This isotropic C6 is the only
contribution to the dispersion potential for the rotational
ground state, but for rotationally excited states there is
an additional isotropic contribution whose operator char-
acter is that of the scalar product of two rank-two oper-
ators, as well as anisotropic contributions with rank-two
operator character. The coefficients of these additional
contributions can be written in a form similar to Eq. (36)
but additionally involving the polarizability tensor in-
variant ∆α =

√
(3Tr(α̃2)− (Trα̃)2)/2, which together

with ᾱ completely specifies the polarizability tensor for
diatomic molecules. Since in this paper we focus only on
the case in which the open channel consists of hyperfine
states within the rovibrational ground state manifold, we
do not explicitly give expressions for the anisotropic parts
of the dispersion potential here, but refer the reader to
Ref. [39].
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To calculate the expression Eq. (36) for the isotropic C6

coefficient, one needs the energies and transition dipole
moments of the molecule in question. These quanti-
ties are usually obtained via electronic structure calcu-
lations, for example multi-reference configuration inter-
action methods [69, 70]. For molecules with 1Σ ground
states, which includes all of the alkali dimers, the rele-
vant contributions to the polarizability come from tran-
sitions to the lowest-lying 1Σ and 1Π electronic states.
Since these levels do not require relativistic spin-orbit
coupling in order to obtain a dipole moment (in contrast
to, say, the 3Π level), non-relativistic electronic structure
calculations can be employed. As an order of magni-
tude estimate, one can approximate the electronic and
rotational contributions to C6 by the Unsöld approxima-
tion 3Uᾱ2/4 [71] and d4/6B, respectively, where U is a
mean excitation energy, d the permanent dipole moment,
and B the rotational constant. For typical alkali metal
dimers, taking U ∼ 1eV≈ 0.05 atomic units [40], this
gives an order of magnitude of C6 ∼ 104 − 105 atomic
units, where 1 au=Eha

6
0, with Eh the Hartree energy

and a0 the Bohr radius. Putting in realistic numbers,
this crude estimate is off from the ab initio calculations
by 10-20%. Taking this as a crude estimate for the pre-
cision with which we know C6, we can estimate that our

calculation of A(E) ∝ C
1/4
6 , the MQDT parameter re-

sponsible for narrowing of short-range resonance due to
threshold scattering effects, is off by five percent or less.

2. Estimation of the density of rovibrational states at zero
energy

We now turn to as estimation of ρb, the density of
states (DOS) at zero energy. We outline the calculation
performed in Ref. [1, 2], and then we show that one can
obtain the order of magnitude of ρb by a simple analytic
formula. The calculation in Refs. [1, 2] used the model
potential

V (R) = VLJ (R) +
Lc (Lc + 1)

2µR2
+ Ev1,N1,v2,N2

, (37)

where VLJ (R) = −C6/R
6 + C12/R

12 is a Lennard-Jones
(LJ) potential with the C6 calculated as above and
Ev1,N1,v2,N2 is the threshold energy of the channel with
molecules in vibrational states v1, v2 and rotational states
N1, N2. The depth of the potential Eq. (37) was set to
give the correct binding energy of the bimolecular com-
plex relative to the free-molecule threshold. One then cal-
culates the bound states for each channel independently,
and obtains the total density of states by counting the
bound state from all of the channels. A key assump-
tion employed by Refs. [1, 2] when constructing the DOS
is that each state that preserves both the energy and
angular momentum is counted. This, in some sense, is
equivalent to the argument that the classical phase space
during a collision at short range is ergodically sampled,

which has been verified in classical trajectory simulations
of diatom-diatom collisions [47].

One can go beyond this fully ergodic assumption by
while retaining the same general picture by specifying
which set of states should couple. Then one simply ob-
tains a reduced density of states. One approach to re-
stricting the states is to consider a cutoff in the maxi-
mum angular momentum J that is allowed. Even when
the condition that every state contributes is relaxed, the
density of resonances near zero energy for a colliding pair
of molecules is many orders of magnitude larger than for
atoms, approaching several thousands per Gauss of mag-
netic field (where 1G ∼ 100nK∼ 2 × 2πkHz in energy
units) for heavy molecules like RbCs [2]. This should be
contrasted with typical alkali atoms, including mixtures,
for which ρ ∼ 1/100G−1 [7, 72].

The means of estimating ρb above should not be taken
as anything more than an order of magnitude estimate.
There are several reasons for this. First, the potential
Eq. (37) employed in the estimate, while making some
connection with well-estimated quantities like C6 and the
binding energy, remains a model potential and will not
have the same level density as the true potential. Ad-
ditionally, while many of the states at zero energy will
participate during a collisional event, not all of them nec-
essarily do for each event over the relevant timescales.

In addition to the above detailed treatment, it is use-
ful to have a simple scaling argument for the density of
states. For a heteronuclear diatomic molecule, the den-
sity of rotational states for a single molecule is ρ = 1/B.
Using this uniform density of states, we then have that
the number of ways for two molecules to have total energy
E is E/B. To see this, consider that the uniform den-
sity of states corresponds to an equally spaced spectrum
(harmonic oscillator) indexed by quantum numbers n1

and n2, and then note that E = B(n1 + n2). Now, each
of the channel energies is lowered by the potential depth
D when two NRMs reach short range, and so the relevant
excitation energy for zero collision energy is E = D.

So far, we have only included the contributions from
rotational states, and so we should multiply by the num-
ber of bound states per two-molecule channel M and the
number of vibrational excitations per molecule X. One
can expect that the number of vibrational excitations
scales as ∼ 1/D, and indeed using DRbCs = 800 cm−1

and DKRb = 2779.6 cm−1 [2] together with XRbCs =
129 [73] and XKRb ∼ 30 [74], we find DRbCsXRbCs ≈
DKRbXKRb within 20%. We next estimate the depen-
dence of the number of bound states per two-molecule
channel, M , on D. The depth of the two-molecule poten-
tial is roughly Vmin = 6D, as there are

(
4
2

)
= 6 pairwise

connections between the atoms at short range. We can
approximate the two-molecule potential as a LJ potential
with this depth,

ṼLJ (R) =
1

2µR2
vdW

[
λ6

(
RvdW

R

)12

−
(
RvdW

R

)6
]
,

(38)
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where λ = 1/(
√

2R
1/3
vdWV

1/6
minµ

1/6). If we now use Levin-
son’s theorem, M = [φ(E =∞)− φ(0)]/π − 1/2, to esti-
mate the number of bound states. To obtain the phase
difference, we use a WKB approximation for the phase.
In particular, we calculate the phase associated with
propagating from the left-most classical turning point
R = λRvdW to infinity. (We cannot calculate the phase
from R = 0 to ∞ because this diverges for the LJ po-
tential. This is an artifact of LJ, and instead we simply
realize that the phase accumulated up to the left-most
turning point is small in the real potential.) Using this
phase, we find the number of bound states is

M ≈ 1

λ2π

∫ ∞
1

dz

√√√√[(1

z

)6

−
(

1

z

)12
]
, (39)

=
Γ( 1

3 )

62/3
√
πΓ( 11

6 )
D1/3R

2/3
vdWµ

1/3 . (40)

Putting this all together, we obtain the estimate

ρb ∼
MXD

B2
, (41)

which scales roughly as

ρb ∼
D1/3R

2/3
vdWµ

1/3

B2
, (42)

where the scaling relation ∼ includes a factor with units
of energy that does not scale with any of the factors on
the right hand side.

IV. BEYOND THE STANDARD SUITE OF
APPROXIMATIONS

Section III applied our “standard suite of approxima-
tions” to determine the effective model parameters Oα
and Uα. The present section evaluates this suite of ap-
proximations’ accuracy and go beyond it. We discuss the
likelihood that the assumptions behind the approxima-
tions are satisfied for NRMs. We also delineate conse-
quences for the effective lattice model if an approxima-
tion fails, for example if the modification is expected to
merely be a small quantitative shift or if it introduces
wholly new features. We introduce methods to incor-
porate physics beyond each approximation, with models
motivated by a combination of experimental and theoret-
ical knowledge of these systems, as well as mathematical
simplicity.

It will be exciting to compare theory to ongoing ex-
periments, regardless of outcome, as we discuss for each
approximation. On the one hand, quantitative agreement
would confirm the derived lattice model and the approxi-
mations behind it, and this would provide a solid basis for
future experiments controlling chemistry and exploring
many-body physics. On the other hand, a discrepancy
would teach us something surprising about strongly-held

assumptions regarding intermolecular interactions, quan-
tum chaos, or chemical kinetics, indicating the need for
new perspectives. For example, TST is widely believed
to adequately describe reaction rates in a wide variety
of molecules [37], so a discrepancy would have funda-
mentally important consequences in chemistry. Similarly,
RMT is believed to govern chaotic scattering [42], so a
discrepancy would indicate that scattering molecules be-
have either more regularly than anticipated or that the
link between classical chaos and a RMT description of
the quantum system is more restricted than expected.

A. Separation of length scales: beyond extreme
separation

1. What happens if separation of length scales is not
extreme

For typical molecules, rsr < RvdW < lho, and each
inequality holds by a factor of ∼ 5. For example, for
the numbers quoted in the introduction to this section
these inequalities are 4nm < 25nm < 100nm. Therefore,
the conclusions derived resulting from the assumption
that rsr � RvdW � lho are expected to be qualitatively
valid. For example, the structure of many resonances
with repelled levels and a smooth distribution of cou-
plings with finite variance, should still survive. However,
quantitative effects might be very naively estimated at
the ∼ 1/5 = 20% level. These quantitative effects might
include, for example, some weak dependence on harmonic
oscillator quantum number n. These quantitative modifi-
cations can arise from either rsr/RvdW or RvdW/lho being
non-negligible.

Effects of rsr 6� RvdW. Three assumptions may need
to be modified in this case. The first two modifications
occur if R in Region 1 becomes comparable to RvdW,
which happens if r12 is too large. The third modifica-
tion occurs if R in Region 2 becomes comparable to rsr,
which happens if r12 is chosen to be too small. The first
assumption that can fail is that the BCC’s dissociation
dynamics is classical and therefore can be treated with
TST. This assumption can fail if R in Region 1 becomes
comparable to RvdW, since in this condition the vdW po-
tential may be sufficiently shallow that the small kinetic
energy leads to a de Broglie wavelength that is not negli-
gible compared to the length scale on which the potential
varies. The second assumption that can fail is that the
dynamics is chaotic in Region 1 and RMT applies. If R
becomes too large, this assumption fails. The third as-
sumption that can fail is that the potential in Region 2
is purely vdW and can be treated with QDT. If R in this
region are allowed to be too small, the vdW potential is
no longer an accurate approximation.

Individually, these effects can be minimized by proper
choice of r12, but there is a tradeoff: larger r12 ensure
that the potential in Region 2 is purely vdW, but can
make the dynamics inside rsr less chaotic and classical
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and RMT and TST less applicable; smaller r12 ensure
that the dynamics in Region 1 is chaotic and classical,
but can make the potential in Region 2 more complicated
than the vdW potential.

The consequences of these failures depend on the rea-
son for the failure. If the failure is due to the invalidity of
TST to treat the out-flow from Region 1 to Region 2 due
to quantum effects, then the TST must be augmented to
include these. If the dynamics is not chaotic, the RMT
must be modified. If the failure is due to the invalidity
of treating the potential in Region 2 as a vdW potential,
then one must modify the QDT to account for the more
complicated correct potential. The breakdowns of TST
and QDT can modify σw and its dependence on the en-
ergy of the bound states. This in turn will change the
Uαs and Oαs appearing in the lattice model by changing
the range of ω over which the Uα varies, i.e. the “width”
of the resonance-like features in Fig. 2(a). The break-
down of RMT can lead to altered distributions of bound
state energies, as well as modified coupling magnitude
σw. The breakdown of RMT, TST, and QDT in these
ways – and methods to do calculations when they break
down – are discussed in more detail in Secs. III B, III E
and III D, respectively.

Effects of RvdW 6� lho. Two assumptions may break
down in this case. Since RvdW 6� lho, r23 must either fail
to satisfy r23 � RvdW or r23 � lho. However, at most
one of these need fail: For example, even if r23 6� RvdW,
we can still choose r23 � lho.

If r23 is too large, so that r23 6� lho, the propagation in
Region 2 can no longer incorporate only the vdW poten-
tial, but must also include the harmonic oscillator. This
additional potential will modify the QDT that is used
to calculate the wavefunctions in this region. This will
lead to an energy dependent correction to σw, resulting
in additional dependence of the Uα and Oα’s on princi-
pal quantum number and trap frequency ω. These effects
may be included in our calculations by numerically solv-
ing for the QDT parameters by incorporating the full
vdW plus harmonic oscillator potential, as described in
Sec. III D. Because this numerical solution is for a sin-
gle channel potential in the radial coordinate, it can be
carried out in reasonable computer time using standard
algorithms.

On the other hand, if r23 is too small, so that r23 6�
RvdW, the eigenstate in Region 3 can no longer be solved
as the harmonic oscillator coupled to zero-range states,
but must also include the vdW potential. As before, the
physical consequence will be that for two NRMs in a trap,
the eigenstates and energies gain a modified dependence
on principal quantum number and oscillator frequency
ω. Resultantly, so do the Uαs and Oαs. These effects
may be incorporated in our calculations by replacing the
harmonic oscillator eigenstates with the numerical solu-
tions of the harmonic plus vdW potential in the presence
of the appropriate short range couplings (which are still
given by TST+QDT applied to Regions 1 and 2). Again,
because this calculation is for a single channel potential

in the radial coordinate, it can be carried out efficiently.

2. Conclusions: separation of lengths

If the separation rsr � RvdW � lho is insufficiently ex-
treme, then our eigenstates and eigenergies may be mod-
ified with additional principal quantum number and ω-
dependences, and this will be reflected in the Uα and Oα
in the effective lattice model Eq. (1). The effects will de-
pend on the precise nature of the overlap of length scales,
but in all cases, the effects should be moderate (∼< 20%)
and can be included numerically exactly by modifying the
Region 2 (QDT) or Region 3 solutions to incorporate the
appropriate effects. In all cases, one must numerically
solve a modified single channel potential, a straightfor-
wardly tractable problem.

We emphasize that whatever corrections are present for
NRMs in a lattice, they are not expected to be substan-
tially larger or different in character than those occur-
ring for ultracold atoms. For atoms, again, one needs the
short range and vdW lengths to be much smaller then
lho in order for the short-ranged pseudopotential to be
a valid approximation ot the true potential, and conse-
quently for the standard Hubbard model and expressions
for U to be valid [41]. Corrections to these approxima-
tions have been predicted for atoms [75, 76], and often
are small but may be quantitatively important.

The effects of the overlapping length scales – for both
NRMs and atoms – are likely to be exaggerated in ex-
periments in deep microtraps [77–87]. Such experiments
are an exciting route for creating and exploring ultracold
molecules [88], and in them the lho can in principle be
greatly reduced by taking of advantage of the large trap
depths that are available.

B. Beyond random matrix theory for BCC
energies

1. Beyond RMT

Although it is compelling that RMT should govern
the distributions in Eqs. (9) and (18), the applicability
of RMT rests on a couple of assumptions. The princi-
ple assumption is that the classical short-range dynam-
ics is chaotic. There is some evidence for this [47, 89–
94]. Ref. [47], found chaos in the short-range dynamics
of atom-diatom collisions. The collisions between NRMs
would naively be expected to be more chaotic, although
this has not yet been confirmed. More importantly, the
dynamics is seen to be chaotic only within some range of
intermolecular separation. If we choose rsr as the bound-
ary within which the dynamics is chaotic and it is valid
to apply the RMT (see Sec. III A), and rsr is too small,
then the regions R > rsr will involve physics that we have
neglected in our other approximations. For example, if
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rsr is too small, the potential for R > rsr will involve con-
tributions more complex than the simple vdW potential.
Furthermore, although the general connection between
classically chaotic dynamics and RMT is well-established,
precise quantitative connections between these in com-
plex quantum systems are few, so there is potential for
surprising phenomena.

If RMT fails, it is likely that the qualitative structure
persists – many bound states, with a ρb similar to the
current estimates, may influence the long-range physics
– but that the distribution of levels would be altered.
For example, the spacing distribution might not repro-
duce Fig. 3(a). Similarly the couplings wb might fluctu-
ate with roughly the scale given by Eq. (18), but with
a distribution that quantitatively deviates from a Gaus-
sian. It is not unthinkable that in special cases these cor-
rections could be significant, especially for special lattice
depths (controlling the collision energy), in an “acciden-
tally regular” molecule, or at certain values of external
(electric or magnetic) fields.

In the remainder of this section we propose and ex-
amine the consequences of a few models of the level dis-
tributions and couplings that could describe the physics
even when the RMT is invalid. Lacking quantitative mi-
croscopic models for the |b〉s and νbs beyond the RMT,
we are guided by qualitative considerations, mathemat-
ical simplicity to capture basic features, and analogies
to other systems with complex scattering where more is
known. The primary analog systems are provided by
complex ultracold atoms, such as the lanthanides Dy [95–
97] and Er [98, 99], where recently the complex collisional
physics has been explored [43–45, 100]. These atoms have
a much denser set of bound states than alkali atoms, lead-
ing to coupling of many scattering channels during the
collision and thus RMT-like distributions of levels. How-
ever, they have a much lower density of bound states than
NRMs, such that typically only a single level should be
coupled to at ultracold temperatures or in lattices of typ-
ical depth.

The Er and Dy systems that we take as analogs show
clear signatures of complex scattering: the level spac-
ing distribution is not that of independently distributed
levels [compare Fig. 3(b)]. Rather the levels are re-
pelled analogous to the RMT. However, some discrep-
ancies from the RMT’s GOE distribution are present.
First, although there is clear level repulsion relative to
that found for independent levels, it is less strong than
in the GOE. The spacing distribution is relatively well
fit by a Brody distribution that interpolates between the
Poisson and GOE limits3 [43, 45]. Another discrepancy is
that, in some ranges of external magnetic field, there are
a large number of bound states with an RMT-like dis-
tribution coexisting with a single, orders-of-magnitude
broader level [44].

3 The distribution has an interesting magnetic field depen-
dence [100].

Inspired by these analogies with lanthanides and to
capture other simple deviations from RMT, we calcu-
late the effective Hubbard model parameters Oα and
Uα, modeling bound state properties beyond RMT using
three non-RMT models. We consider a Poisson distribu-
tion, an RMT coupled to a single broad level, and two
interleaved RMT ensembles with different ρb.

Poissonian statistics. The first alternative model to
the GOE is to sample Nb eigenvalues, taking each νb from
a uniform distribution

PPois(νb) =

{
ρb
Nb

if − Nb

2ρb
< νb <

Nb

2ρb

0 otherwise
(43)

for Nb → ∞ while fixing ρb. This distribution gives Nb
levels randomly each sampled from a uniform distribu-
tion of width Nb/ρb, and thus gives an average density
of eigenvalues ρb. We refer to this as a Poisson distri-
bution, following convention4. Such a distribution may
be expected to describe non-chaotic (integrable) systems,
where there are a large number of conserved quantities.
The distribution Eq. (43) leads to the exponentially de-
caying level spacing distribution shown Fig. 3(b). The
lack of level repulsion relative to the GOE is apparent.

The distribution of the wbs for the case of Poisson level
statistics is less constrained than it was for the GOE.
For the GOE, the symmetry under orthogonal transfor-
mations restricted the probability distribution of wb to
a Gaussian independent of the other wbs. No such sym-
metry requirement constrains the Poisson case. The wbs
will depend on the microscopic model. We nevertheless
expect them to be governed by a distribution of some
finite variance. For the purpose of making illustrative
plots, we simply use the same distribution of wbs as for
the GOE, Eq. (18).

Fig. 2(b) shows the structure of the Eαs, Uαs, and
Oαs for the Poisson distribution, alongside the results
reproduced for the usual GOE in Fig. 2(a). The results
are very similar, though with careful analysis, one can see
that the bound states and associated resonances in the
Poisson ensemble are not repelled as in the GOE, and
consequently have a less regular spacing.

Broad resonance in RMT background. A
remarkable feature of complex atomic scattering has
emerged from studies of lanthanide atom collisions [44]:
almost all resonances (bound states) are part of a dense
forest of narrow, roughly RMT-distributed levels, but oc-
casionally an orders-of-magnitude broader resonance ap-
pears and couples to this background. We mimic this by

4 This (fairly standard) nomenclature is used because it is a dis-
tribution of spacings arising from a Poisson process. It is not to
be confused with the usual Poisson distribution, which counts a
discrete number of events k in a certain time interval, where the
events are sampled from a Poisson process. (These two distribu-
tions do both take the form of exponentials of their argument,
however.)
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adding a single additional level at energy ν′ with coupling
strength w′.

A strong hypothesis has been advanced in Ref. [44] for
the physical origin of this effect. They suggest that the
closed interaction channels couple to create the dense set
of RMT-like resonances, while the open channel harbors
a shallow bound state that does not couple to the closed
channels strongly enough to inherit the RMT proper-
ties. This shallow bound state has universal properties
(e.g., dependence on B-field) that are standard for single-
channel scattering. This hypothesis is able to account for
the data, but its microscopic origin – why the open chan-
nel bound state is not described with RMT-like statistics
– remains unclear.

One way of thinking about this hypothesis semiclassi-
cally is that part of the phase space has chaotic dynamics
(giving rise to the dense RMT bound states), while some
small portion of the phase space has integrable dynam-
ics (giving rise to the singled out bound state). This is
reminiscent of the phenomenon of “quantum scarring” in
quantum systems where the phase space distribution is
invariant over a large region of phase space, as expected
for chaotic, ergodic dynamics, but certain “scarred” re-
gions display more interesting structure [101].

Fig. 2(c) shows the effects that this broad reso-
nance + RMT model has on the Eαs, Uαs, and Oαs.
It shows that the resonances in Uα are qualitatively like
the GOE with a broad resonance in Uαs additively su-
perposed with this.

Two overlapping RMT distributions. One may
extrapolate into a new regime the idea that there are sep-
arate regions in phase space that are uncoupled: Rather
than an integrable piece and a chaotic piece as consid-
ered above, we can consider two chaotic pieces which are
weakly coupled. This would occur for example, if there
were a nearly-conserved quantum number, but chaotic
dynamics within each manifold of that conserved quan-
tum number. One could imagine a scenario where the un-
derlying microscopic separation is natural in terms of the
usual degrees of freedom – for example one could imag-
ine that rotational sectors mix strongly, but vibrational
sectors couple only weakly. Alternatively, the regions of
phase space that decouple could be highly nontrivially
related to the rotational and vibrational states.

Although there is no obvious such separation in the dy-
namics of two colliding NRMs, it is a plausible route to a
failure of the usual RMT, and it is mathematically sim-
ple to capture. If there are uncoupled or weakly coupled
ergodic regions, we expect each of the two Hilbert spaces
corresponding to these regions to inherit their own RMT.
That is, we take a realization of νbs to be the union of
two sets labeled by j = 1, 2, each of which samples eigen-
values of Ĥb and couplings wb from the GOE probability
distributions

P (j)(Ĥb) = N (j)
H e−Tr Ĥ2

b/2σ
2
j (44)

P (j)
w (wb) = N (j)

w e−w
2
b/2σ

2
w,j . (45)

The probability distributions for j = 1 and j = 2 are dis-

tinct because the values of σj are distinct (i.e. σ1 6= σ2).
Note that the single broad resonance + RMT distribution
considered previously emerges as the limit of this 2-RMT

distribution when the ρ
(1)
b /ρ

(2)
b differs greatly from unity.

Then, for a given energy window, there will be many lev-
els from one of the distributions that are relevant, while
the other distribution will contribute a single level in this
window.

Fig. 3(c) shows the nearest-level spacing distribution

for the two-GOE ensemble. The RvdW, µ, and ρ
(1)
b are

identical to the standard GOE case, while the second

GOE has ρ
(2)
b = 0.1ρ

(1)
b . We emphasize that sampling

the νb’s as a union of two GOE ensembles with standard
deviations σ1 and σ2 is not equivalent to sampling the
νb’s from a single GOE ensemble σtot, regardless of how
σtot is chosen5. Fig. 3(c) illustrates one aspect of how the
two-RMT distribution differs from the usual GOE RMT
distribution by contrasting the shape of the nearest-level
probability distribution in each case. We also note that
the neighbor spacing distribution is not the superposi-
tion of the spacing distribution for each of the RMT dis-
tributions (although in some cases this is true or a good
approximation [51]).

Fig. 2 shows the Eαs, Oαs, and Uαs for the two-GOE
ensemble. The structure of Uαs is a forest of resonances
from the dense GOE superposed with broader resonances
resulting from the less dense GOE.

Other distributions. The three beyond-RMT mod-
els we have introduced are illustrative. There are ob-
vious extensions that take the considerations above fur-
ther. For example, one could interpolate between the
Poisson and GOE limits, perhaps using a Brody distri-
bution [102]. Or one could interpolate these by devi-
ating from a completely random GOE ensemble through
adding more and more integrals of motion [103]. Another
direction is that one could include three, four, or more
overlapping RMTs. A final approach is that, in prin-
ciple, one can compute the detailed level statistics and
couplings from the microscopic four-atom problem using
the techniques in Ref. [33]. Reference [33] sets this up
formally, although the calculations would be challenging
already for simple diatomic molecules.

5 To convince yourself that this is true, consider σ(1) � σ(2):
the first distribution’s levels are much closer together than the
second’s. The probability distribution of nearest-level spacings
∆ is then dominated for not-too-large ∆ by the contributions
from P (1), since it is unlikely that a level from P (2) will be close.
However, the large ∆ tail of the distribution must decay faster
than P (1): the probability of the nearest-level from P (1) being
at least ∆ is small, but the probability of the nearest-level from
either distribution being at least ∆ is much smaller, since it
would require there being no level within ∆ from either P (1) or
P (2).
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2. Exploring RMT and beyond in experiments.

Quantitatively exploring the nature of the levels and
their couplings in would provide valuable insight into
quantum chaos. Although the connection between classi-
cal chaos and RMT spectral statistics is well-established
both theoretically and experimentally, never has it been
possible to quantitatively explore the phenomena in sys-
tems possessing the multitude of tuning knobs that
NRMs offer – e.g., molecular species, external electric
fields, magnetic fields, and optical lattice depths.

C. Beyond transition state theory for the
molecular dissociation rate γb

1. Beyond TST

There is no universally applicable approximation to
capture corrections to TST, and the theory used will de-
pend on the relevant phenomena that one aims to cap-
ture. For example, calculating quantum corrections will
require different techniques than calculating the effects
of locally being out of equilibrium. Accounting for re-
crossing across the dividing surface similarly require a
different set of approaches.

One of the most satisfying approaches would be to
compute the dissociation rate from a model of the con-
stituent atoms. This would be captured via the ap-
proach in Ref. [33]. However, this is a computationally
formidable problem. Quantitatively calculating reaction
rates – in a way that is reliable without independent con-
firmation – is possible only for the simplest molecules.

Absent such a microscopic approach, it is necessary to
employ less controlled approximations. A phenomeno-
logical approach is to consider the true dissociation rate
to be some numerical prefactor times γTST. For example,
if one expects significant recrossings of the dividing sur-
face, one may expect a reduced dissociation rate. On the
other hand, if one is concerned that the system may be
out of equilibrium within the dividing surface, then the
full phase space may not be explored and the effective ρb
is reduced. It is straightforward to phenomenologically
account for these features, but quantitatively calculating
these factors is challenging.

One potentially crucial effect in reaction dynamics
is that intramolecular vibrational energy redistribution
(IVR) proceeds at a finite rate, and may take longer than
the reaction itself. This idea has succeeding in explain-
ing several non-RRKM unimolecular dissociation reac-
tion rates. One prominent approach to including the fi-
nite rate of IVR over the reaction timescale is the local
random matrix theory (LRMT) [104–110]. This accounts
for the fact that locally in space the system may be er-
godic and described by RMT, but that energy transfer
spatially can be slow compared to the timescale of the re-
action. One can observe enhancements or reductions of
the RRKM dissociation rate by an order of magnitude. It

is an interesting question to what extent this finite time
for energy transport will be relevant for small, diatomic
molecules versus large, complex ones.

2. Implications if experiments measure deviations from
TST

The TST is the most uncontrolled approximation used
in our calculations, and consequently testing this approx-
imation and clarifying its applicability will potentially
provide a huge scientific payoff. This is because the TST
is a crucial tool in chemical kinetics, from atmospheric
chemistry to pharmaceuticals [37]. Numerous compar-
isons of TST to experiment exist, but rarely with the
versatility and control offered by ultracold NRMs. Addi-
tionally, due to the temperatures involved, prior experi-
ments invariably considered the reaction rates averaged
over large numbers of molecular states.

Ultracold experiments will much more accurately re-
solve the states involved. This resolution is dramatically
enhanced even further by an optical lattice: It can be sev-
eral orders of magnitude more precise than the already
spectacular resolution of an ultracold gas in the absence
of a lattice. Sec. V discusses this more.

Developing theories that are able to describe the state-
by-state variation can have an important impact on
understanding and controlling chemical reactions, even
those at room temperatures that ultimately average over
many states. This is because upon varying a parameter
(some molecular property or external field) away from
a regime in which the TST describes the dynamics, the
relevant average over states may be altered. Quoting
Levine, “One of the greatest challenges in chemistry is to
. . . reveal how chemical transformations occur that are
otherwise hidden behind thermal averages and multi-step
mechanisms.” [37].

D. Bimolecular complex polarizability

In Refs. [33, 34] it was assumed that the polarizability
of the BCCs αc was twice that of individual molecules
αm. The intuition for this estimate is that polarizabil-
ity scales roughly linearly with the size of the object,
and the complex states which contribute most at thresh-
old energies are loosely bound, occupying a physical vol-
ume more or less twice that of a single molecule. This
is similar to loosely bound Feshbach molecules, which
have a polarizability approximately twice that of their
constituent atoms. For example, the polarizability of
Cs2 in its least bound vibrational level has been pre-
dicted to be 1.96αCs and measured to be 2.02αCs [20, 111]
and the polarizability of heteronuclear KRb Feshbach
molecules has also been measured to be consistent with
αK + αRb [112]. For ground state molecules, which in
the context of atomic scattering are somewhat analogous
to of our closed-channel dominated BCC resonances in
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FIG. 6. Effect of bimolecular collision complex ac po-
larizability deviating from twice the molecules’ ac po-
larizability. Eα (left) and Uα (right) versus trap depth ω,
with weight set as in Fig. 2. (a) Bimolecular collision complex
polarizability αc is taken to be equal to the single molecule
polarizability αm (rather than αc ≈ 2αm that was taken in
earlier plots). (b) Each bimolecular collision complex has a
polarizability independently sampled from a Gaussian with
standard deviation αm.

molecular scattering, the polarizability can be substan-
tially different from twice the atomic polarizability, espe-
cially near resonances [113].

Let us now consider the physical consequences of αc 6=
2αm. First, this leads to a different trapping frequency
ωc compared to the frequency ω of individual molecules,
with ωc/ω =

√
αc/2αm. Here, the factor of two in the

denominator comes from the fact that the BCCs have
twice the mass of molecules. Next, we note that the root-
mean-square size of the closed channel wavefunction in
the relative coordinate is 〈R2〉 ∼ r2

sr, and so the associ-
ated contribution of the finite size of the complex to the
harmonic trapping energy is ∼ ωc(rsr/lho)2. The ratio of
the harmonic and short range length scales lho/rsr ∼ 25
in typical situations, and so the relative coordinate con-
tributes an energy ∼ 0.1% of the zero-point energy, which
we will neglect. Hence, the only potential energy contri-
bution arising from the BCCs comes from the center of
mass motion, and takes the value

(2nCOM + `COM + 3/2)ωc

= (2nCOM + `COM + 3/2)
√
αc/(2αm)ω . (46)

In summary, the energies of the BCCs as a function of
ω show a “dispersion” with respect to free molecules, as
shown in Fig. 6. Since our resonances are predicted only
statistically, adding this dispersion causes no qualitative
changes in our model at fixd ω. Instead, it just shifts the
energies of the BCCs as a function of ω.

Finally, we note that the difference in trap-
ping frequencies introduces Franck-Condon factors

FnBCC,`BCC;nCOM,`COM
= 〈nBCC, `BCC|nCOM, `COM〉 asso-

ciated with a pair of molecules in the center of mass
state |nCOM, `COM〉 making a transition to a BCC with
center of mass state |nBCC, `BCC〉. As αc → 2αm,
FnBCC,`BCC;nCOM,`COM

→ δnBCC,nCOM
δ`BCC,`COM

. Gener-
ally speaking, these Franck-Condon factors will tend to
further narrow closed-channel dominated resonances, for
which αc may be significantly different from 2αm, and
leave the width of open-channel dominated resonances
relatively unaffected.

V. CONCLUSIONS AND OUTLOOK

In summary, we have calculated the Uα and Oα param-
eters that appear in the effective lattice model Eq. (1),
whose form was derived in Ref. [33]. Because a full mi-
croscopic calculation of these parameters is intractable,
we necessarily turned to approximations. As a first step,
we calculated these within the same standard suite of
approximations that were employed in Ref. [34].

Section III described this standard suite of approxima-
tions in considerable detail. These approximations con-
sisted of RMT, QDT, TST, stitched together via the sep-
aration of length scales rsr � RvdW � lho. In addition to
a more extensive presentation of Ref. [34]’s approxima-
tions, Sec. III furthermore derived the criteria for their
applicability and discussed the likelihood that NRMs sat-
isfy these criteria.

While some of these approximations are widely ap-
plied, some are uncontrolled and one may expect some
deviations, especially quantitative ones. Sec. III de-
scribes possible deviations from the standard suite of
approximations, and presents more accurate theories to
account for them. It also considers the consequences of
these deviations for the Uαs and Oαs.

In light of these uncertainties, a key goal going for-
ward will be to assess the accuracy of the predictions
based on these various approximations. Ultracold experi-
ments have long been understood to provide an extremely
tunable and high-accuracy system in which to probe the
chemical behaviors represented in our approximations,
largely by virtue of their low ∼< µK temperatures. In
a lattice, this energy resolution is increased by several
more orders of magnitude, to well under a nK. This is
because the energy in a deep lattice is precisely quan-
tized at the harmonic oscillator frequency; temperature,
rather than smearing out the energy, transfers weight to
other discrete frequencies that have little impact on the
measurement of interest. As one example, experiments
can utilize lattice modulation spectroscopy to probe the
parameters Uα and Oα. Taking a rather pessimistic es-
timate of an interrogation time of 100ms, well under the

∼> 10s lifetimes already observed for reactive molecules in
a lattice, one finds a 0.5nK energy resolution. Pushing
this interrogation time towards potential lifetimes of non-
reactive molecules in a lattice would allow the lattice pa-
rameters and the approximations underlying them to be
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probed with energy resolution approaching a picoKelvin!
Whether or not experiments measure properties in

agreement with the predictions for Uα and Oα, there will
be a broad-reaching scientific payoff. If the approxima-
tions are found to be accurate, then we will possess a
quantitative lattice model suitable for future studies of
NRMs in an optical lattice, analogous to the Hubbard
model for ultracold atoms. This will open up qualita-
tive new regimes of physics that are inaccessible with
atoms. Furthermore, in this case approximations such as
TST will be validated in an new regime with unprece-
dented accuracy. On the other hand, and arguably even
more exciting, if experiments find the approximations are
found to be lacking, this will have impact beyond ultra-
cold physics, highlighting the limits of these broadly used

approximations and paving the way to forge new ones.
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Hanna, C. J. Williams, P. S. Julienne, and R. Lemański,
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cold collisions of excited rotational dipolar molecules,”
New Journal of Physics 17, 035015 (2015).

[57] M. L. Wall, Erman Bekaroglu, and Lincoln D. Carr,
“Molecular Hubbard Hamiltonian: Field regimes and
molecular species,” Phys. Rev. A 88, 023605 (2013).

[58] James F. E. Croft, Alisdair O. G. Wallis, Jeremy M.
Hutson, and Paul S. Julienne, “Multichannel quantum
defect theory for cold molecular collisions,” Phys. Rev.
A 84, 042703 (2011).

[59] James F. E. Croft, Jeremy M. Hutson, and Paul S. Juli-
enne, “Optimized multichannel quantum defect theory
for cold molecular collisions,” Phys. Rev. A 86, 022711
(2012).

[60] Jisha Hazra, Brandon P. Ruzic, N. Balakrishnan, and
John L. Bohn, “Multichannel quantum defect theory for
rovibrational transitions in ultracold molecule-molecule
collisions,” Phys. Rev. A 90, 032711 (2014).

[61] William H. Miller, “Beyond transition-state theory: a
rigorous quantum theory of chemical reaction rates,”
Accounts of chemical research 26, 174–181 (1993).

[62] W. Miller, Dynamics of molecular collisions, Vol. 2
(Springer Science & Business Media, 2013).

[63] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Mi-
randa, B. Neyenhuis, G. Quéméner, P. S. Julienne,
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[68] Goulven Quéméner and John L. Bohn, “Shielding 2Σ ul-
tracold dipolar molecular collisions with electric fields,”
Phys. Rev. A 93, 012704 (2016).

[69] S. Kotochigova and E. Tiesinga, “Ab initio relativis-
tic calculation of the RbCs molecule,” The Journal of
chemical physics 123, 174304 (2005).

[70] Svetlana Kotochigova, “Relativistic electronic structure
of the Sr2 molecule,” The Journal of Chemical Physics
128, 024303 (2008).

[71] Anthony Stone, The theory of intermolecular forces
(OUP Oxford, 2013).

[72] Martin Berninger, Alessandro Zenesini, Bo Huang, Wal-
ter Harm, Hanns-Christoph Nägerl, Francesca Ferlaino,
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