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There are major discrepancies between recent B-spline R-matrix (BSR) and Dirac Atomic R-matrix Code
(DARC) calculations regarding electron-impact excitation rates for transitions in Mg4+, with claims that the
DARC calculations are much more accurate. To identify possible reasons for these discrepancies and to estimate
the accuracy of the various results, we carried out independent BSR calculations with the same 86 target states as
in the previous calculations, but with a different and more accurate representation of the target structure. We find
close agreement with the previous BSR results for the majority of transitions, thereby confirming their accuracy.
At the same time the differences with the DARC results are much more pronounced. The discrepancies in the
final results for the collision strengths are mainly due to differences in the structure description, specifically
the inclusion of correlation effects, and due to the likely occurrence of pseudoresonances. To further check
the convergence of the predicted collision rates, we carried out even more extensive calculations involving 316
states of Mg4+. Extending the close-coupling expansion results in major corrections for transitions involving the
higher-lying states and allows us to assess the likely uncertainties in the existing datasets.

PACS numbers: 34.10.+x,34.50.Fa,95.30.Dr

I. INTRODUCTION

Accurate and reliable electron-impact excitation rates
and transition probabilities are required for the modeling
and spectroscopic diagnostics of various nonequilibrium
astrophysical and laboratory plasmas. As a common
situation for most atomic ions, there is a limited number
of measurements available (if there are any at all) for the
transition probabilities and especially for the electron-impact
excitation rates. Consequently, theoretical predictions are
used in most applications. Despite the enormous progress
made during the past three decades both in the theory and
the computational methods of treating electron collisions
with atoms, ions, and molecules, the calculation of collision
rates remains a serious challenge for complex many-electron
targets. The accuracy of the existing datasets is not well
established, and often there are situations when subsequent,
more extended calculations suggest considerable corrections
to previous results. Even when employing similar scattering
models, calculations with different methods or codes may
also lead to large discrepancies. A recent example of such
a situation is electron-impact excitation of Mg4+, which is the
subject of the present paper.

Spectral lines of Mg4+ have been observed in several
astrophysical plasmas, including the Sun. Due to their
sensitivity to the density and temperature, these lines are
used in the diagnostics of such plasmas. Many references
and examples are given in the recent publications by Hudson
and co-workers [1], Tayal and Sossah [2], and Aggarwal
and Keenan [3]. All these works employed the advanced
R-matrix (close-coupling) method for the collision process,
but different computer codes and different representations
of the target structure. Hudson et al. [1] reported effective
collision strengths for transitions between 37 fine-structure
levels of the 2s2 2p4, 2s 2p5, 2p6, 2s2 2p3 3s, and 2s2 2p3 3p
configurations. [We omit listing the closed (1s2) subshell here
and below.] The target wavefunctions were first obtained

in the nonrelativistic approximation for 19 LS -coupled
target states using the CIV3 code [4]. The configuration
interaction (CI) expansion included up to 1350 configurations
and 4l correlated orbitals. The RMATRX-1 codes [5]
were then employed for the LS scattering calculations, and
the Intermediate Coupling Frame Transformation (ICFT)
method [6] was applied to generate the intermediate-coupling
results. These calculations will be denoted as RM-37 below.
Hudson et al. concluded that whilst the overall accuracy
is difficult to assess, they expected their results to have an
accuracy of ±10%. As will be seen below by comparison with
results from other calculations, these uncertainty estimates
were most likely far too optimistic.

To begin with, the work of Hudson and co-workers [1]
may contain some uncertainties due to the omission of
the levels of the 2s2 2p3 3d configuration in the n = 3
complex. Tayal and Sossah [2], therefore, performed a more
extensive calculation for e −Mg4+ collisions. They addi-
tionally took into consideration the levels of the 2s2 2p3 3d
configuration, resulting overall in 86 fine-structure levels.
They also improved the target structure description further
by employing the extensive multiconfiguration Hartree-Fock
(MCHF) method [7] in combination with term-dependent
nonorthogonal orbitals, which were individually optimized
for the various LS terms. The scattering calculations for the
collision rates were performed with the B-spline R-matrix
(BSR) method (see [8] for an overview) and a parallelized
version of the associated computer code [9] in the semi-
relativistic Breit-Pauli approximation. One advantage of
this approach is the avoidance of pseudoresonances, which
were possibly faced by Hudson and Bell [10] in their
standard R-matrix calculations with orthogonal orbitals. The
calculation of Tayal and Sossah [2] will be denoted as
BSR-86 (TS) below.

The effective collision strengths were presented over a wide
range of electron temperatures, suitable for modeling the
emissions from various types of astrophysical plasmas. Tayal
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and Sossah [2] estimated the accuracy of their collision rates
as ∼10% for transitions from the 2s2 2p4 levels of the ground-
state configuration and somewhat less accurate (∼ 20%) for
transitions between excited levels. For higher levels of the
2s2 2p3 3d configuration in particular, there may be significant
coupling effects from higher states, and thus their results
for transitions involving these levels are likely less accurate
(∼25%).

Recently, Aggarwal and Keenan [3] noted major differences
between the RM-37 and BSR-86 (TS) results. They estimated
that the BSR-86 (TS) and RM-37 collision strengths differ
for about 80% of the transitions by more than 20%, and in
most cases the BSR-86 (TS) results are larger. Aggarwal
and Keenan [3] suspected (with reasons discussed below in
Sec. III) major inaccuracies of the BSR collision strengths,
and hence they performed another calculation for e −Mg4+

collisions. They included the same 86 levels as in
the BSR-86 (TS) model, but they employed a completely
different, fully relativistic approach. The target wavefunctions
used by Aggarwal and Keenan [3] were generated with
the General-purpose Relativistic Atomic Structure Package
(GRASP) code based on the j j-coupling scheme. The
target configuration expansions included 12 configurations,
namely 2s2 2p4, 2s 2p5, 2p6, 2s2 2p3 3l, 2s 2p4 3l, and 2p5 3l,
respectively. This is less than in the CI expansions of the
target states in the RM-37 calculations and certainly in the
BSR-86 (TS) model. Due to the limited CI included in the
model, the target description is less accurate than in the
BSR-86 (TS) and RM-37 models. The subsequent scattering
calculations were performed with the Dirac atomic R-matrix
code (DARC), which also includes relativistic effects in a
systematic way based on the j j-coupling scheme. Both the
atomic structure (GRASP) and scattering (DARC) codes are
available at the website http://www.apap-network.org/
codes.html. Although they adopted fully relativistic codes
for their calculations of both the ionic structure and the
collision parameters, Aggarwal and Keenan [3] stressed the
well-known fact that relativistic effects are not expected to
be very important in the predicted collisions rates for such
a comparatively light ion as Mg4+. We will denote their
calculation by DARC-86.

The comparison between the final collision strengths show
significant discrepancies (up to two orders of magnitude)
between the DARC-86 and BSR-86 (TS) predictions for over
60% of the transitions at all temperatures. Aggarwal and
Keenan [3] stated that the scale of the discrepancies cannot
be explained by differences in the atomic structure alone,
and therefore the BSR-86 (TS) results should be classified as
inaccurate. They also noticed that the BSR collision strengths
seem to overestimate the results at higher energies and exhibit
incorrect trends regarding the temperature dependence of the
predicted collision rates. As a possible reason, they suggested
the appearance of pseudoresonances. Finally, they concluded
that their DARC-86 collision rates are probably the best
available to date and should be adopted for the modeling and
diagnostics of plasmas.

The principal motivation for the present work, therefore,
was to shed more light on the ongoing discussion by

performing an independent calculation for electron collisions
with Mg4+ and thereby to respond to recent demands for
uncertainty estimates of theoretical predictions [11, 12]. We
also use the BSR approach, but with an entirely different
target description, again based on a B-spline expansion.
By comparing with other available, and presumably highly
accurate, structure-only calculations, we are confident that
the present target description is significantly more accurate
than any of those used before in scattering calculations. For
a proper comparison of the results, we select the same set
of 86 target states in the close-coupling (CC) expansion as
in previous BSR-86 (TS) and DARC-86 calculations. Our
model will be labeled BSR-86. Choosing the same target
states allows us to directly draw conclusions regarding the
sensitivity of the predictions to the target structure description
in the cases of interest.

As a second goal, we wanted to check the convergence of
the CC expansion, especially for transitions to higher-lying
states. To achieve this, we performed much more extensive
calculations, also including the levels of the 2s2 2p4 4l and
2s 2p5 3l configurations for a total of 316 coupled states.
This model will be referred to as BSR-316. Note that this
extension allows us to consider the important 2s − 3l and
3l − 4l transitions, which may modify the close-coupling
effects and change the background collision strengths. Even
more important, the inclusion of additional resonance series
converging to higher excited levels can change the effective
collision strengths significantly for the Mg4+ ion around the
temperature of its formation in solar plasmas. Note that the
maximum Mg4+ abundance in ionization equilibrium of solar
plasmas occurs around Te = 2.8 × 105 K [13].

This paper is organized as follows. We begin in Sec. II by
summarizing the most important features of the present BSR
models for the e −Mg4+ scattering process. This is followed
in Sec. III with a presentation and discussion of our present
results, in comparison with those from previous calculations.
Then we present our most extensive model including 316
target states. We finish with a brief summary and conclusions
in Sec. IV. Unless specified otherwise, atomic units are used
throughout.

II. COMPUTATIONAL DETAILS

A. Structure calculations

The target states of Mg4+ in the present calculations were
generated by combining the MCHF and the B-spline box-
based multichannel methods [14]. Specifically, the structure
of the target expansion was chosen as

Φ(2s22p3nl, LS J) =
∑

nl,L′S ′
aL′S ′LS J

nl

{
φ(2s22p3, L′S ′)Pnl

}LS J

+
∑

nl,L′S ′
bL′S ′LS J

nl

{
φ(2s2p4, L′S ′)Pnl

}LS J

+c LS Jϕ(2s22p4)LS J + d LS Jϕ(2s2p5)LS J + e LS Jϕ(2p6)LS J .

(1)

http://www.apap-network.org/codes.html
http://www.apap-network.org/codes.html
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Here Pnl denotes the orbital of the outer valence electron,
while the φ and ϕ functions represent the CI expansions of
the corresponding ionic or specific atomic states, respectively.
These expansions were generated in separate MCHF calcula-
tions for each state.

The expansion (1) can be considered as a model for the
entire 2s2 2p3 nl and 2s 2p4 nl Rydberg series of bound and
autoionizing states in O-like Mg4+. The two sums in this
expansion can also provide a good approximation for states
with equivalent electrons, namely for all terms of the ground-
state configuration 2s2 2p4 as well as for the core-excited
states 2s 2p5. We found, however, that it is more appropriate
to employ separate CI expansions for these states by directly
including relaxation and term-dependence effects generated
with state-specific one-electron orbitals.

The inner-core (short-range) correlation is accounted for
through the CI expansion of the 2s2 2p3 and 2s 2p4 ionic states.
These expansions include all single and double excitations
from the 2s and 2p orbitals to the 3l and 4l (l = 0 − 3)
correlated orbitals. The resulting ionization potentials for
all ionic states agreed with the NIST tables [15] within
0.01 eV. To keep the final expansions for the target states
to a manageable size, all CI expansions were restricted by
dropping contributions with coefficients whose magnitude
was less than the cut-off parameter of 0.025. Even though this

is a significant reduction of the configuration expansions, we
had to compromise in order to make the subsequent scattering
calculations feasible on the available computers.

The unknown functions Pnl for the outer valence electron
were expanded in a B-spline basis, and the corresponding
equations were solved subject to the condition that the orbitals
vanish at the boundary. The R-matrix radius was set to
12 a0, where a0 = 0.529 × 10−10 m is the Bohr radius. We
employed 82 B-splines of order 8 to span this radial range
using a semi-exponential knot grid. The B-spline coefficients
for the valence electron orbitals Pnl, along with the CI
coefficients aL′S ′LS J

nl , bL′S ′LS J
nl , c LS J , d LS J , and e LS J in Eq. (1),

were obtained by a variational method through diagonalizing
the target Hamiltonian in the Breit-Pauli approximation.
Relativistic effects were incorporated through the Darwin,
mass velocity, and one-electron spin-orbit operators. This
is sufficient to account for the main relativistic corrections
for light ions such as Mg4+. Since the B-spline bound-state
close-coupling calculations generate different nonorthogonal
sets of orbitals for each ionic state, their subsequent use is
somewhat complicated. Our configuration expansions for the
target states contained from 20 to at most 50 configurations
for each state. Such expansions can be used in collision
calculations with modern computational resources.

i Configuration Level NIST BSR % MCHF % BSR-86 (TS) % DARC-86 %
1 2s2 2p4 3P2 0.0 0.0 − 0.0 − 0.0 − 0.0 −

2 2s2 2p4 3P1 1782.1 1610.6 −9.6 1778.2 −0.2 1729.5 −3.0 1733.8 −2.7
3 2s2 2p4 3P0 2520.7 2558.2 1.5 2506.8 −0.6 2507.5 −0.5 2454.8 −2.6
4 2s2 2p4 1D2 35924.7 35519.1 −1.1 36207.2 0.8 35968.6 0.1 39198.2 9.1
5 2s2 2p4 1S0 77286.9 77497.5 0.3 77291.2 0.0 77192.5 −0.1 77508.6 0.3
6 2s 2p5 3Po

2 283211.2 283191.8 −0.0 283885.0 0.2 284222.9 0.4 293811.8 3.7
7 2s 2p5 3Po

1 284830.9 284846.2 0.0 285496.0 0.2 285820.7 0.3 295374.4 3.7
8 2s 2p5 3Po

0 285714.3 285691.8 −0.0 286374.9 0.2 286636.1 0.3 296222.7 3.7
9 2s 2p5 1Po

1 397485.0 396900.1 −0.1 399069.2 0.4 400600.5 0.8 420037.1 5.7
10 2p6 1S0 662938.5 662251.9 −0.1 665826.2 0.4 665680.8 0.4 703031.0 6.0
11 2s2 2p3 (4S3) 3s 5So

2 668933.4 672099.1 0.5 668750.8 −0.0 669132.1 0.0 654687.3 −2.1
12 2s2 2p3 (4S3) 3s 3So

1 684540.3 687940.3 0.5 684358.8 −0.0 684092.5 −0.1 671168.8 −2.0
13 2s2 2p3 (2D3) 3s 3Do

1 727781.2 730753.6 0.4 727999.5 0.0 727455.2 −0.0 717109.2 −1.5
14 2s2 2p3 (2D3) 3s 3Do

2 727762.5 730790.2 0.4 727977.5 0.0 727424.5 −0.0 717086.2 −1.5
15 2s2 2p3 (2D3) 3s 3Do

3 727741.7 730879.0 0.4 727961.2 0.0 727400.4 −0.0 717081.8 −1.5
16 2s2 2p3 (4S3) 3p 5P1 − 735026.0 − 731732.9 − 731793.2 − 717840.1 −

17 2s2 2p3 (4S3) 3p 5P2 − 735147.3 − 731854.4 − 731919.4 − 717960.8 −

18 2s2 2p3 (4S3) 3p 5P3 − 735335.1 − 732056.8 − 732118.0 − 718163.8 −

19 2s2 2p3 (2D3) 3s 1Do
2 735545.1 738799.9 0.4 735852.3 0.0 735155.5 −0.1 725280.3 −1.4

20 2s2 2p3 (4S3) 3p 3P1 − 750115.3 − 745983.5 − 745769.3 − 734490.5 −

21 2s2 2p3 (4S3) 3p 3P0 − 750144.4 − 746042.8 − 745807.7 − 734544.3 −

22 2s2 2p3 (4S3) 3p 3P2 − 750172.7 − 746017.7 − 745803.3 − 734554.2 −

23 2s2 2p3 (2P1) 3s 3Po
0 756544.4 759814.0 0.4 756663.3 0.0 757755.9 0.2 742034.9 −1.9

24 2s2 2p3 (2P1) 3s 3Po
1 756565.3 759856.6 0.4 756691.0 0.0 757791.0 0.2 742071.2 −1.9

25 2s2 2p3 (2P1) 3s 3Po
2 756641.0 759955.8 0.4 756777.1 0.0 757872.2 0.2 742180.9 −1.9

26 2s2 2p3 (2P1) 3s 1Po
1 764627.7 768204.8 0.5 764879.0 0.0 764823.0 0.0 750664.7 −1.8

27 2s2 2p3 (2D3) 3p 1P1 − 787177.7 − 784332.3 − 784291.5 − 773595.4 −

28 2s2 2p3 (2D3) 3p 3D1 − 789183.0 − 786679.6 − 786654.1 − 775674.9 −

29 2s2 2p3 (2D3) 3p 3D2 − 789185.5 − 786675.2 − 786647.6 − 775633.2 −

30 2s2 2p3 (2D3) 3p 3D3 − 789574.6 − 786958.4 − 786915.3 − 775948.2 −

31 2s2 2p3 (2D3) 3p 3F2 − 793827.8 − 791237.2 − 791392.6 − 780107.2 −

32 2s2 2p3 (2D3) 3p 3F3 − 794002.8 − 791353.4 − 791499.0 − 780227.9 −

33 2s2 2p3 (2D3) 3p 3F4 − 794219.1 − 791500.2 − 791642.8 − 780377.2 −

34 2s2 2p3 (2D3) 3p 1F3 − 796987.4 − 793929.3 − 794104.2 − 782923.1 −
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i Configuration Level NIST BSR % MCHF % BSR-86 (TS) % DARC-86 %
35 2s2 2p3 (2D3) 3p 3P1 − 810674.4 − 807494.9 − 808699.3 − 799153.2 −

36 2s2 2p3 (2D3) 3p 3P0 − 810760.9 − 807610.0 − 808816.7 − 800241.8 −

37 2s2 2p3 (2D3) 3p 3P2 − 810779.1 − 807482.2 − 808827.7 − 800898.0 −

38 2s2 2p3 (4S3) 3d 5Do
0 − 814649.7 − 811397.1 − 811460.3 − 797638.8 −

39 2s2 2p3 (4S3) 3d 5Do
1 − 814656.8 − 811393.1 − 811460.3 − 797633.4 −

40 2s2 2p3 (4S3) 3d 5Do
2 − 814671.1 − 811386.0 − 811458.1 − 797624.6 −

41 2s2 2p3 (4S3) 3d 5Do
3 − 814692.3 − 811377.8 − 811455.9 − 797613.6 −

42 2s2 2p3 (4S3) 3d 5Do
4 − 814721.0 − 811372.6 − 811450.4 − 797607.0 −

43 2s2 2p3 (2P1) 3p 3S1 − 817811.7 − 814970.6 − 814948.8 − 801496.1 −

44 2s2 2p3 (2D3) 3p 1D2 − 821273.8 − 817471.1 − 817522.1 − 804903.5 −

45 2s2 2p3 (2P1) 3p 3D3 − 822737.4 − 819668.0 − 820259.0 − 805064.8 −

46 2s2 2p3 (2P1) 3p 3D1 − 822738.8 − 819630.2 − 820204.1 − 805061.5 −

47 2s2 2p3 (2P1) 3p 3D2 − 823003.7 − 819841.6 − 820381.9 − 807325.4 −

48 2s2 2p3 (4S3) 3d 3Do
1 821973.1 825791.2 0.5 821989.5 0.0 821609.9 −0.0 810405.7 −1.4

49 2s2 2p3 (4S3) 3d 3Do
2 821988.5 825818.4 0.5 822006.4 0.0 821632.9 −0.0 810428.7 −1.4

50 2s2 2p3 (4S3) 3d 3Do
3 822065.3 825904.6 0.5 822090.0 0.0 821710.8 −0.0 810527.5 −1.4

51 2s2 2p3 (2P1) 3p 1P1 − 826740.9 − 823564.3 − 824355.5 − 809697.9 −

52 2s2 2p3 (2P1) 3p 3P2 − 831883.1 − 828259.1 − 829754.6 − 815304.4 −

53 2s2 2p3 (2P1) 3p 3P1 − 831928.9 − 828312.4 − 829937.8 − 815939.7 −

54 2s2 2p3 (2P1) 3p 3P0 − 831960.0 − 828329.8 − 830031.1 − 816244.8 −

55 2s2 2p3 (2P1) 3p 1D2 − 840273.8 − 836464.9 − 836690.0 − 831570.7 −

56 2s2 2p3 (2P1) 3p 1S0 − 864130.1 − 859521.5 − 860403.1 − 857826.5 −

57 2s2 2p3 (2D3) 3d 3Fo
2 − 868272.9 − 865979.7 − 866135.8 − 854888.8 −

58 2s2 2p3 (2D3) 3d 3Fo
3 − 868583.7 − 866201.0 − 866350.9 − 855147.8 −

59 2s2 2p3 (2D3) 3d 3Fo
4 − 868986.1 − 866485.0 − 866617.5 − 855473.7 −

60 2s2 2p3 (2D3) 3d 1So
0 − 869176.8 − 866323.2 − 866623.0 − 855387.0 −

61 2s2 2p3 (2D3) 3d 3Go
3 − 871964.8 − 869482.5 − 870045.7 − 858809.7 −

62 2s2 2p3 (2D3) 3d 3Go
4 − 872044.1 − 869466.7 − 870024.9 − 858794.4 −

63 2s2 2p3 (2D3) 3d 3Go
5 − 872124.9 − 869433.3 − 869989.8 − 858762.5 −

64 2s2 2p3 (2D3) 3d 1Go
4 − 873523.7 − 870354.2 − 870823.8 − 860180.3 −

65 2s2 2p3 (2D3) 3d 3Do
3 871215.5 874276.4 0.4 871754.2 0.1 872364.5 0.1 861522.4 −1.1

66 2s2 2p3 (2D3) 3d 3Do
2 871357.1 874370.0 0.3 871888.8 0.1 872467.6 0.1 861597.0 −1.1

67 2s2 2p3 (2D3) 3d 3Do
1 871390.0 874383.4 0.3 871931.8 0.1 872481.9 0.1 861586.1 −1.1

68 2s2 2p3 (2D3) 3d 1Po
1 873455.3 876697.1 0.4 874012.1 0.1 873427.8 −0.0 863719.4 −1.1

69 2s2 2p3 (2D3) 3d 3Po
2 876794.6 879669.2 0.3 877334.9 0.1 877491.4 0.1 867044.4 −1.1

70 2s2 2p3 (2D3) 3d 3Po
1 877282.9 880189.1 0.3 877817.2 0.1 877935.8 0.1 867692.9 −1.1

71 2s2 2p3 (2D3) 3d 3Po
0 877462.9 880370.0 0.3 877996.2 0.1 878118.0 0.1 867925.6 −1.1

72 2s2 2p3 (2D3) 3d 1Do
2 877611.0 881148.5 0.4 878202.1 0.1 878639.2 0.1 867169.5 −1.2

73 2s2 2p3 (2D3) 3d 3So
1 879515.0 882786.3 0.4 880101.8 0.1 879580.8 0.0 868757.4 −1.2

74 2s2 2p3 (2D3) 3d 1Fo
3 882790.6 886303.1 0.4 883467.4 0.1 883872.6 0.1 875261.5 −0.9

75 2s2 2p3 (2P1) 3d 3Fo
4 − 901002.3 − 897995.0 − 899251.2 − 883480.9 −

76 2s2 2p3 (2P1) 3d 3Fo
3 − 901241.0 − 898266.7 − 899511.3 − 883803.5 −

77 2s2 2p3 (2P1) 3d 3Fo
2 − 901388.5 − 898441.8 − 899673.7 − 883990.0 −

78 2s2 2p3 (2P1) 3d 3Po
0 898756.3 902183.6 0.4 899165.8 0.0 900107.2 0.2 884033.9 −1.6

79 2s2 2p3 (2P1) 3d 3Po
1 898961.5 902449.9 0.4 899374.5 0.0 900308.0 0.1 884292.9 −1.6

80 2s2 2p3 (2P1) 3d 3Po
2 899368.6 902954.5 0.4 899778.5 0.0 900688.8 0.1 884794.4 −1.6

81 2s2 2p3 (2P1) 3d 3Do
2 901473.4 905155.6 0.4 902031.1 0.1 903539.7 0.2 888375.1 −1.5

82 2s2 2p3 (2P1) 3d 3Do
1 902765.0 905541.2 0.3 902562.6 −0.0 904375.9 0.2 888583.6 −1.6

83 2s2 2p3 (2P1) 3d 3Do
3 902151.6 905770.5 0.4 902680.1 0.1 904428.6 0.3 888586.9 −1.5

84 2s2 2p3 (2P1) 3d 1Do
2 902508.2 906153.4 0.4 903055.2 0.1 904675.5 0.2 890381.1 −1.3

85 2s2 2p3 (2P1) 3d 1Fo
3 905369.1 909276.1 0.4 905956.6 0.1 907419.0 0.2 892739.4 −1.4

86 2s2 2p3 (2P1) 3d 1Po
1 914499.2 918043.2 0.4 915111.9 0.1 915287.1 0.1 903386.1 −1.2

TABLE I: Excitation energies of the 86 target levels included in the present BSR
scattering calculations
Key: i: level index; NIST: recommended value from NIST data base [15]; BSR:
present calculation, MCHF: calculation [16]; BSR-86 (TS): calculation [2];
DARC-86: calculation [3]; %: deviation respect the recommended values of
NIST, in percentage. All energies in cm−1.

The present calculated excitation energies of the target
states are compared with the available measured values from

the NIST compilation [15] and other models in Table I. In
addition to the BSR-86 (TS) and GRASP-86 structure results,
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FIG. 1: Comparison of f -values (dimensionless) from the structure
models used in the present BSR, BSR-86 (TS), and DARC-86
calculations with the MCHF results [16]. x-axis: f results for a
certain transition calculated with the MCHF method [16]; y-axis: g f
results for the same transition calculated with • BSR (present work),
� BSR-86 (TS) [2] and H DARC-86 [3].

we include the extensive MCHF calculations by Froese-
Fischer and Tachiev [16]. The latter calculations were
carried out with an extremely large set of configurations
and a careful analysis of the convergence was performed.
It is generally accepted that this work represents the most
accurate calculation for the structure of the lowest excited
levels of several O-like ions, including Mg4+. As seen
from the table, the MCHF and BSR-86 (TS) calculations
show the best agreement with the NIST-recommended
data, whereas the DARC-86 energies lack considerably in
accuracy due to the limited CI expansions used in the target
wavefunctions. This indicates large correlation corrections
due to CI effects in the case of interest. Except for the fine-
structure splitting of the 2s2 2p4 ground-state configuration,
the present BSR-86 excitation energies are also in close
agreement with experiment, with deviations of generally less
than 0.5%. The larger difference in the fine-structure splitting
for the lowest 2s2 2p4 configuration is most likely due to
restricting the configuration expansion as described above. In
spite of the slightly larger deviations in comparison to the
MCHF results, we demonstrate below that our wavefunctions
accurately represent the main correlation corrections, as well
as the interaction between different Rydberg series and term-
dependence effects.

Figure 1 exhibits a comparison of the MCHF oscillator
strengths with those from the structure calculations used in
the present BSR and the previous BSR-86 (TS) models [2], as
well as the DARC-86 calculations [3] for transitions between
all 86 target levels presented in Table I. In the absence of
experimental data, we consider the MCHF calculations [16]
as the reference to be compared with. These data are
also the recommended values in the NIST compilation [15]
as the most accurate currently available structure data for
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FIG. 2: Lifetimes from the structure models used in the present
BSR, BSR-86 (TS), and DARC-86 calculations, normalized to the
MCHF predictions [16]. The dashed lines indicate the bands of
±20% deviation.

the Mg4+ ion. There is very good agreement between the
present results and the MCHF predictions for all transitions,
including the very weak ones with small f -values. This
suggests similarly accurate configuration mixing in both
calculations. The f -values used in the BSR-86 (TS) model
show somewhat larger deviations, mainly for the weak
transitions. The GRASP results for the DARC-86 model, on
the other hand, differ considerably from the MCHF values for
many transitions, including even relatively strong ones with
f -values larger than 10−3. This is a clear indication that the
GRASP target wavefunctions miss important CI corrections.

Variations in the f -values also lead to different predictions
of the lifetimes. A comparison of the lifetimes from the
various calculations is shown in Fig. 2. As expected, the
present BSR lifetimes are in closest agreement with the
MCHF results [16]. Except for the weak transition (1 − 11)
to the (2s2 2p3(4S) 3s)5So

2 state, all our values agree with the
MCHF results within 10%. The lifetimes of BSR-86 (TS) [2]
agree within 20%, whereas the GRASP results of DARC-
86 [3] again exhibit much larger deviations for many levels,
both for low-lying and high-lying states. This indicates,
once again, that the GRASP configuration expansions are far
from converged. Consequently, the accuracy of the predicted
collision strengths from the DARC-86 model with these
inferior structure data as input are highly questionable. This
will be further discussed below.

B. Scattering calculations

We performed two sets of scattering calculations. In the
first model, BSR-86, we selected the same set of target states
as in the previous BSR-86 (TS) and DARC-86 calculations.
Comparison between the predictions from these three 86-state
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models allows us to directly draw conclusions regarding the
sensitivity of the final rate coefficients to the target structure
description. In our second model we additionally included
the states from the 2s2 2p4 4l and 2s 2p5 3l configurations,
yielding 316 levels overall. This BSR-316 model allows us
to check the convergence of the CC expansion, especially for
transitions to higher-lying states.

The close-coupling equations were solved by means of the
R-matrix method, using a parallelized version of the BSR
complex [9]. The distinctive feature of the method is the
use of B-splines as a universal basis set to represent the
scattering orbitals in the inner region of r ≤ a. Hence, the
R-matrix expansion in this region takes the form

Ψk(x1, . . . , xN+1) =

A
∑

i j

Φ̄i(x1, . . . , xN ; r̂N+1σN+1) r−1
N+1 B j(rN+1) ai jk

+
∑

i

χi(x1, . . . , xN+1) bik . (2)

Here A denotes the antisymmetrization operator, the Φ̄i are
the channel functions constructed from the N-electron target
states and the angular and spin coordinates of the projectile,
and the splines B j(r) represent the radial part of the continuum
orbitals. The χi are additional (N +1)-electron bound states.
In standard R-matrix calculations [17], the latter are included
one configuration at a time to ensure completeness of the
expansion when compensating for orthogonality constraints
imposed on the continuum orbitals. The use of nonorthogonal
one-electron radial functions in the BSR method, on the
other hand, allows us to avoid these configurations for
compensating orthogonality restrictions, thereby avoiding the
pseudoresonance structure that may appear in calculations
with an extensive number of bound channels χi in the CC
expansion.

In the inner region, we used the same B-spline set as
for the target description described above. The maximum
interval in the B-spline grid was 0.25 a0. This is sufficient
to cover electron scattering energies up to 50 Ry. Numerical
calculations were performed for 60 partial waves, with total
electronic angular momentum J = 1/2 − 59/2, for both
even and odd parities. In the BSR-86 model, the maximum
number of channels in a single partial wave was 388 while
it was 1568 in BSR-316. With a basis size of 82 B-splines,
this required the diagonalization of matrices with dimensions
up to about 32 000 and 130 000, respectively. The former
calculations could still be performed on modern desktop
machines, while the latter were carried out with parallelized
versions of the BSR complex, using supercomputers with
distributed memory.

For the outer region we employed the parallel version
of the PSTGF program (http://www.apap-network.org/
codes.html). In the resonance region for impact energies
below the excitation energy of the highest level included in
the CC expansion, we used a fine energy step of 10−5 z2 Ry,
with z = 4 as the target ionic charge, to properly map
those resonances. For energies above the highest excitation
threshold included in the CC expansion, the collision strengths

vary smoothly, and hence we chose a coarser step of
10−2 z2 Ry. Altogether, 51416 energies for the colliding
electron were considered in the BSR-86 model and 71376
energies in the BSR-316 model. We calculated collision
strengths up to 50 Ry, which is about five times the ionization
potential of Mg4+. For even higher energies, if needed,
we extrapolated Ω using the well-known asymptotic energy
dependence of the various transitions. To obtain effective
collision strengths Υ(Te), we convoluted Ω with a Maxwellian
distribution for an electron temperature Te, i.e.,

Υi− j(Te) =

∫ ∞

Eth

dE Ωi− j(E) exp
(

E − Eth

kTe

)
. (3)

Here Eth is the i − j transition energy and k is the Boltzmann
constant. We calculated Υ for temperatures between 103 and
106 K. The entire table with effective collision strengths for all
temperatures and transitions included in the BSR-316 model
can be found online in the Supplemental Material provided
with the present manuscript.
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FIG. 3: Collision strength Ω (dimensionless) for electron-impact
excitation of the 1 − 2 (2s2 2p4 3P2 − 2s2 2p4 3P1) (top) and 4 − 9
(2s2 2p4 1D2 − 2s 2p5 1Po

1) (bottom) transitions in Mg4+, as obtained
in the present BSR-86 model.
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FIG. 4: Comparison of effective collision strengths Υ (dimensionless) obtained in the present BSR-86 model with BSR-86 (TS) (upper panels),
DARC-86 (middle panels), and RM-37 (lower panels) for three temperatures. Also indicated in the panels is the average deviation σ from
the BSR-86 results. x-axis: Υ results for a certain transition calculated with present BSR-86 model; y-axis: Υ results for the same transition
calculated with other previous model.

III. RESULTS AND DISCUSSION

A. BSR-86 calculations

As our first example, Fig. 3 exhibits the resonance
structure of the collision strength Ω for the forbidden
M1 transition (2s2 2p4 3P2 − 2s2 2p4 3P1) and for the dipole-
allowed transition (2s2 2p4 1D2 − 2s 2p5 1Po

1). We see the
typical resonance structure for electron−ion scattering that
consists of numerous closed-channel resonances, most of
which are narrow. This resonance structure provides the
dominant part of the collision strength for weak forbidden
transitions, but it only yields a relatively small contribution
to strong dipole-allowed transitions. Visual comparison with
similar plots from the DARC-86 calculation [3] shows good
qualitative agreement between the calculations for these two

cases. This also indicates that both calculations sufficiently
resolve the rich structure. Hence, further increasing the
number of energy points would not lead to noticeable
corrections.

A global comparison between the present BSR-86 results
and the effective collision strengths obtained previously
is presented in Fig. 4 at three different temperatures.
The best agreement is observed with the BSR-86 (TS)
predictions [2]. The average relative deviation is around
8%, which is considered a very good agreement for such
type of calculation. Much worse agreement (with average
deviations of almost 30%) is observed with the DARC-86
calculations [3]. To some extent the dispersions at all three
temperatures are similar to the ones seen for the f -values
in Fig. 1. This is a clear indication that the target structure
description is the principal source for the differences. For
completeness, Fig. 4 also contains a comparison with the
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earlier RM-37 results [1]. In addition to only coupling the
lowest 37 levels of Mg4+, the energy mesh used in the RM-37
calculation is much coarser than in the other calculations. This
may lead to a poor account of the resonance contributions.
As discussed below, some of the RM-37 collision strengths
exhibit apparent pseudoresonance structure. As a result,
the average deviation of 44% from the present results is
understandable.

As shown by the above comparison, our present work
confirms the validity of previous BSR-86 (TS) results [2].
The differences are reasonable and can be explained by the
different structure descriptions. This conclusion contradicts
the statements of Aggarwal and Keenan [3], who declared
that the BSR-86 (TS) results are incorrect and assessed the
corresponding Υ-values as unreliable. They also expressed
doubts about the ability of the BSR approach to avoid
pseudoresonances, and thereby to generate accurate results in
general.

The principal argument of Aggarwal and Keenan [3]
is that the BSR Υ-values show a big “hump” at 105 K
for almost all transitions to the state #86, and that the
collision strengths appear to be very much underestimated
at low(er) temperatures. Such a dependence of Υ looks
unphysical and hence the appearance of pseudoresonances
in the BSR-86 (TS) calculation was suggested. Since the
suspicion of Aggarwal and Keenan regarding the correctness
of the results for state #86 appears to be warranted, we decided
to perform a detailed analysis and requested the original
values for the collision strength Ω from the authors of [2].
We found that the dense energy mesh in the BSR-86 (TS)
calculations ends right below the threshold of this last state
and that there is a relatively large gap of 0.02 Ry between the
excitation threshold and the next energy point. As a result,
the corresponding near-threshold portion of the excitation
function is not accounted for properly when calculating Υ for
this state. This finding explains the observations of Aggarwal
and Keenan, but the problem is actually limited to transitions
to state #86. A similar analysis for other states of Mg4+ does
not confirm the conclusions of Aggarwal and Keenan. The
extrapolation of their conclusions from a single level to all
others is simply not warranted.

Also, the suggested appearance of pseudoresonances in the
BSR calculations contradicts the findings of Aggarwal and
Keenan [3] that for many transitions (especially from levels
below #12) the DARC Υ-values are still much larger, up
to two orders of magnitude. The reason given is the large
difference in the background collision strengths. One such
example is the 10 − 30 (2p6 1S0 − 2s2 2p3 3p 3D3) transition,
for which Aggarwal and Keenan exhibit the collision strength
in Fig. 6 of [3]. The BSR collision strength for this transition
is shown in Fig. 5. We see close agreement between
the BSR-86 and BSR-86 (TS) results. Visual comparison
with the DARC-86 predictions reveals drastic deviations in
both shape and magnitude. Whereas the BSR calculations
exhibit the typical resonance structure consisting of dense
but narrow resonances, the DARC cross section is dominated
by three intense and broad maxima, which are typical for
pseudoresonances. In other words, we arrive at the opposite
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FIG. 5: Collision strength Ω for electron-impact excitation of the
10 − 30 transition in the BSR-86 (top) and BSR-86 (TS) (bottom)
models.

conclusion compared to Aggarwal and Keenan regarding the
possible effect of pseudoresonances on the results. It is also
worth noting that the 10−30 transition is a strongly forbidden
three-electron-jump M3 transition whose strength depends
strongly on the correlation corrections in the underlying target
description as well as close-coupling effects.

B. BSR-316 calculations

Figure 6 exhibits the collision strengths for different models
at the electron energy of E = 20 Ry, i.e., above the
resonance region. This allows us to compare the background
collision strengths. We found close agreement between
the BSR-86 and BSR-316 background Ω for the majority
of transitions. The differences with the distorted-wave
(DW) results of [18] reflect the close-coupling effects and,
once again, the different target descriptions. Somewhat
surprisingly, however, we notice much larger discrepancies
with the RM-37 than with the DW results, even though the
former model includes close-coupling and employs relatively
accurate target wavefunctions. Such large deviations of
the RM-37 collision strengths from both the BSR-86 and
DW results again suggests the presence of pseudoresonances
for some transitions. This conclusion is supported when
plotting the RM-37 data presented in their online tables. For
the problematic transitions, i.e., those far away from the
diagonal line in Fig. 6, the RM-37 collision strengths exhibit
an unphysical energy dependence, with broad resonances at
higher energies. This is indeed a typical situation for R-matrix
calculations with the standard Belfast codes, unless special
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FIG. 6: Comparison of collision strengths for the BSR-86 model
with the DW, RM-37, and BSR-316 calculations at the electron
energy E = 20 Ry. x-axis: Ω results for a certain transition calculated
with present BSR-86 model; y-axis: Ω results for the same transition
calculated with • present BSR-316 model, H RM-37 [1], � DW [18].

care is taken to avoid these pseudoresonances, as outlined
by [19].

In fact, the lack of balance between the N-electron (target)
plus projectile scattering part and the (N + 1)-electron pure
bound part of the CC expansion (2) may also have caused
the appearance of pseudoresonance structure in the DARC-86
calculations. Their target CI expansions and the (N + 1)-
electron χi functions contain configurations with a 2s hole,
whereas no scattering channels with excitations out of the 2s
subshell were included. This may have led to an overestimate
of the 2s resonance contribution.

Figure 7 presents a comparison of effective collision
strengths from the present BSR-86 and BSR-316 models. As
expected, the corrections for the strong transitions are small
and the corresponding rates are expected to be converged. The
rate coefficients for all transitions between the lowest 10 levels
with configurations 2s2 2p4, 2s 2p5, and 2p6 are stable against
changes in the size of the CC expansion, for both strong dipole
and weak intercombination transitions.

However, some transitions to the first excited 2s2 2p3 3l
states already exhibit noticeable changes in their effective
collision strengths. There is a typical enhancement due
to additional resonances, which was previously pointed out
by Fernández-Menchero et al. for Fe20+ [20]. A more
detailed analysis shows that the most dramatic changes occur
for the weak two- and three-electron transitions from the
2s 2p5 and 2p6 levels to the 2s2 2p3 3l states. In these
cases, the enhancement of the collision rates is not only due
to additional resonance structure but also due to changes
(mainly enhancement) of the background collision strengths.
The resonance structure for these transitions also changes
dramatically due to the inclusion of the 2s 2p3 3l target
states that lead to the appearance of strong resonances with
configurations 2s 2p3 3l 3l′.

IV. SUMMARY AND CONCLUSIONS

In response to recent criticism of the BSR method, and
in order to resolve the reasons for the large discrepancies
between existing datasets, we have presented new extensive
calculations of the oscillator strengths and effective collision
strengths for the Mg4+ ion. Significant attention was devoted
to the uncertainties in the scattering data due to the target
structure description and the size of the close-coupling
expansion. Our detailed and comprehensive comparison of
the existing datasets allows us to draw conclusions about their
likely accuracy.

First, we independently obtained electron-impact excitation
collision strengths for the Mg4+ ion with the same number of
target states in the close-coupling expansion as in the recent
DARC-86 and BSR-86 (TS) calculations. Comparing the
results directly reveals the influence of the different structure
descriptions. The good agreement between our oscillator
strengths with those from extensive MCHF calculations
indicates that our target structure description is the most
accurate used so far. The significant differences in the
collision strengths seen with the DARC-86 results in many
cases suggest that the target structure is the main source of
inaccuracy and uncertainty in these calculations, with the
largest effects on transitions involving highly excited levels.
There are also indications of a remaining pseudoresonance
structure in the DARC-86 calculations.

On the other hand, we obtained very reasonable agreement
with the results from the previous BSR-86 (TS) calcula-
tion [2], except for excitation of the very last level (#86) at low
temperatures. For this particular state, the deviations could
simply be explained by too coarse of an energy grid in the
near-threshold region of the BSR-86 (TS) calculation. Our
findings, therefore, contradict the conclusions of Aggarwal
and Keenan [3] regarding a general inaccuracy of the
BSR-86 (TS) results. Rather than concentrating on comparing
collision strengths for a single level (for which we explained
the apparent problem), our conclusions are based on a
comprehensive comparison for all transitions.

We also compared the present results with other available
datasets. Overall good agreement was obtained with the DW
collision strengths of [18] at electron energies above the res-
onance region. The noticeable difference for some transitions
is again connected with the too limited CI expansions in the
DW calculations. The largest discrepancies were seen with
the RM-37 results [1]. The latter calculations are likely the
least accurate due to several reasons, including a still possibly
insufficient quality of the target description, a smaller CC
expansion, and the indication of pseudoresonances.

Finally, we carried out much more extensive BSR-316
calculations, which additionally included the 2s2 2p4 4l and
2s 2p5 3l target states. This led to the appearance of new
resonances. Also, significant corrections were revealed for
transitions to high-lying states and between closely-spaced
levels. Due to the superior target structure generated in
the present work and the larger CC expansions, we believe
that the present results are the currently best for electron-
impact excitation of Mg4+. The differences between the
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FIG. 7: Comparison of effective collision strengths obtained in the present BSR-86 and BSR-316 models. In addition to all transitions, we
illustrate the situation for the lowest 10 and 20 states, respectively. x-axis: Υ results for a certain transition calculated with BSR-86 model;
y-axis: Υ results for the same transition calculated with BSR-316 model.

BSR-86 and the BSR-316 results may in fact serve as an
uncertainty estimate for the available excitation rates. Our
final table contains the radiative and collision parameters
for transitions between all 316 target states. We are most
confident regarding the accuracy of the collision strengths
between the first 86 states presented in Table I. The higher-
lying states were included mainly to check the convergence of
the results. Improving the accuracy of the collision strengths
for these states would require even larger calculations
whose computational demands are beyond currently available
resources.
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