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We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lat-
tice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms.
Through a sequence of shaking functions, the atoms undergo an interferometer sequence of split-
ting, propagation, reflection, reverse-propagation and recombination. Each shaking function in the
sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions.
As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer in-
creases with interrogation time. The shaken lattice interferometer may also be optimized to sense
signals of interest while rejecting others, such as the measurement of an AC inertial signal in the
presence of an unwanted DC signal.

PACS numbers: 37.25.+k,37.10.Jk, 03.75.Dg

I. INTRODUCTION

This work introduces an approach to atom interferom-
etry using a shaken optical lattice. Consider atoms in-
teracting with an off-resonant one-dimensional standing
light field produced by retro reflecting an incoming laser
beam with a mirror. By “shaken” we mean that the lon-
gitudinal positions of the lattice nodes are modulated, for
example, by moving the reflecting mirror back and forth.
The pioneering work of Pötting et al. [1] established that
it is possible to transform an initial atomic wave function
into another desired wave function by shaking the lattice
in a prescribed way. The shaken lattice concept has also
been broadly applied to study atom tunneling and trans-
port in lattices [2–4] as well as ferromagnetism [5]. Atoms
held in a shaken lattice have also been used to measure
gravity [6, 7].

In their original work, Pötting et al. sought a specific
redistribution of the momentum state of atoms in the
lattice. They achieved the desired wavefunction trans-
formation through the use of a genetic algorithm (GA)
[1, 8, 9]. Here we use this technique to carry out a set
of transformations that reproduce the ordered sequence
of operations associated with a Michelson interferometer
[10], namely splitting, propagation, reflection, reverse-
propagation, and recombination of the atomic wavefunc-
tion, as shown in Fig. 1. The protocol needed to exe-
cute each operation is found through the use of a GA.
While we use a GA to optimize the shaking, the inter-
ferometer sequence may also be found through use of an
optimal control algorithm such as the Krotov [11, 12] or
CRAB methods [13]. Similar methods have been used
to solve problems in other atomic systems, such as mat-
ter wave pulse shaping [14] or state inversion of a BEC
[15]. Optimization methods have been used in atom in-
terferometers, as in the Ramsey interferometry scheme of
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FIG. 1. (color online) The full interferometer sequence.
Blue clouds represent atom wavepackets interacting with the
shaken lattice. Atoms begin in the ground Bloch state of
the lattice (Fig. 5) and are split into two oppositely prop-
agating wavepackets. The atoms are then reflected, reverse-
propagated, and recombined back into their initial ground
state (in the absence of a signal), thus completing the inter-
ferometer sequence.

reference [16] or to find efficient light pulse schemes for
atom interferometry [17].

We show that in the Michelson configuration, the inter-
ferometer’s sensitivity to acceleration is consistent with
the T 2

I sensitivity achieved by free-space atom interfer-
ometers [18–22]. Here, TI is the interrogation time of
the interferometer. Furthermore, one interesting aspect
of shaken lattice interferometry (SLI) that is distinguish-
able from conventional atom interferometry is that SLI
affords a means to control the transfer function of the sys-
tem. As a simple example consider a scenario in which
one wishes to eliminate the interferometer sensitivity to
the constant force of gravity. By optimizing the interfer-
ometry sequence in the presence of gravity, this DC signal
may be eliminated. Additionally, the interferometer may
be configured to be sensitive to AC signals. Using the
reciprocal scheme shown in Fig. 2, a DC signal may be
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FIG. 2. (color online) The reciprocal interferometer sequence.
The reciprocal interferometer modifies the standard Michel-
son interferometer sequence shown in Fig. 1 so that the atoms
travel a fully symmetric path. This configuration is designed
to be sensitive to AC accelerations and immune to DC accel-
erations.

eliminated in favor of sensitivity to an AC signal. Thus,
using SLI one can tailor the sensitivity of the interferom-
eter to a given signal by learning to enhance a desired
signal and reject undesired signals outside of the target
sensitivity range.

This work proceeds as follows: In Sec. II the numerical
simulation and optimization process is presented. Section
III discusses how the optimization is applied to the stan-
dard Michelson interferometer. Section IV shows how a
reciprocal scheme may be used to enhance an AC accel-
eration signal and suppress a DC signal. Section V gives
a detailed analysis of the sensitivity of the shaken lattice
interferometer as well as the errors that could affect mea-
surements made in an experimental system. Section VI
analyzes the robustness of the results in the presence of
variations in parameters, and Sec. VII concludes.

II. SIMULATION AND OPTIMIZATION OF
THE SHAKEN LATTICE INTERFEROMETER

In this section, we provide an overview of the SLI con-
cept and present the numerical and optimization meth-
ods we use to study it. We assume that non-interacting
atoms are trapped in an infinite 1-D lattice potential and
study their evolution using the one-dimensional time-
dependent Schrödinger equation (TDSE). The TDSE
is propagated using a symmetrized split-step operator
method [23]. In neglecting atom-atom interactions we as-
sume that the lattice is sparsely populated, e.g. though
the use of a 3-D lattice where in the non-shaken dimen-
sions the lattice is so deep that few atoms populate each
site, but in the shaken dimension, the lattice is shallow
enough that the atoms remain delocalized. The infinite
lattice approximation used here is reasonable if the lattice
beam has a Rayleigh range much larger than the lattice

wavelength. This is true for lattice beams with near-
infrared wavelengths and waists on the order of tens of
microns.

Consider atoms trapped in a red-detuned optical lat-
tice potential with a time varying phase φ(t). The po-
tential is given by

V (x, t) = −V0
2

cos [2kLx+ φ(t)], (1)

where the lattice wavenumber is kL = 2π/λL for a lattice
wavelength λL. The lattice depth is V0, given in units
of the lattice recoil energy ER = h̄2k2L/2m for an atom
with mass m. In this work we take the lattice depth to
be V0 = 10ER. This depth is chosen because it is easily
accessible experimentally and shallow enough that atoms
remain delocalized in the lattice potential.

The main goal of SLI is to find an optimal shaking
function φ(t) that transforms an initial state ψ0 to a de-
sired final state ψd. To accomplish this, we use a GA to
optimize the shaking function to within a specified pre-
cision. In this way we construct a sequence of shaking
functions that cause the atoms to undergo a conventional
interferometer sequence.

The GA used in this work is based on the work in ref-
erences [1, 8] and relevant details are included here. A
block diagram of the GA procedure is shown in Fig. 3.
First, the algorithm produces an initial population of A
individuals. This is the first generation, denoted G = 1.
Each individual α is produced by generating a random
vector ~α(ω) of l Fourier amplitudes at uniformly-spaced
frequencies ωi from DC up to a certain bandwidth set by
the user. In this work, we set A = 20 and the Fourier
amplitudes are randomly chosen from a normal distribu-
tion with standard deviation σ = 100. We pick l ≈ 100
and limit the bandwidth to about 35 kHz. The value of
σ is chosen to limit φ(t) to within approximately ±2π
radians and the bandwidth is chosen to limit the force
on the atoms due to the shaking, as discussed further in
Sec. V. We choose an l that gives good convergence of
the GA within a reasonable amount of computation time.

Once the vector ~α is chosen, its Fourier transform is
taken to produce a time-varying function. To maintain
smooth turn-on and turn-off, this function is multiplied
by an envelope function fenv(t) = sin2 (πt/T ) that goes
to zero at its endpoints. This results in a shaking func-
tion φα(t) for each individual. The shaking time T is a
parameter chosen by the user and is set here to approx-
imately 0.5 ms. We choose the sine envelope shape over
e.g, a Gaussian because it possesses a quicker “turn-on”
time and in practice, the discontinuities at the endpoints
do not cause undesired behavior in the shaking function.

Once the initial individuals are generated, the ini-
tial state ψ0 is propagated forward in time by solving
the TDSE with φα(t), producing a final state ψα. Be-
cause experimental measurements can provide momen-
tum state populations via time-of-flight imaging, we rep-
resent a simulated result for the Fourier transform of
the final wavefunction Ψα(k) = F{ψα(x)} as a vector
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FIG. 3. A block diagram illustrating the steps taken in the
GA. Given the initial and desired states, the first generation
G = 1 of A individuals is randomly generated with unique
shaking functions φα(t). We then solve the TDSE for each
individual in the generation. These results are then used to
produce the next generation of individuals, denoted G = 2.
After the jth run of the simulation a generation G = j+ 1 re-
sults from the mixing of the previous generation’s individuals
(see Fig. 4). Once the convergence criterion is met, the GA
stops.

~Pα(|Ψα|2). This vector has components Pα,n represent-
ing the relative atom population in each momentum state

2nh̄kL for n = [−∞,∞]. A similar vector ~Pd(|Ψd|2) is
constructed for the desired final state. In this work n
is truncated at n = [−5, 5] since higher-order momen-
tum states are negligibly populated. While it is possi-
ble to consider final states with non-integer momenta,
these states remain unpopulated in our simulations and
are thus not considered in the GA. This arises physically
due to the fact that in momentum space the TDSE takes
the form [1]

ih̄
∂Ψ(k, t)

∂t
=
h̄2k2

2m
Ψ(k, t)− V0

4
[eiφ(t)Ψ(k − 2kL, t)

+ e−iφ(t)Ψ(k + 2kL, t)]. (2)

Therefore, due to the presence of the applied potential,
only transitions between momentum states separated by
2h̄kL are allowed.

For a given shaking protocol φα(t), the GA assesses
the quality of the final momentum-space population via

a fitness function f(~Pα) which quantifies the difference
between the final and desired states. The fitness func-

tion will be discussed in detail later in this section. Once
the fitness of the initial population is evaluated the indi-
viduals are ranked in terms of their fitness (because we
are minimizing the fitness function, lower fitness values
are better) and the genetic algorithm uses this ranking
to produce the next generation of individuals. In gen-
eral the procedure is identical from one generation G = j
to the next, G = j + 1. The Alive best individuals are
allowed to proceed unaltered to the next generation, a
process known as “elitism” that ensures that the best
(lowest) fitness value will never increase. The Adie worst
individuals are deleted entirely. In this work we choose
Alive = 2 and Adie = 4. The remaining A − Alive new
individuals are generated by randomly picking “parents”
from the surviving population for each new individual.

The new generation is created from the previous
generation using methods adapted from reference [1].
These methods are discussed here and illustrated in
Fig. 4. Given two parent vectors of Fourier ampli-
tudes ~α and ~α′, one-point crossover picks a random in-
dex c and creates two new vectors ~αa and ~αb by swap-
ping the values of the parent vectors starting at in-
dex c such that ~αa = {α1, α2, ..., αc, α

′
c+1, ..., α

′
l} and

~αb = {α′1, α′2, ..., α′c, αc+1, ..., αl}. Two-point crossover
performs the same swap, but two indices c1 and c2 >
c1 are randomly chosen. This results in two chil-
dren: ~αa = {α1, α2, ..., αc1 , α

′
c1+1, ..., α

′
c2 , αc2+1, ..., αl}

and ~αb = {α′1, α′2, ..., α′c1 , αc1+1, ..., αc2 , α
′
c2+1, ..., α

′
l}.

Mutation takes a vector ~α and produces a child ~αa. The
child ~αa is identical to ~α except at a random index c
where αa,c = m̃ and m̃ is a random number such that
−M ≤ m̃ ≤ M for some mutation limit M . Creep is
similar to mutation, but αa,c = αc + (0.5− r) ∗C, where
r is a random number between 0 and 1 and C is defined
as the “creep” rate. We set both M and C to be 1000.
These values are large enough to be effective at changing
the population, but small enough to keep the final shak-
ing function phase to within approximately ±2π radians.

The idea behind the mixing in this and other GAs is
to use the components of the A − Adie best individuals
to produce a new generation with better fitness. When
generation j+ 1 has been generated, the simulation runs
again and evaluates the new fitness values. This proce-
dure iterates until a preset number of iterations has been
performed or the fitness reaches a suitable level.

The goal of the GA is to minimize the fitness function

f(~Pα). The fitness function is constructed so that the
final momentum state converges to the desired state, and
the lattice “learns” to control the atoms. As an example

we show the f(~Pα) for the split state in Eq. (3). Splitting
of the ground state wavefunction results in two traveling
matter waves of the same amplitude with momenta of
±2nh̄kL, analogous to an optical beamsplitter. For the
simplest case modeled here the final state has momenta
corresponding to n = 1. The fitness function used to
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FIG. 4. (color online) Each iteration, the genetic algorithm
mixes the best individuals from the previous generation to
create “children” that populate the next generation. Each
individual is a vector of values where red corresponds to a
minimum value and purple corresponds to a maximum value.
In each case the indices of crossover or mutation are chosen
at random. The numbers label the index and their color is
chosen for legibility. The methods presented here are adapted
from reference [1]. a) One-point crossover at index 6. b) Two-
point crossover at indices 5 and 9. c) Random mutation of the
value at index 2. d) Change of the value at index 5 through
a small “creep” of the value.

evaluate the final split wavefunction is

f(~Pα) = |~Pd − ~Pα|+
∑
|n|6=1

|Pd,n − Pα,n|

+

∣∣∣∣Pα,1 − Pα,−1Pα,1 + Pα,−1

∣∣∣∣. (3)

The first term in Eq. (3) quantifies the difference be-
tween the two momentum state populations for the final
state and the desired state. The second term penalizes for
atoms not in the desired ±2h̄kL momentum states. The
last term penalizes for asymmetry in the ±2h̄kL momen-
tum states. The penalizing terms are added to improve
the rate of convergence to the desired state. Similar fit-
ness functions are used for all shaking protocols devel-
oped in this work, and in general, any fitness function
may be tailored to the individual requirements of each
protocol in order to converge more quickly on a desired
state.

FIG. 5. The quantized momentum population of atoms in
the ground Bloch state of an infinite lattice with V0 = 10ER.
This ground state is the initial wavefunction of the atoms at
the start of the interferometer sequence and the final state of
the atoms after recombination with no signal applied.

FIG. 6. (color online) Shaking protocol for the optimal split-
ting shown in Table I. The envelope function ensures slow
turn-on and turn-off at the endpoints. (inset) Fourier trans-
form of the bandwidth-limited shaking function.

III. DEVELOPMENT OF A MICHELSON
INTERFEROMETER

To implement the Michelson interferometer sequence
we begin with atoms in the ground Bloch state of the
lattice. The momentum population of the ground state
is shown in Fig. 5 [24]. The GA then uses Eq. (3) as the
fitness function to find the optimal shaking protocol that
splits the atom wavefunction. As stated in the last sec-
tion the final split state is a pair of equal-amplitude waves
moving with equal and opposite momenta. An optimized
shaking protocol for splitting is shown in Fig. 6, showing
the slow turn-on/off and the band-limited nature of the
shaking function.

As the split states are not eigenstates of the lattice
we find a second modulation protocol that maintains



5

the purity of the momentum states as they propagate.
Three additional shaking protocols are needed to reflect,
reverse-propagate, and recombine the atoms. Once the
five phase-modulation protocols are learned, interfero-
metric measurements may be performed by repetition of
their ordered sequence. The full Michelson interferome-
ter sequence is illustrated in Fig. 1.

During propagation and reflection it is important to
control each momentum component separately because
the initial and final momentum populations are the same.
In these cases the TDSE solver is run twice. The first run
begins with an initial state where all atoms are in the
−2nh̄kL state and modulates the lattice with a function
φpr(t). The second run begins with atoms in the 2nh̄kL
state and applies the same phase modulation function
φpr(t). When propagating the atoms, the desired state is
identical to the initial state for each momentum compo-
nent. The GA then sums the fitness of both final states
and optimizes φpr(t). The optimal φpr(t) will thus propa-
gate the atoms without “crosstalk” between the two mo-
mentum states when applied to the linear combination
of the two states. For reflection this simultaneous two-
state optimization proceeds in the same way, but for an
initial state with ±2h̄kL, the final state has momentum
∓2h̄kL. After reflection the atoms are again propagated,
this time with reversed momentum.

The final step of the interferometry sequence recom-
bines the two split waves. The recombination scheme is
as follows: the initial and desired states considered in
splitting are swapped, such that the desired state is now
the initial state and vice versa. The GA is run to find a
modulation sequence that returns all of the atoms in the
two split matter waves to the ground Bloch state. It is
this final state of the atoms that changes when a signal
is applied.

In this paper the variation Dj,k between two states

with momentum vectors ~Pj and ~Pk is defined as

Dj,k = (1− ~Pj · ~Pk)× 100%. (4)

By quantifying the difference Df,a between the final state

after an acceleration signal is applied (~Pa) and the final

state after recombination (~Pf ) one may quantify the de-
gree of orthogonality between these two states. Equation
(4) provides a good measure of SLI robustness against
noise for the purposes of this initial work. This is dis-
cussed further in Sec. VI.

For each shaking protocol, Table I shows the initial,
desired, and final momentum states, as well as the dif-
ference between the optimized final state and the desired
state as defined in Eq. (4). The best result of 5 runs
is shown, but in all cases, the variation is below 0.1%.
Section V will discuss the interferometer sensitivity and
scaling with the interrogation time. Variation of the op-
timized results to variations in parameters will be dis-
cussed in the Sec. VI.

IV. OPTIMIZATION OF A RECIPROCAL
INTERFEROMETER

One of the advantages of SLI is the ability to control
the transfer function of the interferometer. That is, we
can change the shaking protocols to control the range and
type of signals to which SLI is sensitive, such as an AC
acceleration signal. Conversely, we can also design the
interferometer to reject certain signals. In this section,
we give examples of transfer function control with SLI.

To be sensitive to AC signals, the interferometer may
be set up in a reciprocal configuration as shown in Fig.
2. The difference between this and the interferometer
configuration shown in Fig. 1 is that the atoms take a
fully symmetric path. Because the space-time area of the
interferometer is zero [25], the interferometer should be
immune to DC accelerations but maximally sensitive to
a sinusoidal acceleration

~a(t) = ax sin (ωt)x̂ (5)

at ω = 2π/TI. Conversely, the non-reciprocal Michelson
interferometer should be less sensitive to this acceleration
but responsive to DC accelerations.

To show this the interferometer was simulated in the
following ways: First, the standard Michelson interfer-
ometer was optimized so that the atom wavefunction was
split, propagated for a time 2TP, reflected, reverse prop-
agated for a time 2TP, then recombined into the ground
state, as in Fig. 1. The second simulation of the recipro-
cal interferometer (Fig. 2) split the wavefunction, prop-
agated for a time TP, reflected the atoms, reverse prop-
agated them for a time 2TP, reflected the atoms again,
propagated them for a final time TP, then recombined
them back into the ground state. In both cases the total
propagation time was 4TP. Once the simulations were
completed, the shaking function φopt(t) was used to sim-
ulate propagation of the TDSE with the potential

V (x, t) = −V0
2

cos {2kLx+ φopt(t)}+maxx sin (ωt). (6)

Note that any potential term linear in x that is added
to a lattice potential may be unitarily transformed into
phase factor modifying the lattice potential (and vice
versa) [26]. Thus, from Eq. (2), we expect that the
momenta remain quantized even in the presence of an
applied force, and this is verified by our simulations.

The phase of the acceleration during interrogation
matters, and in this work, we analyze the effects of sinu-
soidal accelerations with no added phase. For the proof-
of-principle simulations done here we set TP = 0.502 ms,
ax = 0.115 m/s2, and scan the acceleration frequency
from DC to f = ω/2π ≈ 10/TP as shown in Fig. 7. We
expect that the sensitivity of the reciprocal interferome-
ter is maximal around f = 1/4TP = 0.5 kHz. Figure 7
shows a maximum sensitivity for the reciprocal interfer-
ometer around fmax ≈ 7 kHz. Moreover the reciprocal
interferometer shows a factor of 20 enhancement in sen-
sitivity over the non-reciprocal interferometer.
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TABLE I. Genetic algorithm results, best of 5 optimization runs.

Protocol State Momentum populationa % Diff. Bandwidth (kHz)b

−4h̄kL −2h̄kL 0h̄kL 2h̄kL 4h̄kL

Split Init. 0.0026 0.1345 0.7259 0.1345 0.0026

Des. 0 0.5 0 0.5 0

Final 0 0.4999 0.0001 0.4998 0 3.6× 10−6 57.8

Prop. Init. 0 0.5 0 0.5 0

Des. 0 0.5 0 0.5 0

Final 0.0006 0.4992 0.0010 0.4980 0.0006 2.5× 10−4 53.8

Refl. Init. 0 0.5 0 0.5 0

Des. 0 0.5 0 0.5 0

Final 0.0012 0.4958 0.0037 0.4980 0.0008 1.8× 10−3 55.8

Recomb. Init. 0 0.5 0 0.5 0

Des. 0.0026 0.1345 0.7259 0.1345 0.0026

Final 0.0026 0.1345 0.7258 0.1343 0.0026 5.4× 10−6 55.8

a Normalized to 1. Momentum states higher than |p| = 4h̄kL are negligibly populated.
b Bandwidth is defined as the frequency where the amplitude drops below 30 dB (0.1%) of the maximum. The shaking time is 0.5 ms.

FIG. 7. (color online) Response of the reciprocal (red, solid)
and non-reciprocal (blue, dashed) interferometers to a sinu-
soidal signal as in Eq. (6). The response is given in terms
of the variation Df,i between the optimized final state of the
interferometer and the final state after shaking with the ap-
plied signal as in Eq. (4). The total interrogation time of each
interferometer is 2.008 ms and the amplitude of the applied
acceleration signal is a0 = 0.115 m/s2. The reciprocal inter-
ferometer is 20 times more sensitive than the non-reciprocal
interferometer to a signal with f ≈ 7 kHz, showing that SLI
may be modified to tailor the interferometer response to an
AC signal.

The discrepancy between simulation and theory in the
value of fmax is due to the fact that the splitting, re-
flection, and recombination times are on the order of the
propagation time, not negligibly small as assumed. Thus,
the atoms interact with the shaken lattice for much longer
than assumed, increasing the frequency at which the in-
terferometer is maximally sensitive. Better agreement
can be reached by increasing the propagation time rela-

FIG. 8. The response of an interferometer optimized in the
presence of a DC bias acceleration aDC = 0.76 m/s2. The
interferometer response is clearly minimized in the vicinity
of aDC and increases away from this bias. This shows that
SLI can be used to reject a DC bias of a given magnitude or
measure perturbations around this bias.

tive to the splitting, reflection, and recombination times.

The interferometer may be optimized with a DC bias
so that it rejects a DC signal of a given magnitude. For
the results shown in Fig. 8 the standard non-reciprocal
interferometer was optimized in the presence of a DC
acceleration aDC = 0.76 m/s2. Then the response of
the interferometer was simulated for accelerations around
aDC. Figure 8 shows that the interferometer may be op-
timized and operated around a DC bias point. Thus,
by combining this DC bias and AC sensitivity one can
sense a time-varying acceleration of a certain frequency
while rejecting a background DC acceleration. For ex-
ample, a seismic signal could be detected while rejecting
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a DC signal due to gravity. An interferometer optimized
in the presence of gravity at one spatial location could
also be used to perform gravity gradiometry. A longer in-
terrogation time will narrow the “dip” shown in Fig. 8,
improving the interferometer response to signals around
the bias. Currently, the only limits to total interrogation
time are due to computation time and practical limits
are due only to the experimental limitations discussed in
Sec. V. Future work will focus on increasing the inter-
ferometer sensitivity and optimization of the reciprocal
interferometer for different values of the DC bias and AC
signal acceleration.

V. INTERFEROMETER SENSITIVITY AND
ERROR

In this section we calculate the interferometer sensitiv-
ity using the Fisher information metric [27]. Then, possi-
ble sources of error in SLI are provided. These sources of
error are considered in other conventional atom interfer-
ometry schemes, and potential solutions for the specific
case of SLI are given. In many cases, if the lattice power
does not drift and the optics are clean and stable, most
errors can be corrected for in a closed-loop system.

We consider the Michelson and reciprocal interferom-
eter schemes in this work as they are natural and famil-
iar starting points. In general it is possible to optimize
the interferometer to obtain higher sensitivities by chang-
ing the shaking protocol. Because the envelope function
allows for smooth turn-on and turn-off of the shaking
function, we can “stitch” together successive propaga-
tion steps to increase the interrogation time. Therefore
the dynamic range of the interferometer can be controlled
by changing the total propagation time. The GA is used
to force the atom wavefunction to maintain its state over
longer propagation times, correcting for any errors that
arise as the propagation protocol is repeatedly applied.

In other atom interferometry schemes, a phase is mea-
sured between two atomic wavepackets. However, in SLI
an applied acceleration will change the atoms’ momenta
as they interact with the shaken lattice. Therefore, be-
cause the atoms’ momentum population changes under
the influence of an applied signal, the definition of a phase
difference between two arms becomes ambiguous because
of the ambiguity in defining the arms of the interferom-
eter.

It is due to this ambiguity that we use the classical
Fisher information to quantify the interferometer sensi-

tivity, given an optimized state ~Pf and the final state

under acceleration ~Pa. The classical Fisher information
for a measured parameter θ given a probability distribu-
tion f(x, θ) can generally be written as

FC(θ) =

∫
dx

(
∂

∂θ
ln (f(x, θ))

)2

f(x, θ). (7)

We may then use the Cramer-Rao bound to find the

smallest resolvable change in the variable θ. The Cramer-
Rao bound is written

δθ =
1√
FC

. (8)

In the simulation, we have access to the full atom wave-
function. Thus, we could calculate the quantum Fisher
information [27] for the acceleration parameter a. How-
ever, experimentally we only have access to amplitude in-
formation and lose information about relative phases be-
tween the different interfering momentum states. There-
fore, in this work we only use the classical Fisher infor-
mation. To simplify the problem, we will re-write Eq.

(7) using the momentum population vector ~Pa. In this
case, we can write

FC,P (a) = Nat

N∑
n=−N

(∂Pa,n/∂a)2

Pa,n
= Nat( ~A · ~B) (9)

where ~A has components An = 1/Pa,n and ~B has com-
ponents Bn = (∂Pa,n/∂a)2 and Nat is the total number
of atoms. The sum extends from −N to N where N = 5
is where we truncate the number of momentum states
considered (see Sec. II) The factor Nat arises because
if the atoms are non-interacting, each atom counted is a

separate measurement of the probability distribution ~Pa.
This will give us a factor of

√
Nat in the denominator

of the expression for δa, as expected from conventional
interferometry. The Fisher information FC,P increases as
∂Pa,n/∂a increases. This can be intuitively understood
because operating in a regime with high ∂Pa,n/∂a is anal-
ogous to operating on the edge of a fringe in conventional
interferometry. From Eq. (9), we can immediately write
down the smallest resolvable acceleration δa using Eq.
(8)

δa =
1√
Nat

1√
~A · ~B

. (10)

To study how δa changes with interrogtion time TI, we
optimized the full interferometer for varying interroga-
tion times from approximately 1 to 20 ms. Once the op-
timization was complete, we took the optimized shaking
function φopt(t) and added an acceleration signal, alter-
ing the potential from Eq. (1) to

V (x, t) = −V0
2

cos {2kLx+ φopt(t)}+maxx. (11)

We then solved the TDSE with this potential and

recorded the final momentum state vector ~Pa for vari-
ous values of the acceleration ax. From this we use the
Cramer-Rao bound to get δa(TI), where the derivatives
were taken around a = 0.

The value of δa should decrease as TI increases such
that δa ∝ T−nI where n is the interferometer scaling,
since a lower value of δa corresponds to an interferom-
eter that is more sensitive to acceleration. To obtain
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FIG. 9. The minimum detectable acceleration δa scaled by√
Na plotted on a log scale versus the interrogation time TI.

The black points are simulation results, and the red line is a
fit of the form CT−n

I . Here, lower values of δa correspond to
a more sensitive interferometer.

n, we use the Levenberg-Marquardt algorithm to fit the
resulting data to a curve of the form f(TI) = CT−nI
for some constant C. The results are plotted in Fig-
ure 9. Note that the total interrogation time also in-
cludes the nonzero splitting, reversal, and recombination
time (about 1.5 ms of total shaking time). The fit gives
n = 2.21±0.31. This is consistent with the n = 2 scaling
achieved in most other atom interferometers (e.g. light-
pulse atom interferometers).

Using the numerical fit we can plot δa versus the atom
number for various interrogation times. This is shown
in Fig. 10. From this plot, we obtain δa < 10−11g for
interrogation times of 1 s and a million atoms.

It is possible that other shaken lattice interferome-
ter configurations could scale with higher powers in TI.
For example, one could optimize the interferometer to
accelerate the atoms in the lattice as they propagate,
much like the continuous-acceleration-Bloch interferom-
eters that scale as T 3

I [28]. One could also alter the fitness
function so that the GA now minimizes the Cramer-Rao
bound in Eq. (10) and maximizes the interferometer sen-
sitivity. This will be considered in a future work.

Trapped-atom interferometers generally suffer from
the deleterious effects of phase diffusion due to atom-
atom interactions [29]. In the shaken lattice interfer-
ometer, one may lower these interactions through sparse
population of the lattice, e.g. via the use of the three-
dimensional scheme discussed in Section II. That is, a
deep two-dimensional lattice with low single-site occupa-
tion may be used. This results in an array of 1-D low
atom number interferometers largely immune to the ef-
fects of phase diffusion. Shaking then takes place along
the third dimension. If each of the 1-D interferometers
is shaken in the same way, a collective measurement of
their responses can be made. To counter the effects of
shot noise, a few hundred of these 1-D “tubes” can be
loaded with about 100 atoms each. Then total atom
numbers can reach 106, lowering shot noise to levels com-

FIG. 10. The acceleration sensitivity δa (relative to g) for
varying atom numbers Na at TI = 10 ms (red), 100 ms (blue),
and 1 s (black).

parable with state-of-the-art light-pulse atom interferom-
eters based on Bose-condensed atoms [30].

Using the results above for the sensitivity scaling with
TI we can plot the acceleration sensitivity of the interfer-
ometer versus the atom number for various interrogation
times. This is shown in Fig. 10. From this plot, we can
expect a sensitivity better than 10−11g for interrogation
times of 1 s and 106 atoms.

In practice an optimized shaking function can be found
computationally and adjustments may be made by run-
ning an experiment with the learning algorithm in a
closed-loop scheme, which has been done before in cold
and ultracold atom experiments [31–33]. This may be
used to optimize in the presence of inevitable systemat-
ics due to nonlinearities in shaking, laser wavefront er-
rors, atom-atom interactions, and finite lattice effects.
For example, a closed-loop system can correct deviations
from optimal fitness due to the parasitic lattice reflections
discussed in the previous section as long as the deleteri-
ous effects are constant from shot-to-shot. Uncertainties
in lattice parameters such as the lattice depth or wave-
length due to imperfect lattice alignment or the Gouy
phase [34, 35] may also be corrected for in a closed-loop
system.

As in light-pulse atom interferometry the effects of un-
wanted inertial signals, e.g. spurious rotations, can be
subtracted out with the use of two interferometers oper-
ating in differential mode [36]. The common-mode signal
can then be recovered by subtracting the two interferom-
eter measurements.

The effects of decoherence from lattice shaking have
been studied extensively elsewhere [2–4, 6]. These ef-
fects occur for a certain range of shaking amplitudes and
frequencies, depending on the lattice depth and applied
acceleration. If the desired dynamic range is known then
undesired shaking frequencies and amplitudes can be fil-
tered out accordingly in the learning algorithm.

A common limit to the lifetime of lattice experiments
is defined by photon scattering. In other optical lattice
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experiments long atom lifetimes in the lattice are enabled
by servo systems that lower laser noise [37]. If the lat-
tice light is sufficiently far off of resonance the limit due
to photon scattering is reduced (although more power is
needed). Therefore, interrogation times on the order of
tens of seconds are possible in shaken lattice systems.
In the retro-reflecting lattice scheme, laser phase noise
is irrelevant, but unwanted motion of the retro-reflecting
mirror will cause unwanted shaking and give rise to spu-
rious signals. Thus any noise in the retro mirror motion
must be stabilized via a servo system.

Given the sources of error discussed in this section,
we can also analyze the robustness of the shaken lattice
interferometer. That is, we can study how the interfer-
ometer performance varies relative to variations in pa-
rameters such as lattice depth or wavelength. This is
discussed in the next section.

VI. ROBUSTNESS OF THE
INTERFEROMETER

In simulation the shaking function is optimized in an
ideal situation where the lattice wavelength and depth
are known exactly. However, in an experimental setting
there is uncertainty in these values. Thus, the robustness
of the shaking function to these errors is of interest. In
this section analysis is done with respect to the optimal
splitting function shown in Fig. 6, but the results pre-
sented here should hold for all stages of the interferome-
ter due to the similarities in shaking time and bandwidth.
As the interrogation time increases, however, we expect
the stability requirements to become more stringent, and
we present the results here only as a general example. In
what follows, the variation Df,i between the final state
after perturbation and the optimized state is calculated
using Eq. (4).

The results of variation of lattice depth and wavelength
are shown in Fig. 11. Changes in the lattice depth of 5%
and variations in the wavelength of 0.68% maintain the
variation between the perturbed final state and the op-
timized state to within 1%. For a mechanically stable
system such lattice depth variations can be controlled by
servoing the laser intensity, and as detailed in Sec. V such
a servo is desirable to limit heating due to laser intensity
noise. Wavelength drift may be controlled by locking
the laser, e.g. to an atomic hyperfine transition, provid-
ing frequency stability to better than 1 MHz. Therefore
the wavelength stability provided by laser locking is suf-
ficient.

Even if the lattice parameters are known exactly, in an
experimental system the shaking will have some associ-
ated noise. For example, noise in the electronics used to
shake (e.g. the driver of a piezoelectric mirror) will be
added to the desired shaking function. Undesired shak-
ing due to mechanical instability will also add noise to
the optimal shaking function. To simulate this, Gaus-
sian white noise of varying amplitudes was added to the

FIG. 11. (color online) Percent variation of the optimized
splitting shaking function shown in Fig. 6 after variations of
a) the simulated lattice depth and b) the simulated lattice
wavelength. A variation of 1% is marked in each plot with a
blue dashed line.

optimized splitting function. The resulting variation in
the perturbed final state relative to the optimized state
was recorded. At a threshold of about 10%, the varia-
tion rises rapidly as more noise is added to the shaking
function. Thus, in a practical situation the noise in the
shaking function should be kept below this threshold.

Finally, we calculate the robustness of the shaking
function to undesired stray reflections in the lattice sys-
tem. In reference [34] the forces due to these reflections
caused undesired phase shifts and imposed a limit on the
contrast of the interferometer fringes. In our case such
undesired reflections set up secondary lattice potentials
that can cause the final state to deviate from the opti-
mized result. We simulate this by shaking the lattice and
adding a parasitic potential of the form

VP(ε, δ) = −εV0
2

cos (2kLx+ δ). (12)

In Eq. (12), ε is the reflection amplitude and δ is
the phase of the parasitic lattice relative to the initial
unshaken main lattice potential. The value of δ is
generally unknown in a real experiment. The simulation
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FIG. 12. (color online) Variation of the final state with vary-
ing noise amplitudes added to the optimized splitting shaking
function. The results shown here are the average of 5 runs
with random white Gaussian noise added to the shaking func-
tion φ(t). Error bars give the standard deviation of the varia-
tions. Noise amplitude is given as a fraction of the maximum
of the φ(t) shown in Fig. 6. The red line marks a variation
of 1%.

FIG. 13. (color online) Variation of the final split state after
the addition of spurious lattice potentials with varying phase
due to unwanted reflections with reflection amplitudes of ε =
0.1% (red), 1% (blue), and 4% (cyan).

results are shown in Fig. 13 for varying values of ε
from 0.1% (i.e. reflection from an anti-reflection coated
window) to 4% (reflection from uncoated glass). A single
4% reflection can change the variation between the final
state and optimal state by as much as 1%, and multiple
such reflections should be managed carefully. Therefore,
in an experimental realization, it is important to use
AR coatings on the windows of the science chamber and
align optics so that parasitic lattices do not interfere
with the main lattice.

VII. CONCLUSION

In conclusion, we introduce an atom interferometer
based on a shaken lattice, where the shaking functions
are found via a learning algorithm. This scheme pro-
vides the basis for a robust trapped-atom interferometer
wherein the forces of interest are small perturbations on
the shaking forces. The sensitivity of the interferometer
may be increased by increasing the interrogation time,
which, if the atoms are trapped in the lattice potential,
can be done practically without an increase in the size
of the system. We show that SLI can be optimized to
enhance signals of interest while simultaneously reducing
the sensitivity to undesired signals. Several other aspects
of shaken lattice interferometry will be studied in future
work, such as increased scaling of the interferometer sen-
sitivity relative to the shaking time and optimization to
specific signals of interest, such as seismic accelerations.
Finally, an experimental implementation will require a
means of closed-loop learning to overcome inevitable ex-
perimental noise and systematic errors.
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