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We theoretically study high-harmonic generation (HHG) from solids driven by intense laser
pulses using a one-dimensional model periodic crystal. By numerically solving the time-dependent
Schrödinger equation directly on a real-space grid, we successfully reproduce experimentally ob-
served unique features of solid-state HHG such as the linear cutoff-energy scaling and the sudden
transition from a single- to multiple-plateau structure. Based on the simulation results, we pro-
pose a simple model that incorporates vector-potential-induced intraband displacement, interband
tunneling, and recombination with the valence-band hole. One key parameter is the valley-to-peak
amplitude of the pulse vector potential, which determines the crystal momentum displacement dur-
ing the half cycle. When the maximum peak-to-valley amplitude Apeak reaches the half width π

a
of

the Brillouin zone with a being the lattice constant, the HHG spectrum exhibits a transition from a
single- to multiple-plateau structure, and even further plateaus appear at Apeak = 2π

a
, 3π
a
, · · · . The

multiple cutoff positions are given as functions of Apeak and the second maximum A′peak, in terms of
the energy difference between different bands. Using our recipe, one can draw electron trajectories
in the momentum space, from which one can deduce, for example, the time-frequency structure of
HHG without elaborate quantum-mechanical calculations. Finally, we reveal that the cutoff posi-
tions depend on not only the intensity and wavelength of the pulse, but also its duration, in marked
contrast to the gas-phase case. Our model can be viewed as a solid-state and momentum-space
counterpart of the familiar three-step model, highly successful for gas-phase HHG, and provide a
unified basis to understand HHG from solid-state materials and gaseous media.

I. INTRODUCTION

Advances in ultrashort intense laser techniques have
paved the way to investigate strong-field and attosecond
physics. In particular, high-harmonic generation (HHG)
from gas-phase atoms and molecules has been one of the
main targets of research for three decades, which has led
to successful applications such as attosecond pulse gener-
ation [1, 2] and coherent keV x-ray sources [3, 4] as well
as powerful means to observe and manipulate ultrafast
electron dynamics [5–12].

Solid-state materials have recently emerged as a new
stage of strong-field and attosecond physics. Stimulated
by the discovery by Ghimire et al. [13] and subsequent
successful observations [14–18], the mechanism of HHG
from solids (we focus on crystalline dielectrics and semi-
conductors) are under intensive discussion [14–33]. In-
tense laser fields are generally considered to induce both
interband and intraband electron dynamics in the mo-
mentum space in solids; the former refers to (usually
vertical, tunneling) transitions between different bands,
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and the latter to displacements in the k space within one
band. Early work focused on the intraband dynamics
[13–15, 24, 30]. More recently, though, several authors
[26, 31, 34] have shown that, while the intraband dy-
namics contributes to HHG below the band gap energy,
the interband dynamics makes a main contribution to
radiation above it.

To explain the mechanism of the HHG from solid-state
materials, several models have been proposed. For ex-
ample, Higuchi et al. have proposed a real-space picture
using localized Wannier-Stark (WS) states and strong-
field approximation, in which the differences of the quasi-
energies of WS states determines the radiation energies
[25]. Vampa et al. have proposed a real-space three-step
model analogous to its counterpart for gas-phase HHG
[16, 26, 28]. While the pioneering works have indicated
that the HHG spectra provide information about the
band structure, they have considered a two-band model,
with a single valence band (VB) and the first conduction
band (CB).

More recently, several authors have pointed out the im-
portance of the effects of multiple bands [18, 30, 31, 35]
(see also Ref. [29]). Wu et al. [31] have shown that the
contributions from multiple bands can lead to the for-
mation of additional plateaus, extending HHG to higher
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photon energies. Ndabashimiye et al. have indeed ob-
served the multiple-plateau harmonics in their experi-
ment [18] and modeled it as a dressed multi-level system
[18, 35], rather than explicitly invoking the intraband
dynamics. They have also pointed out that the dressed
system can be mapped onto the band structure, which
leads to a semiclassical three-step picture in momentum
space.

In this paper, we show that, by drawing momentum-
space electron trajectories across multiple bands, one can
easily deduce many aspects of solid-state HHG such as
multiple cutoff positions, time-frequency structure, and
the dependence on pulse parameters. We first simulate
HHG from a one-dimensional (1D) model crystal by nu-
merically solving the time-dependent Schrödinger equa-
tion (TDSE). We discretize the wave function directly
on a spatial grid, as is customary for the gas phase, in-
stead of expanding it with the Bloch or Houston basis
[15–17, 19, 25–27, 29–31, 35]. Thus, we automatically
include the contribution from all the bands supported
by the grid. Our simulations well reproduce unique fea-
tures of solid-state HHG such as the (quasi-)linear cutoff-
energy scaling with the electric field strength [13, 15] and
the sudden transition from single to multiple plateaus [18]
with clear cutoffs.

Then we propose a simple model that can explain
many aspects of the simulation results. We trace the
momentum-space electron dynamics based on interband
tunneling, intraband acceleration, and recombination
with the VB hole. Once with an energy-band diagram at
hand, one can apply the model without further resorting
to elaborate theoretical calculations. It should be high-
lighted that the electron can climb up bands by repeat-
ing interband tunneling to an upper band and intraband
acceleration, based on which, our model predicts yet an-
other difference from gas-phase HHG that the position
of the highest cutoff depends on not only the wavelength
and intensity of the pulse but also its duration (or num-
ber of optical cycles).

Our model can be regarded as a solid-state and
momentum-space counterpart with multiband extension
of the familiar trajectory analysis based on the three-
step model [36, 37], which has been highly successful for
HHG from gas-phase atoms and molecules. It provides a
unified basis for understanding HHG from gaseous media
and solid-state materials. This offers a clear physical in-
sight into the coherent electron dynamics of independent-
electron nature in solids driven by intense laser field and
serves as a benchmark to identify the effects of electron
correlation, relaxation, dephasing, impurity, distortion,
etc., in real experiments.

This paper is organized as follows. After describing
TDSE simulation methods in Sec. II, we present and
discuss simulation results in Sec. III. Then, we propose
the trajectory analysis based on the solid-state three-
step model in Sec. IV. Conclusions are given in Sec.
V. Atomic units are used throughout unless otherwise
stated.

II. METHOD

We consider a many-electron dynamics in a 1D model
crystal along laser polarization with VBs fully occupied
across the whole Brillouin zone (BZ) initially, typical
of wide-band-gap semiconductors. Within independent-
electron approximation, we solve the effective TDSE for
each electron in the velocity gauge:

i
∂

∂t
ψnk(x, t) = Ĥ(t)ψnk(x, t)

=

{
1

2

[
∇
i

+A(t)

]2
+ V (x)

}
ψnk(x, t),

(1)

for the electron that initially lies in band n with a crystal
momentum k, where A(t) is the vector potential related

to the laser electric field E(t) by A(t) = −
∫ t
−∞E(t′)dt′,

and V (x) the periodic single-electron effective potential
of the crystal with lattice constant a, i.e., V (x + a) =
V (x). We employ the dipole approximation, assuming
that electron dynamics at macroscopically different po-
sitions are not coupled with each other [38]. Similar
1D models have previously been used in several works
[23, 25, 31, 33] and turned out to be useful. ψnk(x, t)
is the time-dependent wave function whose initial state
is the Bloch function φnk, the eigenstate of the field-free
Hamiltonian Ĥ0 = −∇2/2 + V (x):

Ĥ0φnk = εnkφnk, (2)

with εnk being the energy eigenvalues. Since the Hamil-
tonian retains lattice periodicity even under the action of
the laser pulse, the initial crystal momentum k is always
a good quantum number. Therefore, we can solve the
TDSE for individual k independently.

Following Ref. [31], we use the Mathieu-type potential
given by

V (x) = −V0 [1 + cos(2πx/a)] , (3)

with V0 = 0.37 and a = 8. This potential expresses
a band structure (Fig. 1) with minimum band gap 4.2
eV at k = 0, while the first and second CBs approach
each other at the Bragg plane (k = ±π/a). Note that,
although only six bands are shown in Fig. 1, the bands
taken into account in our calculation are not limited to
those, because we use the real-space basis as described
below.

Instead of expanding the wave functions with basis
functions [15–17, 19, 23, 25–27, 29–31], we directly solve
the TDSE (1) in real space numerically; better conver-
gence with the real-space basis than with the Bloch basis
has previously been reported for time-dependent density-
functional simulations [39]. Using Bloch’s theorem, the
wave function ψnk(x, t) can be decomposed as,

ψnk(x, t) = eikxunk(x, t). (4)



3

0
1

3

4
5

2

n

FIG. 1. Two valence bands (n = 0, 1) and first four conduc-
tion bands (n = 2, . . . , 5) of the field-free Hamiltonian. The
integers on the right axis are the band indices n.

FIG. 2. The waveform of the vector potential A(t) of the
laser pulse with E0 = 1.65 V/nm and τ = 99.66 fs. The
maximum and the second maximum peak-to-valley amplitude
Apeak and A′peak are defined as depicted in the figure.

where unk(x, t) satisfies unk(x + a, t) = unk(x, t). By
inserting Eq. (4) into Eq. (1), we obtain the equation of
motion for unk(x, t) as

i
∂

∂t
unk(x, t) =

{
1

2

[
∇
i

+ k +A(t)

]2
+ V (x)

}
unk(x, t).

(5)
This is to be solved only within the unit cell x ∈ [0, a],
which enables substantial reduction of the problem size.
It should be noticed that the presence of the part k+A(t)
automatically accounts for the intraband dynamics [40,
41] in a natural way and that Eq. (5) describes interband
transition among all the bands realized by the potential
V (x) in principle. We assume that the two VBs (n =
0, 1 in Fig. 1) are initially filled across the whole BZ.
For a given pair of (n, k), the initial Bloch functions are
obtained using imaginary time propagation. Then we
numerically integrate the equation of motion (5), using
the finite difference method with the grid spacing 0.53
a.u., time step size 2.67×10−4 fs = 1.10×10−2 a.u., and
the number N of k-points 141.

We calculate the contribution to the field-induced cur-

rent from each (n, k) as

jnk(t) = 〈ψnk(t)| p̂+A(t) |ψnk(t)〉

=

∫ a

0

u∗nk(x, t)

[
∇
i

+ k +A(t)

]
unk(x, t)dx. (6)

Then jnk is summed over the band indices n(= 1, 2) and
integrated over k to obtain the total current

j(t) =
1

Na

∑
nk

jnk(t). (7)

It should be remembered that n and k refer to the band
index and crystal momentum, respectively, that the elec-
tron initially occupies. The harmonic spectrum is calcu-
lated as the modulus square of the Fourier transform of
j(t). Before applying the Fourier transform, we multiply
j(t) by a mask function W (t) = sin4(t/τ) of the same
form as the field envelop in order to suppress the current
after the pulse.

We consider a laser pulse of its electric field E(t) =
E0 sin4(t/τ) sin[ω(t− πτ/2)] for t ∈ [0, πτ ] and E(t) = 0
for t 6∈ [0, πτ ], where E0, τ, ω denote the peak electric
field amplitude, a measure of pulse width, and central
angular frequency, respectively (Fig. 2). The central
angular frequency is given by ω = 2πc/λ, where c and
λ denote the light velocity and the central wavelength,
respectively, and the central wavelength is assumed to be
λ = 3200 nm.

III. SIMULATION RESULTS AND
DISCUSSIONS

The high harmonic spectra for τ = 96.66 fs, which cor-
responds to three cycles, are shown for several field am-
plitudes in Fig. 3 (a). While the spectrum for E0 = 0.87
V/nm has a single plateau and cutoff similarly to atomic
HHG, those for E0 = 1.65 and 2.11 V/nm have two
additional plateaus of lower intensity, for example, for
E0 = 1.65 V/nm, the second plateau lies at ≈ 15-30
eV and the third ≈ 30-50 eV. In Fig. 3(b), we show
the harmonic spectra as functions of E0 (bottom axis).
The transition from the single- to multiple-plateau struc-
ture takes place not gradually but suddenly at E0 ≈ 1.4
V/nm. Thus, our simulations reproduce the unique fea-
tures of solid-state HHG previously reported both theo-
retically and experimentally [18, 29, 31].

Let us now take a closer look at Fig. 3(b). While
the cutoff energy increases smoothly with E0 up to 1.4
V/nm, second and third plateaus suddenly appear, and
the cutoff jumps up from 15 eV to 45 eV at E0 ≈ 1.4
V/nm. Moreover, another cutoff jump is seen at E0 ≈
2.8 V/nm, from 60 eV. If we let Apeak denote the max-
imum peak-to-valley amplitude of A(t) (see Fig. 2) and
show it on the top axis of Fig. 3(b), we notice that, in-
terestingly, the jump-up positions well coincide with the
condition that Apeak = π

a = 0.393 a.u. and 2π
a = 0.786
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(a)

(b)

FIG. 3. (a) High harmonic spectra for E0 = 0.87 V/nm
(red (lower) line), E0 = 1.65 V/nm (green (middle) line), and
E0 = 2.11 V/nm (blue (upper) line). Arrowheads indicate
the positions given by Eq. (9) for E0 = 0.87 V/nm (red),
and Eqs. (12) and (14) for E0 = 1.65 (green) and 2.11 (blue)
V/nm. (b) False-color representation of the harmonic spectra
as functions of E0. Apeak corresponding to E0 is shown on the
top axis in the atomic unit. The two vertical white dashed
lines represent Apeak = π/a and 2π

a
. The two white solid

lines represent the cutoff energy positions given by Eq. (9)
for 0 < Apeak <

π
a

, and Eq. (12) for π
a
< Apeak <

2π
a

.

a.u. [vertical white dashed lines in Fig. 3(b)]. Note that
π
a is the distance from the Γ point to the first-BZ edge
(Fig. 1). Although Apeak may be approximated by 2A0,
with A0 being the amplitude of the vector potential, in
many practical situations, we use Apeak in the present
study, since it directly characterizes the largest crystal
momentum gain in the intraband dynamics, as we will
see in the next section.

Whereas the first cutoff at 0 < Apeak < π/a and the
third at π/a < Apeak < 2π/a appear to increase quasi-
linearly with the field strength [13, 15], it seems that they
are closely related with the particle-hole energy, defined
as,

εnm(k) := εnk − εmk, (8)

between bands m and n at a crystal momentum k [42].
At Apeak <

π
a , the cutoff energy agrees well with

∆ε21(Apeak), (9)

[white solid line at E0 < 1.4 V/nm in Fig. 3(b)], con-
sistent with the formula proposed by Vampa et al. [16]
for a two-band system. The multiple cutoff positions at
Apeak >

π
a , on the other hand, cannot be explained by

Eq. (9).

IV. TRAJECTORY ANALYSIS

In this section, we propose a simple model to explain
the above findings as well as cutoff positions for Apeak >
π
a and the time-frequency structure of HHG. Its essential
ingredients are summarized as follows:

(i) Each electron is tunnel ionized to an upper band
predominantly at the minimum band gap, e.g.,
from band 1 to 2 at k = 0 and from 2 to 3 at the
BZ edge. It should, however, be noted that this is a
first approximation and that the interband excita-
tion can also take place in the vicinity of the band
closest point, as discussed below.

(ii) the laser-driven intraband dynamics is expressed
by displacement in the momentum space as k(t) =
k0 + A(t) where k0 denotes the initial crystal mo-
mentum [43] (this is known as the acceleration the-
orem [40, 41]).

(iii) Each electron emits a photon when it undergoes
an interband transition to the initial band. The
photon energy is given by the particle-hole energy
∆εn(t)n0

[k(t)] between the band n(t) where the
electron is located at t and the initial band n0.

Interestingly, (i)-(iii) are reminiscent of tunneling ion-
ization, acceleration, and recombination, respectively, in
the three-step model [36, 37] of gas-phase HHG. Whereas
such an analogy has been suggested also in Refs. [16, 26],
several remarks are in order:

• Our solid-state three-step model follows electron
dynamics (and trajectories) in the momentum
space whereas the gas-phase three-step model con-
siders it in the coordinate space; the momentum-
space analysis is more natural and convenient for
Bloch electrons in a periodic potential.

• All the electrons in the VB undergo the intraband
acceleration (ii) together [44, 45] even before the
first tunneling. Thus, VB electrons starting from
not only k0 = 0 (as assumed in Refs. [18, 31]) but
also any arbitrary values of k0 are considered [46].

• The electron can climb up to higher and higher
bands by repeating (i) and (ii).

• Unlike in the gas phase, (ii) also contributes to har-
monic generation [15, 21, 24, 26, 31].

• (iii) can take place at any time in a trajectory, in
contrast to the atomic case where the electron can



5

(a)
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(c)

(d)

①
②

③
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②
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FIG. 4. Momentum-space trajectory of an electron ex-
cited from a VB (n = 1) to the first CB (n = 2) at
t = 4 cycles, drawn based on the solid-state three-step model
when E0 = 0.87 V/nm or Apeak = 0.23 < π

a
, for which

k0 = −0.26× π
a

. (a) waveform of A(t) (b) instantaneous crys-
tal momentum k(t) (c) temporal evolution of the particle-hole
energy, i.e., emitted photon energy (d) pictorial representa-
tion of the momentum-space electron trajectory in the band
diagram.

recombine with the parent ion only when it returns
to the nuclear position.

In the case of gas-phase three-step model, one can trace
a classical electron trajectory in the coordinate space for
each ionization time, which explains the cutoff law and
the time-frequency structure. In the solid case, analo-
gously, using the above-mentioned recipes, we can trace
an electron trajectory in the band diagram for each time
t0 of interband tunneling at the Γ point from a VB to
a CB. We present an example when Apeak = 0.23 < π

a
(Apeak = 0.44 > π

a ) in Fig. 4 (Fig. 5). Note that, once
given a waveform of A(t) [Fig. 4(a) and Fig. 5(a)], the
crystal momentum displacement can be fully described as
k(t) = k0 +A(t) with k0 = −A(t0) as shown in Fig. 4(b)
and Fig. 5(b).

First, we discuss the electron dynamics when Apeak <
π
a [Fig. 4(d)]. Electrons initially in the valence band are
accelerated ( 1©), and excited to the CB at k = 0 at t = t0
( 2©). The subsequent momentum change is given by

k(t) = k0 +A(t) = A(t)−A(t0), (10)

and hence, |k(t)| < Apeak. Thus, the maximum displace-
ment in the first CB is Apeak. Now that Apeak < π/a,
no electrons can reach the BZ edge, but they oscillate in
the first CB without further excitation ( 3©). Hence, the
emitted photon energy is given as a function of recombi-
nation time t by ∆ε21[k(t)] [Fig. 4(c)], and, the highest
energy of the photon is given by

∆ε21(Apeak), (11)

which agrees with the cutoff position in Fig. 3(b) and
Eq. (9).

(a)

(b)

(c)

(d)

①
②

④ ③

⑤
⑥

⑦

③
⑤

⑦

①
②
④
⑥

FIG. 5. Same as Fig. 4, but when E0 = 1.65 V/nm or
Apeak = 0.44 > π

a
, for which k0 = −0.49 × π

a
.

Next, let us turn to the case Apeak > π/a [Fig. 5(d)].
After excitation to the first CB ( 1© - 2©), part of elec-
trons can now be accelerated to reach the BZ edge ( 3©),
and open a channel to climb up to the upper CB ( 4©)
within a half cycle. The promoted electrons then undergo
intraband displacement to the reversed direction in the
second CB (n = 3) in the next half cycle, enabling pho-
ton emission of higher energy ( 5©), which neatly explains
why multiple plateaus appear at Apeak ≈ π

a [Fig. 3(b)].
Whereas we have assumed interband transitions precisely
at the minimum band gaps, they can also take place in
their vicinities in reality. This explains the appearance of
some high-energy components even before Apeak reaches
π
a in Fig. 3(b), from E0 ∼ 1.1 V/nm.

Every time the electrons reach the minimum energy
gap to next CB each half cycle, they can undergo suc-
cessive interband excitation ( 5© - 7©) (or pass through
it). If the second maximum peak-to-valley amplitude is
denoted by A′peak (Fig. 2), they can climb up to the third

CB (n = 4) if A′peak < π/a and the fourth CB (n = 5)

if A′peak > π/a at t ≈ 5.5T with T being the optical cy-
cle. From this scenario, we can estimate the maximum
energy gain as

Ec =

{
∆ε41(A′peak) (A′peak <

π
a )

∆ε51(A′peak) (πa < A′peak),
(12)

which reproduces the highest harmonic energy in
Fig. 3(b). It should be noted that the highest cutoff en-
ergy can exceed that in the gas phase for the same laser
parameters and ionization potential (band gap energy in
the solid case), as has been recently observed [18].

The temporal profile of the photon energy emitted
from the trajectory in Fig. 4(d) [Fig. 5(d)] is given by
Fig. 4(c) [Fig. 5(c)], since the electron can recombine with
the VB hole at any time, as prescribed. By accumulat-
ing similar curves for all possible values of t0 and climb-
up-or-pass-through branchings, one can deduce the time-
frequency structure of HHG, as displayed in Fig. 6(e)
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. The temporal evolution of high harmonic generation. (a), (c), and (e) are for E0 = 0.87 V/nm or Apeak = 0.23 < π
a

,
while (b), (d), and (f) are for E0 = 1.65 V/nm or Apeak = 0.44 > π

a
. (a) and (b):vector potential normalized to π/a. (c)

and (d):time-frequency analysis of HHG. Gabor transform of the TDSE simulation results with a temporal window having a
FWHM of 1.78 fs, i.e., 2.3 eV in energy. (e) and (f): orange solid lines denote electron energy trajectories that first tunnel from
the VB to the first CB at k = 0 at different momenta (not necessarily at the first approach) and then climb to upper bands as
soon as the electron reaches the minimum band gaps. The blue solid line in (f) represents the trajectory of an electron which
is first tunnel-ionized at A(t) ∼ 0 [blue circle in (b)], whereas the red dash-dotted line in the vicinity of the peak of A(t) [red
diamond in (b)]. In (c) and (d) we show by black dashed lines the trajectories corresponding to the black dashed lines in (e)
and (f), respectively, to facilitate comparison. The horizontal gray dashed lines in (c), (d), (e), and (f) show the predicted
cutoff energy positions, i.e., ∆ε21(Apeak) for (c) and (e) (Apeak = 0.23), and ∆ε31(Apeak), ∆ε41(π

a
− Apeak), and ∆ε41(A′peak)

from the bottom for (d) and (f) (Apeak = 0.44), respectively.

and (f). They indeed capture the main features of the
HHG temporal structure, extracted from The TDSE sim-
ulation results through Gabor transformation, above the
minimum band gap (4.2 eV) [Fig. 6(c) and (d)]. The
below-band-gap harmonics are emitted through the in-
traband dynamics.

The temporal structure under Apeak < π
a shown in

Fig. 6(c) is consistent with that previously discussed
by Vampa et al. [16]. It is also noteworthy that this

electron dynamics is conceptually similar to that in har-
monic generation from graphene [47–49]. For Apeak >

π
a ,

in contrast, Fig. 6(d) and (f) contain step-like features,
stemming from the band-climbing process [50] unique to
solid-state materials; they manifest themselves as multi-
ple plateaus and cutoffs seen in Fig. 3. Some step heights
indicated with the horizontal dashed lines in Fig. 6(f) are
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(a) (b)

FIG. 7. False-color representation of HHG spectra as func-
tions of E0 for (a) single-cycle driving field (τ = 42.70 fs) and
(b) multi-cycle field (τ = 192.14 fs). The corresponding Apeak

is shown on the top axis in the atomic unit. The vertical white
dashed lines represent Apeak = π

a
and 2π/a.

characterized by

E31 =∆ε31(Apeak), (13)

E41 =∆ε41(
π

a
−Apeak), (14)

which well agree with the TDSE simulation results [hor-
izontal dashed lines in Fig. 6(d) and arrowheads in
Fig. 3(a)]. The remaining difference between Fig. 6(d)
and (f) can be accounted for again by interband tran-
sition not just precisely at the minimum band gap but
also in its vicinity. Note that −πa <

π
a − Apeak < 0, and

therefore, that E41 increases with increasing Apeak.

Electrons starting from k0 ∼ 0 are excited when
A(t) ≈ 0, or, at an extremum of E(t) [the blue circle
in Fig. 6(b)], which favors tunneling transition. On this
basis, one might argue that they would make a main con-
tribution to HHG [16]. It should, however, be noticed
that they cannot reach the BZ edge and are confined in
the first CB [blue line in Fig. 6(f)] unless Apeak≥ 2π

a . As a
consequence, their contributions are limited to the range
below E31. In contrast, the harmonic components above
E31 including the highest cutoff are dominated by the
electrons [red line in Fig. 6(f)] that are initially far from
the Γ point and first excited in the vicinity of a peak of
A(t) [the red circle in Fig. 6(b)] or E(t) ≈ 0, thus with
smaller probability. This may be one of the reasons why
higher plateaus are weaker in intensity.

An intriguing prediction of the present model is that
the number of plateaus and the highest cutoff energy de-
pend not only on wavelength and electric field amplitude
(or vector potential amplitude) but also on pulse width or
number of cycles, in marked contrast to gas-phase HHG.
This is confirmed by Fig. 7, which compares harmonic
spectra for single-cycle (τ = 42.70 fs) and multi-cycle
(τ = 192.14 fs) driving fields. One can clearly see that
the third plateau is missing at 0.39 < Apeak < 0.79 for
the shorter pulse.

V. CONCLUSIONS

We have proposed a simple model to describe HHG
spectra from periodic crystalline solids, based on intra-
band displacement driven by the vector potential, tun-
neling between multiple bands, and interband recombi-
nation to the valence band. Our model can be viewed
as a solid-state and momentum-space counterpart of the
familiar three-step model for the gas phase [36, 37]. If
the intraband dynamics allows the electron to reach the
BZ edge, repeated tunneling and intraband displacement
lead to multiple plateaus, which is one of the recently
observed unique features of solid-state HHG [18, 29, 31].
Our model can successfully reproduce the laser intensity
at which the multiple-plateau structure appears, cutoff
energy positions, and temporal structure of HHG calcu-
lated through numerical solution of the single-electron
TDSE. Moreover, it predicts that the cutoff energy de-
pends on not only laser intensity and wavelength but
also pulse width. Expectedly, one can further refine the
present model by incorporating an interband tunneling
rate dependent on (n, k).

It may be useful to briefly mention the similarity and
difference between our model and the recently proposed
model of a strongly driven (or dressed) multi-level sys-
tem [18, 35]. Assuming that the dressed state ultimately
reproduces the band structure, their model appears to de-
scribe the physics similar to that in our model, in princi-
ple. It should be, however, emphasized that whereas their
model considers the contribution only from the VB elec-
tron initially located at k = 0, we properly take the con-
tribution from all the VB electrons into account. More-
over, by treating the intraband dynamics explicitly as
the crystal momentum displacement induced by the vec-
tor potential of the laser pulse, our model can directly
connect the emergence of multiple plateaus and cutoff
energies with the band structure in a clear-cut manner.

Thus, our model will offer a new way to investigate and
control the electronic state in solid materials with intense
laser fields, such as the reconstruction of band structure
from high-harmonic spectra and control of excited elec-
tron population via waveform.
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