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The photoelectron emission time delay τ associated to one-photon absorption, which coincides
with half the Wigner delay τW experienced by an electron scattered off the ionic potential, is a
fundamental descriptor of the photoelectric effect. Although it is hard to access directly from
experiment, it is possible to infer it from the time delay of two-photon transitions, τ (2), measured
with attosecond pump-probe schemes, provided that the contribution of the probe stage can be
factored out. In absence of resonances, τ can be expressed as the energy derivative of the one-
photon ionization amplitude phase, τ = ∂E argDEg, and, to a good approximation, τ = τ (2) − τcc,
where τcc is associated to the dipole transition between Coulomb functions. Here we show that, in
the presence of a resonance, the correspondence between τ and ∂E argDEg is lost. Furthermore,
while τ (2) can still be written as the energy derivative of the two-photon ionization amplitude

phase, ∂E argD
(2)
Eg , it does not have any scattering counterpart. Indeed, τ (2) can be much larger

than the lifetime of an intermediate resonance in the two-photon process, or more negative than the
lower bound imposed on scattering delays by causality. Finally, we show that τ (2) is controlled by
the frequency of the probe pulse, ωIR, so that by varying ωIR, it is possible to radically alter the
photoelectron group delay.

PACS numbers: 32.80.Qk, 32.80.Fb, 32.80.Rm, 32.80.Zb

I. INTRODUCTION

When a wave packet scatters off a short-range poten-
tial, it acquires a delay, if compared with a reference free
wave. For example, a particle accelerates when it en-
ters an attractive potential, and hence its time delay is
negative (see Fig. 1). For spectrally narrow, unstruc-
tured wave packets, the scattering delay coincides with
the wave packet group delay and can be expressed as the
energy derivative of the phase shift δE experienced by
the scattered particle. This is known as the Wigner [1, 2]
time delay,

τW = 2 h̄
∂δE
∂E

. (1)

Scattering delay is subject to constraints. For example,
a particle cannot traverse the whole interaction region in
a negative time. As a result, the time delay is bounded
from below by τmin = −2a/v, where v = h̄k/m is the
asymptotic speed of the particle and a is the effective
range of the potential [1]. Conversely, an energy deriva-
tive of the phase shift more negative than −a / v would
violate causality, since it would then be possible to build

∗Electronic address: luca.argenti@ucf.edu
†Electronic address: fernando.martin@uam.es

FIG. 1: Sketch of the Wigner time delay. As the electron
wave packet (green) scatters off the potential, it acquires a
phase shift η as compared to a reference free electron (or-
ange). This phase shift is related to the time lapsed between
the detection of the scattered electronic wave packet and the
detection of the unscattered free electron, called the Wigner
time delay.

a wave packet that bounces off the potential before col-
liding with it.

Until recently, the temporal aspects of electron scatter-
ing were confined to theoretical speculation, since typical
scattering time delays are much smaller than the time it
takes a wave packet, at macroscopic distances from the
interaction center, to traverse any given point (e.g., the
detector) and are therefore not realistically measurable.
The advent of attosecond science [3], which does provide
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the necessary time resolution, has renewed the interest in
scattering delays (see [4, 5] for an in-depth treatment of
this subject). It has also given rise to controversies, due
to the role of the probe stage inherent to pump-probe in-
terferometric schemes. On the one hand, for one-photon
absorption, the photo-electron emission delay,

τ = h̄∂E argDEg, (2)

where DEg is the one-photon ionization amplitude, and
the Wigner time delay [Eq. (1)] coincide (within a factor
of 2). On the other hand, the phase of one-photon tran-
sition amplitudes is not accessed directly. Instead, what
is measured is the interference between two alternative
paths that involve the exchange of multiple photons, as
e.g. in the reconstruction of attosecond beatings by inter-
ference of two-photon transitions (RABITT) spectroscopy
[6]. When the time delay for the two-photon transition,
τ (2), can be formulated as the sum of the time delays for
the individual steps, it is possible to recover the contri-
bution of the one-photon transition, and hence to recon-
struct the scattering time-delay as well. However, this is
not always the case.

Here we show that, when the two-photon transition is
resonant, the traditional relations between wave packet
group delay, Wigner delay, one-photon delay and two-
photon delay do not hold anymore. First, the one-photon
transition amplitude between the ground state and the
continuum, DEg, vanishes at an isolated energy. As a
consequence, the photoelectron wave packet acquires a
radial node and its dynamics is not properly described
anymore by a group delay defined as the derivative of a
matrix element argument, which is now singular. Yet,
it is still possible to identify a one-photon ionization
time delay τ that is a smooth function of the energy
and coincides with an electron-ion scattering time delay.
Hence, it is the correspondence between time delay and
∂E argDEg, rather than a time-delay interpretation, that
is lost. Second, in the two-photon transition matrix el-

ement, D
(2)
Eg , the path through a continuum-continuum

transition in the last stage also vanishes, and two alter-
native paths, a non-resonant and a resonant one, become
dominant. In the non-resonant path, the probe photon is
exchanged first, whereas the resonant path involves the
radiative transition between the intermediate metastable
state and the final continuum. In this case, h̄∂E argD

(2)
Eg

differs from τW by a new sharply peaked resonant term

with no scattering counterpart. Thus h̄∂E argD
(2)
Eg can

exhibit extreme values that are incompatible with a scat-
tering delay, namely: larger than the lifetime of the
metastable state, or more negative than the lower bound

imposed on τW by causality. Furthermore, h̄∂E argD
(2)
Eg

can strongly vary within a narrow interval of photoelec-
tron energies, comparable to the resonance autoioniza-
tion width. The relative strength of the resonant and
no resonant paths is controlled by the probe frequency
ωIR. Therefore, by varying this frequency and keeping
the pump frequency (and all other parameters) constant,

it is possible to radically alter the group delay τ (2) of the
two-photon photoelectron wave packet.

The paper is organized as follows. In Sec. II we re-
visit the relevant assumptions behind the correspondence
between scattering time delay and photoionization time
delay, and offer a definition for the latter that allows to
interpret consistently the case in which such correspon-
dence does not hold anymore. In Sec. III, we examine
the case of the resonant ionization of an atom in the con-
text of RABITT spectroscopy and show how the measured
delay does describe the photoemission delay of a two-
photon photoelectron wave packet, but that such delay
does not correspond to the one-photon ionization time
delay, and cannot be formulated as a field-free scatter-
ing delay either. In Sec. IV, we apply our formalism to
investigate a realistic case: two-photon ionization of the
helium atom induced by a XUV resonant transition to a
sp+ doubly excited state followed by absorption/emission
of an IR photon (as in recent RABITT-like experiments
[7]). Finally, we summarize the main conclusions of our
work in Sec. V.

To simplify notation, in the following we will use
atomic units throughout (h̄ = 1, e = 1, me = 1), un-
less otherwise stated.

II. PHOTOIONIZATION TIME DELAY

Let us assume that an atom is ionized from the ground
state |g〉 by the absorption of one photon from a single,
long and weak Fourier-limited XUV pulse E(t), with spec-
trum sharply peaked around ω0 = E0−Eg, where Eg and
E0 are the ground and final state eigenenergies, respec-
tively. After ionization, the photoelectron wave packet
Ψ(t) can be written, in the interaction representation and
to first order in the radiation-atom interaction, as

|Ψ(t)〉 =

√
2π

i

∫
dE|ψ−E 〉 e

−iEt 〈ψ−E |O|g〉Ẽ(E −Eg), (3)

where O = −ε̂ · ~µ is the dipole operator and Ẽ(ω) is the

Fourier Transform (FT) of the ionizing pulse, Ẽ(ω) ≡
(2π)−1/2

∫
dtE(t) exp(iωt). The states |ψ−E 〉 are the gen-

eralized eigenstates of the field-free hamiltonian H of the
atom above the ionization threshold, H|ψ−E 〉 = E|ψ−E 〉,
〈ψ−E |ψ

−
E′〉 = δ(E − E′). Furthermore, they are assumed

to fulfill incoming-boundary conditions with respect to
the continuum eigenstates of a Hamiltonian H0 chosen
as a reference [8],

|ψ−E 〉 = |φE〉+G−0 (E)(H −H0)|ψ−E 〉, (4)

with H0|φE〉 = |φE〉E, 〈φE |φE′〉 = δ(E − E′), G±0 (E) ≡
(E −H0 ± i0+)−1, and H −H0 is assumed to be short-

range. The phase of Ẽ(ω) depends on the choice of the
time origin. For a Gaussian pulse, for example, the phase
is constant if the time origin, t0, coincides with the center
of the pulse envelope, tXUV . In analogy with this circum-
stance, therefore, we choose the time origin in such a way
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that the phase of Ẽ(ω) is flat at the peak of Ẽ(ω),

∂ω arg[Ẽ(ω)]
∣∣
ω0

= 0 ⇐⇒ tXUV = 0. (5)

Furthermore, we will assume that the pulse is such that
the phase of Ẽ(ω) is flat across its whole peak (i.e., the
pulse is Fourier limited, or unchirped).

At sufficiently large times, the wave packet has purely
outgoing character and the expansion in terms of |ψ−E 〉
can be replaced by an expression over the outgoing
asymptotes |φE〉 [9],

|Ψ(t)〉 =
t→∞

√
2π

i

∫
dE|φE〉e−iEt〈ψ−E |O|g〉Ẽ(E − Eg).

(6)
What is the time delay of such a wave packet? To qualify
this question, it is necessary to define a reference free-
evolving wave packet, as well as the condition for the
reference wave packet to be located at the origin. Here,
we will assume that the free evolution is defined by H0. If
one propagates back the wave packet with the U0(t, t′) =

e−iH0(t−t′) free time-evolution operator, the result at a
time t0 is

U0(t0, t)|Ψ(t)〉 =

√
2π

i

∫
dE|φE〉e−iEt0〈ψ−E |O|g〉Ẽ(E−Eg).

(7)
In single-channel scattering, |φE〉 can be chosen up to an
arbitrary and immaterial phase factor. In particular, the
radial part of φE(~r) can be chosen to be real in all space.

By hypothesis, Ẽ(E−Eg) is narrowly peaked at E = E0.
If the transition amplitude does not vanish at E0, i.e.,
〈ψ−E0

|O|g〉 6= 0, its phase

ϕE ≡ arg〈ψ−E |O|g〉 (8)

is a smooth function of the energy. Therefore, we can
approximate ϕE ≈ ϕE0

+ (E − E0)ϕ′E0
, and isolate the

complex components of the wave packet back-propagated
at t0 as

U0(t0, t)|ψ(t)〉 '
√

2π

i
e−iE0t0eiϕE0×

×
∫
dE|φE〉e−i(E−E0)(t0−ϕ′

E0
)
∣∣〈ψ−E |O|g〉∣∣ Ẽ(E − Eg).

(9)

Notice that this approximation is not valid if the transi-
tion amplitude does vanish within the support of Ẽ(ωEg),
because ϕE is then discontinuous. We will examine
this more subtle case in more detail in Sec. III. The
global phase factors outside the integral in (9) do not
affect the spatial distribution of the wave packet and
can thus be safely ignored. Except for the phase fac-
tor exp[−i(E − E0)(t0 − ϕ′E0

)], all the other factors in
the argument of the integral are real by construction. As
a consequence, for

t0 = ∂EϕE |E0
≡ ∂E arg〈ψ−E |O|g〉|E0

(10)

the wave packet described by the integral in (9) is purely
real. This means that the wave packet has everywhere
outgoing and incoming components in equal proportion
and it is hence arguably at the stage of closest approach
to the scattering center. If the system under study was
really an unperturbed system described by H0, t0 would
also be the time at which the XUV pulse impinges on the
target (tXUV = 0). In general, however, t0 6= 0. If t0 > 0,
the wave packet seems to have waited a time t0 after the
XUV before being released, and then we talk of a posi-
tive time delay, τ = t0 − tXUV = t0. Conversely, knowing
the time at which the XUV has reached the target and
estimating the travel time on the basis of the free propa-
gation, one can infer that the actual wave packet travels
with a delay τ = t0.

How does this apparent delay compare with the scat-
tering (Wigner) time delay? Remaining in the case of
a single channel perturbed by a short-range potential,
a generalized eigenstate ψE of the full hamiltonian can
also be normalized so to be real across the whole space
[10], in which case it differs from the reference state
in the asymptotic region by a radial phase shift, δE :
ψE(~r) ' φE [r̂(r + δE/k)], where k is the asymptotic
de-Broglie electron wave number. This means that the
outgoing components of the real ψE and φE general-
ized functions differ asymptotically by a phase factor,
[ψE ]out = eiδE [φE ]out. The scattering states ψ−E (~r), on
the other hand, are defined in such a way that their out-
going component coincides asymptotically with that of
the reference states φE(~r). As a consequence,

ψ−E = eiδEψE , (11)

which means that the argument of the transition ampli-
tude 〈ψ−E |O|g〉 is

ϕE ≡ arg〈ψ−E |O|g〉 = δE , (12)

where we used the fact that the spatial representations of
|ψE〉, |g〉, and O are real functions. From Equation (10),
the photoionization time delay becomes

τ = ∂EϕE |E0
= ∂EδE |E0

. (13)

Apart from a factor of two, therefore, the time delay in a
photoionization process coincides with the Wigner time
delay (see Equation (1)). This agrees with the idea that
photoionization is in fact a half-collision process. Indeed,
in photoionisation, we are neglecting the retardation or
anticipation associated to the first half of the collision,
i.e., the one experienced by the electromagnetic field as
it approaches the atom, compared to the case in which
the electromagnetic field can propagate freely. This effect
could in principle be taken into account, by means of
Kramers-Kronig relations, through the derivative of the
dispersive component of the optical susceptibility of the
atom. Due to the high speed of light, however, such
temporal effects are much smaller than those observed
for the electrons, and hence it is safe to neglect them.
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To measure the transition phases ϕE , the photoelec-
tron wave packet needs to be probed. Doing so in tra-
ditional one-photon absorption experiments, however, is
virtually impossible, since no electron detector has the
sufficient time resolution. Two-photon attosecond in-
terferometric techniques such as RABITT, on the other
hand, do provide access to the relative delay between two
two-photon photoelectron wave packets. In contrast to
single-photon processes, multiphoton transition matrix
elements can be complex even if all the states involved
are real. In particular, even in the case of the ionization
of a reference system H0, the expansion coefficients of a
multiphoton wave packet have a phase modulation even
if 〈φE |O|g〉 is real,

∂E argMEg(ω) 6= 0, (14)

where MEg(ω) = 〈φE |OG+(Eg + ω)O|g〉, and G+(E) =
(E−H+ i0+)−1 is the retarded resolvent of the field-free
Hamiltonian. This means that multiphoton wave packets
are inherently delayed with respect to one-photon wave
packets, even in absence of intermediate resonances. If,
furthermore, the system is not the reference one, both
the multiphoton delay and the short-range effects of the
perturbative potential affect the total delay.

In the special case in which the second photon inter-
acts with a wave packet asymptotic in character, the re-
lation between one- and multi-photon time delays has
been already explored in detail by several authors [11–
13]. In particular, Dahlström et al. [14] have shown that,
when a single ionization continuum |ψαE〉 is accessible
by one-photon absorption, the atomic time delay of the
two-photon ionization from the ground state |g〉 to a final
continuum channel |ψβE〉, such as the one recorded with
the RABITT technique, can be written as the sum of two
contributions,

τ (2),nr = τnrW + τcc, (15)

where τnrW is a Wigner-like sequential two-photon ion-
ization time delay that includes the on-shell IR-induced
continuum-continuum transition between the electron
scattered by the Coulomb potential (direct and in-
verse stimulated Bremsstrahlung), and τcc, the so
called continuum-continuum time delay, represents the
measurement-induced delay associated to the off-shell
contributions to the two-photon transition (see Eqs. (25),
(44) and (45) in [14]). When multiple final continua are
available, the measurement induced delays, i.e., the on-
shell continuum-continuum contribution in τnrW and the
whole τcc delay, can be different for each of them. In
particular, if the final channels do not have the same
angular distribution, the time delay is expected to ex-
hibit an angular dependence induced by the probe stage.
In a recently joint theoretical and experimental work,
Heuser et al. [15] investigated the angular dependence of
the atomic photoemission time delay for the ionization
from an isotropic atomic state, and demonstrated that
the IR-induced delay is not isotropic.

There are cases, however, in which the intermediate
wave packet prior to the absorption of a second photon
is not asymptotic in character yet. The most evident
counterexample is if an intermediate resonant state, not
contemplated by the H0 Hamiltonian, is populated and
subsequently undergoes a radiative transition to the final
continuum.

III. RESONANT PHOTOEMISSION TIME
DELAY

To treat the resonant case, it is convenient to distin-
guish between three different Hamiltonians. (i) A refer-
ence hamiltonian H0, that serves the purpose of defin-
ing the asymptotic evolution of a wave packet in the
presence of the long-range components of the potential
(e.g., the pure Coulomb potential), and hence the ref-
erence wave packet with respect to which we measure
the time delay, H0|φαE〉 = |φαE〉E. (ii) An unper-
turbed hamiltonian H ′0 = H0 + Hsr, which differs from
the reference by a short-range component Hsr, whose
associated eigenstates comprise a featureless continuum
|ϕ−αE〉 and a bound state |a〉 immersed in that con-

tinuum, so that H ′0|a〉 = Ea|a〉, H ′0|ϕ−αE〉 = |ϕ−αE〉E,

|ϕ−αE〉 = |φαE〉 + G−0 (E)Hsr|ϕ−αE〉. (iii) The full field-
free hamiltonian H = H ′0 + V , which includes a short-
range “configuration interaction” component V that cou-
ples the bound state |a〉 to the continuum |ϕ−αE〉 (i.e.,

Va,αE ≡ 〈a|V |ϕ−αE〉 6= 0) and, therefore, accounts for au-

toionization, |ψ−αE〉 = |ϕ−αE〉 + G′−0 (E)V |ψ−αE〉. Here we
will focus on the simpler case in which a single |a〉 bound
state interacts with a set of non-degenerate |ϕ−αE〉 con-
tinuum eigenstates. Therefore, our definitions in (ii) and
(iii) closely follow Fano’s formalism of autoionization of
isolated resonances in the continuum [16].

Let us now consider a two-photon transition triggered
by two monochromatic pulses of arbitrary frequencies ω1

and ω2 in which the intermediate step is resonant through
absorption of photons with frequency ω1. In the context
of RABITT spectroscopy, ω1 and ω2 stand for ωXUV and
ωIR, respectively, but our treatment is not limited to
this particular case. If we neglect the contribution to
the transition amplitude from the path in which ω2 is
absorbed first, the photoemission time delay to a final
channel |ψ−βEf

〉 becomes

τ (2) ' ∂E argMβEf ,g(ω1), (16)

where

MβEf ,g(ω1) = 〈ψ−βEf
|OG+(Eg + ω1)O|g〉, (17)

is the usual two-photon matrix element describing the
transition from the ground state |g〉, with energy Eg, to
the final state |ψ−βEf

〉, with energy Ef = Eg+ω1±ω2. In

the context of the two-photon resonant model developed
in [17, 18], which is an extension of the Fano model [16]
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to the case of two-photon transitions, this matrix element
can be simply written as

MβEf ,g(ω1) ' −ŌβαOα,g
ω2

MR(ω1), (18)

where

Ōβα =

∫
dEf 〈ϕ−βEf

|O|ϕ−αE〉, Oα,g = 〈ϕ−αE |O|g〉,

(19)
with E = Eg + ω1, and

MR(ω1) =
ε+ q̄ + iγ

ε+ i
, (20)

In Eq. (20), ε is the Fano reduced energy given by

ε = 2(Eg + ω1 − Ēa)/Γ, Ēa = Ea + ∆, (21)

q̄ is related to the usual Fano profile parameter of one-
photon ionization, q = Oag/πVαE,aOαg, as follows

q̄ = q(1− γ); γ =
ω2Oβa
ŌβαVαE,a

, (22)

Γ = 2π|VαE,a|2 and ∆ are the autoionization width
and energy shift of the resonant state |a〉, respectively,
Oag = 〈a|O|g〉, and Oβa = 〈ϕ−βEf

|O|a〉. We note that γ

measures the relative strength of the IR-induced radia-
tive transitions from the resonant state |a〉 and the non
resonant state |ψ−αE〉 to the continuum, and that this rel-
ative strength depends on the IR frequency ω2.

The energy derivative of the argument of Eq. (18) leads
to the following expression for the two-photon time delay

τ (2) = τ (2),nr + ∂E argMR(ω1), (23)

where the first term is similar to the two-photon time
delay in the non-resonant case [see Eq. (15)], and the
last term is the time delay resulting from the resonance,

τ (2),R = ∂E argMR(ω1). (24)

Notice that with the approximation (18), which is based
on the on shell approximation for the cc transition am-
plitude, we have lost reference to off-shell contributions
to the time delay, which is not a severe limitation, since
those contributions become negligible already a few eV
above threshold. Also, near threshold, the Fano resonant
model is not applicable any more, since in this region non
resonant continuum states vary rapidly with electron en-
ergy. In the special case of near-threshold resonances
(e.g., shape resonances in molecular ionization) the time
delay arguably cannot be partitioned in the sum of con-
tributions associated to separate mechanisms.

We focus now on this resonant factor, τ (2),R, which
leads to the dominant contribution to the time delay in
the vicinity of the resonance due to the strong variation
of argMR(ω1) with E. We distinguish three different
possible scenarios corresponding to different resonance

FIG. 2: Resonant photoemission time delay τ (2),R a function
of the reduced energy ε [see Eq. (21)] for (a) q → ∞ and
Γ = 0.001, and (b) for Γ = 0.001, q = 2 and γ = 0.2 [red
(grey) line] and γ = −0.2 [green (light gray) line]. The chosen
values of the resonance parameters are typical of most atomic
systems.

characteristics. When the resonance dominates the ra-
diative coupling from the ground state, i.e., q → ∞, we
can write

τ (2),R = ∂E argMR(ω1) =
Γ/2

(E − Ēa)2 + (Γ/2)2
= τRW .

(25)
The above is the celebrated expression of the resonant
Wigner time delay [19], corresponding to a Lorentzian
function centered at E = Ēa, of width Γ/2 and maximum
value 2/Γ (see Fig. 2a).

When the continuum in which the resonant is embed-
ded is radiatively coupled to the ground state (q is finite),
but the localized component |a〉 is not radiatively cou-
pled to the final continuum (γ = 0), then the two-photon
transition amplitude vanishes at ε = −q and the energy
derivative of the two-photon transition amplitude gives
rise to a singular term

τ (2),R = ∂E

[
arg (ε+ q) + arg

(
1

ε+ i

)]
=

= ∂E [π {1− θ(ε+ q)}] + τRW =

= −2π

Γ
δ(ε+ q) + τRW .

(26)

Can such a singular term be construed as a meaningful
delay? As already mentioned, in this special case the
derivation followed in Sec. II does not apply and must be
modified. Let us go back to first principles and examine
what the photoelectron wave packet looks like when gen-
erated by a one-photon transition from the ground state
to the continuum in the vicinity of a resonance. This
wave packet is given by

|Ψ(t)〉 =

√
2π

i

∫
dE |ψ−αE〉e

−iEt〈ψ−αE |O|g〉
ε+ q

q + i
Ẽ(E−Eg).

(27)
Let us consider a long Gaussian light pulse with spectrum
centered on the anomalous delta. The Taylor expansion
of the resonant one-photon transition amplitude about
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ε = −q is given by (ε+ q)(ε− i)−1 ∼ −(ε+ q)(q+ i)−1 ∝
E −E0, where E0 = Ea − qΓ/2. The wave packet gener-
ated by a Gaussian pulse of center k0 =

√
2E0, therefore,

is proportional to

Ψ(r, t) ∝
∫ ∞
−∞

eikre−α(k−k0)
2

(k − k0)e−ik
2t/2dk, (28)

where we have used E−E0 ' (k− k0)k0. Integrating by
parts, we obtain

Ψ(r, t) ∝ (r − k0t)
∫ ∞
−∞

dke−α(k−k0)
2

eikre−ik
2t/2. (29)

The integral on the RHS of this last expression is a wave
packet with Gaussian envelope centered at r = k0t. As a
result, the wave packet Ψ(r, t) vanishes right at its cen-
ter, and features two separated peaks (see Fig. 3), which
remain separated at any time, and whose both separa-
tion and widths increase linearly with time. In this case,
therefore, the profile of the photoelectron wave packet
does not reproduce that of the impinging light. Nev-
ertheless, the definition we employed for time delay as
the difference between the time of birth of a freely back
propagated wave packet and the time of encounter with
an external excitation pulse still applies. Indeed, even
if it does not have a Gaussian spectrum, the split wave
packet preserves its shape under the propagation of both
the full and the reference hamiltonian, and hence it is a
perfectly valid asymptotic reference. When propagated
back in time, the phase modulation of the wave packet
spectrum can still be compensated by an apparent time
shift. Time delay, therefore, is well defined and it hap-
pens to be continuous across the ε = −q energy. Further-
more, as before, it coincides with the Wigner time delay,
which is given by the argument of the resonant scattering
matrix S(E) = e2iφ(E), for E = Ēa − qΓ/2. This line of
reasoning applies also in the presence of either a positive
or negative detuning from ε = −q.

The situation changes if the resonance is radiatively
coupled to the final continuum (γ finite), since the tran-
sition amplitude never vanishes completely. Yet, it can
still attain very small absolute values, resulting in a pro-
nounced peak in the derivative of its argument (which
becomes a delta in the limit of γ → 0),

τ (2),R = ∂E

[
arg (ε+ q̄ + iγ) + arg

(
1

εE1a + i

)]
=

= −Γ

2

γ

(γ Γ/2)2 +
(
E − Ēa + q̄Γ/2

)2 + τRW .

(30)

The radiative coupling of the localized component of
the resonance with the final continuum “smoothens” the
Dirac delta function in Eq. (26) into a Lorentzian profile
of center E = Ēa − q̄Γ/2, width γΓ/2, and maximum
value 2/(γΓ) (see Fig. 2b). Here, the derivation followed
in § II, and the interpretation of the energy derivative of
the transition amplitude argument as a time delay, does

FIG. 3: Graph of the wave packet in Eq. (29), and of its dif-
ferent components. The product of the linear function r−k0t
(red dotted line) and the Gaussian function e−α(r−k0t)

2

(blue
dashed line) results in a wave packet (amplitude as green long-
dashed line and intensity as black full line) that is separated
into two peaks.

apply. In particular, in contrast to the previous case,
the new peak associated to the cross section minimum
corresponds to an observable time delay,

τRbc =
γΓ/2

(γ Γ/2)2 + (E − Ēa + q̄Γ/2)2
. (31)

We can understand why this is the case by regarding the
photoionization as proceeding through two independent
channels, with the last step involving a bound-continuum
radiative transition. Near the minimum of the cross sec-
tion, the first term gives rise to a strongly distorted wave
packet, with a front and a back peak components in an-
tiphase and with vanishingly small amplitude, while the
second term gives rise to a normal Gaussian wave packet
that overlaps with the first. When considered separately,
neither of these two components exhibit any anomalous
delay. As can be explicitly shown analytically, it is their
interplay that results in a measurably displaced wave
packet.

The sign of γ depends on whether the second photon
is absorbed or emitted. This means that the photoemis-
sion delay of the wave packet in the upper sideband will
be either retarded or anticipated by 2τRbc with respect to
that in the lower sideband. Figure 4 shows how the res-
onant photoemission time delay varies depending on the
values of q and γ. For q = 0, both the τRW and the τRbc

contributions are centered at the same energy, so that the
value of the total resonant time delay is either enhanced



7

FIG. 4: Resonant photoemission time delay, τ (2),R, as a
function of the reduced energy ε [see Eq. (21)] for various
representative cases: (a) q = 0 and γ > 0, (b) q = 2 and
γ > 0, (c) q = 0 and γ < 0, and (d) q = 2 and γ < 0. The
chosen values of the resonance parameters are typical of most
atomic systems.

or cancelled, depending on their relative phase. Indeed,
for the case of γ = 1, the τRbc contribution coincides, with
an opposite sign, with that of τRW , so that there is no net
resonant photoemission delay. When q 6= 0, the two con-
tributions are centered at different values, giving rise to
two separate Lorentzian peaks. We also notice that the
relative contribution of τRW and the τRbc, hence the abso-
lute value of τ (2), strongly depends on γ. Since the latter
depends on the probe-pulse frequency ω2 [see Eq. (22)],
one can exert some control on the resonant time delays
by varying that frequency.

In the limit of γ → 0, τRbc [Eq. (31)] tends to the same
Dirac delta function as that appearing in Eq. (26),

lim
γ→0

τRbc = πδ(E − Ēa + qΓ/2). (32)

In principle, therefore, it is possible to reach arbitrar-
ily large time delays. However, diverging time delays
are not observable in practice. On the one side, as γ
approaches zero, such large time delays concern, in the
long-pulse limit, a progressively smaller number of pho-
toelectrons until, for γ = 0, no photoelectrons at all are
generated. On the other side, for any finite bandwidth
of the impinging pulse, as the limit γ → 0 is approached,
the photoelectron wave packet eventually loses its single-
peaked shape to give rise to the double-peaked structure
we have discussed above and which does not exhibit any
diverging time delay. A similar behavior has been ob-
served in molecular RABITT [20], where the diverging
delay/vanishing photoemission appears in the region be-
tween two vibrational states of an electronic resonance.

FIG. 5: Resonant time delay, τ (2),R, as a function of the
reduced energy ε [see Eq. (21)] , in the vicinity of the lowest
two sp+n resonances of He below the N = 2 threshold, for a
probe frequency ω2 = 0.057 a.u.. All resonant parameters
have been obtained from ab initio calculations (see text for
details).

IV. APPLICATION TO HELIUM RESONANCES

We have used the formalism described in the previous
section to evaluate resonant two-photon ionization time
delays in the helium atom excited from the ground state
to the region below the N = 2 ionization threshold by
means of the absorption of an XUV photon followed by
the exchange of an IR photon. All the necessary coupling
matrix elements and resonant parameters have been eval-
uated by using nearly exact solutions of the unperturbed
time independent Schrödinger equations H ′0|a〉 = Ea|a〉
and H ′0|ϕ−αE〉 = E|ϕ−αE〉 in a basis of B-spline basis func-
tions (see the beginning of the previous section). The de-
tails of the method can be found elsewhere [21, 22]. Fig-
ure 5 shows the results for the sp+2 and sp+3 resonances,
for which q = −2.77 and −2.58, and γ = −0.025 and
−0.114, respectively, for a probe frequency ω2 = 0.057
a.u.. As expected, the variation of the time delays with
the reduced energy follows patterns qualitatively similar
to those described in the preceding section. Not surpris-
ingly, for such small values of γ, peaks in the resonant
delay arising from the τRbc contribution, which are cen-
tered at ε ∼ −q, are much narrower and higher than
those arising from the τRW contribution, which appear at
resonance, ε ∼ 0. While the latter do not exceed 100 fs,
the former may reach values as large as 1 ps.

The dynamics of the sp+2 resonance has been recently
investigated [7] by using the so-called rainbow-RABITT

method. At variance with standard RABITT, in this
method the photoelectron spectrum is spectrally resolved
within the harmonic and sideband widths, so that both
the resonant harmonic and the associated sidebands ex-
hibit Fano-type structures as a function of the photo-
electron energy. As a result of this, a scan of the ωXUV
photon energy is not necessary, which greatly simplifies
the analysis of the dynamics. The method was success-
fully used to reconstruct the electron wave packet created
upon autoionization of the sp+2 resonance and, therefore,
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could be equally applied to extract the resonant time de-
lays presented in Figure 5 without any major difficulty.
Incidentally, the electron wave packet resulting from the
present calculations is identical to that obtained in Ref.
[7].

V. CONCLUSIONS

We have shown that, when intermediate resonances
are populated in two-photon ionization processes, the
usual relationships between one-photon induced ioniza-
tion time delay, electron wave packet group delay, Wigner
time delay, and multiphoton time delay do not hold any-
more. This is because the one-photon dipole coupling
between the ground state and the continuum, DEg, van-
ishes at a specific energy, so that one-photon time delays
cannot be defined as the energy derivative of the corre-
sponding matrix element. Still one can define a resonant
two-photon ionization delay τ (2), which can be readily
obtained from standard RABITT measurements, as the
energy derivative of the corresponding two-photon ma-

trix element ∂E argD
(2)
Eg , which is a smooth function of

the energy. This time delay does not have however any
scattering counterpart, since τ (2) can exhibit sharp peaks
that can be much larger than the resonance lifetime or
more negative than the lower bound imposed on scatter-
ing delays by causality. The counterpart of this awkward
behavior is that, as the relative strength of the non res-
onant and the resonant two-photon absorption paths de-
pends on the probe-pulse frequency ωIR through the so
called γ parameter, one can easily control the two-photon
ionization delay τ (2) by just varying this frequency, thus

allowing for an accurate determination of the amplitude
and phase of the electron wave packet generated in single-
photon ionization, e.g., as in Ref. [23].

Finally, it is interesting to point out that a simi-
lar causality problem in the measured delays has also
been reported in strong-field ionization: experiments per-
formed by using the attoclock technique have shown that
tunnel ionization can be much faster than the measured
delay. This is again the consequence of a propagation-
induced chirp of the electron wave packet in combina-
tion with an energy-dependent transmission probability,
which shifts the center of the wave packet in time with-
out any direct physically meaningful connection to the
semi-classical motion of the electron [24].
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