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Experiments involving ultracold molecules require sufficiently long lifetimes, which can be very
short for excited rovibrational states in the molecular potentials. For alkali atoms such as rubidium,
a lowest rovibrational molecular state can both be found in the electronic singlet and triplet config-
urations. The molecular singlet ground state is absolutely stable. However, the lowest triplet state
can decay to a deeper bound singlet molecule due to a radiative decay mechanism that involves the
interatomic spin-orbit interaction. We investigate this mechanism, and find the lifetime of rubidium
molecules in the lowest triplet rovibrational state to be about 20 minutes.

INTRODUCTION

Stable ultracold molecules are of high experimental
and theoretical interest [1]. In particular molecules with
a permanent electric dipole moment offer the opportu-
nity to explore many-body states [2] that are impossible
to reach with the isotropic nature of the short-range ul-
tracold atomic interactions. One of the routes to create
ultracold diatomic molecules is to associate them from ul-
tracold atoms. Initially atoms are associated into weakly-
bound Feshbach molecules by sweeping a magnetic field
across resonance. Subsequently stimulated Raman adia-
batic passage (STIRAP) is performed on these molecules
to convert them to the lowest state of a particular poten-
tial [3]. This technique has proven to be very efficient,
and in 2008 the first sample of diatomic KRb molecules
in the rovibrational ground state was produced [4]. More
recently, this also succeeded for RbCs [5, 6], which con-
trary to KRb is chemically stable under two-body colli-
sion processes [7]. Also non-dipolar Rb2 [8] and Cs2 [9]
ground-state molecules have been created in this way.

The stability of these molecules is crucial for exper-
iments, and therefore it is only natural to create the
molecules in the absolute ground state. This is the rovi-
brational ground state of the electron spin singlet po-
tential X1Σg. The singlet potential is energetically very
deep, and to reach its ground state via STIRAP, typ-
ically an additional laser system is required. However,
the lowest spin triplet state is much less deep, and can
be reached more easily with the laser set-up which is usu-
ally present for laser cooling and trapping purposes.

While (singlet) ground-state molecules are absolutely
stable with respect to radiative decay, molecules in the
lowest triplet state are not. However, the question is
whether the radiative lifetime will be a practical limiting
factor to current experiments. Recent experimental and
theoretical work shows that a gas of singlet ground-state
molecules has a very short reactive lifetime resulting from
3-body collisions [5, 10]. Also, triplet molecules have the-
oretically been shown to be unstable towards trimer for-
mation [11]. On the other hand, isolated Rb2 molecules
in the lowest triplet state, produced in an optical lattice
[8], are not sensitive to other types of decay apart from
the radiative process, and may potentially have a much

FIG. 1. Geometry of the Rb2 molecule, considered to con-
sist of two valence electrons 1,2, and two Rb+ ions A+,B+.
Electrons 1,2 and the atomic nuclei are initially spin-polarized
in a direction z (nuclear spins iA and iB). Vector ~E(~r1B) is
the Coulomb field at the position of electron 1 from the net
charge of ion B+ concentrated at nucleus B. The figure illus-
trates one of the four terms contributing to the interatomic
spin-orbit interaction V so

fi (see Eq. 4).

longer lifetime than the reactive lifetimes of both singlet
and triplet molecules in their lowest rovibrational state.

In this paper, we investigate the lifetime of the lowest
triplet Rb2 state a3Σ+

u . While our approach is generic
for all alkali atoms, rubidium is particularly interesting
as it is currently the most-widely used species in ultra-
cold quantum gas experiments. Our treatment applies to
85Rb2 and 87Rb2 molecules. Rb2 molecules in the lowest
triplet state are not absolutely stable, as the combined
valence electron spins may form a lower energetic singlet
configuration.

In the following we present a calculation of the lifetime
of Rb2 molecules in their lowest triplet state, consider-
ing the two most probable decay mechanisms involving
a spin-flip. The first mechanism we consider arises from
the inter-atomic part V so of the total spin-orbit inter-
action [12, 13] that admixes a set of intermediate elec-
tronic states into the lowest triplet state. The spin-flip
is followed by E1 decay, and we show that this is the
dominant mechanism that leads to a lifetime of about 20
minutes. The second mechanism starts with an energy-
conserving spin-flip, resulting from the magnetic dipole-
dipole interaction, which is followed by nuclear spin M1



2

decay. This mechanism appears in practice to be com-
pletely negligible, as the associated lifetime is 1029 s, and
therefore leaves the interatomic spin-orbit mechanism as
the sole mechanism responsible for the decay of rubidium
molecules in the lowest triplet state. In both cases the
two-atom system is considered to consist of two valence
electrons 1,2 and two Rb+ ions A,B with nuclear spins
iA,iB (see Fig. 1). In the following we focus on the 87Rb2

molecule for which iA = iB(= 3
2 ).

I. INTERATOMIC SPIN-ORBIT COUPLING

One of the terms contributing to V so in the situation
of Fig. 1, in which the electron-ion pair 1,B of the dimer
is involved is [12, 13]

V so(1, B) =
e

4m2c2

(
~E(~r1B)× ~p1

)
.~σ1 ≡

e~
4m2c2

~V1B .~σ1,

(1)
which includes the Thomas precession factor 1

2 . We de-

fine the shorthand notation ~V1B for the spatial part of

V so(1, B), i.e. ~E(~r1B)× ~p1 (similarly for other electron-

ion combinations). In Eq. (1) the quantity ~E(~r1B) =
er̂1B/(4πε0r

2
1B) is the electric field operating on electron

1 due to the net charge of the other ion B+ concentrated
at its nucleus, r̂1B is the unit vector ~r1B/r1B , ~σ the Pauli
spin vector, ~p1 the electronic momentum operator, e the
elementary charge, c the velocity of light, and m the elec-
tron mass. Rewritten in atomic units and including the
2A term we find:

V so(1, B) + V so(2, A) =
1

4

(
λc
a0

)2

(~V1B .~σ1 + ~V2A.~σ2),

(2)
with λc the reduced electron Compton wavelength and
a0 the Bohr radius.

We study the excitation process at fixed values of the
internuclear distance R in a range where it is reasonable
to assume that electron 1 is in one atom and electron
2 in the other, which is roughly equal to or larger than
twice the Rb atomic van der Waals radius rvdW = 5.72a0
[14]. Therefore, in connection with the positions of the
electrons relative to ions A and B, we define a pair of
projection operators Π on disjunct parts of the 4-particle
(two valence electrons and two ions) configuration space
where either 1A, 2B is the composition of the two atoms
(projection operator Π1A,2B) or 1B, 2A (Π1B,2A). We
thus rewrite the above expression (2) as

V so =
1

4

(
λc
a0

)2

[Π1A,2B(~V1B .~σ1 + ~V2A.~σ2)

+ Π1B,2A(~V1A.~σ1 + ~V2B .~σ2)]. (3)

It is the ~σ1−~σ2 part V sofi of V so, proportional to the dif-

ference of the valence electron spins (antisymmetric in 1
and 2), that admixes a superposition of final singlet two-
particle electronic sp states into the fully spin-polarized

initial dimer state |Ψi〉 before the decay:

V sofi =
1

8

(
λc
a0

)2 [
Π1A,2B(~V1B − ~V2A)

+ Π1B,2A(~V1A − ~V2B)
]
· (~σ1 − ~σ2). (4)

Note that in the above we discuss operator equations
which act on the combined Hilbert spaces of the spatial
and spin degrees of freedom. Below, we will only regard
the spin-antisymmetric part of the Hilbert space as the
~σ1+~σ2 part connects the initial state to states that do not
contribute to the decay. The associated projection op-
erators on spin-symmetric and spin-antisymmetric parts
of Hilbert space commute with the projection operators
Π1A,2B and Π1B,2A on configuration space and therefore
the spin operators (~σ1 − ~σ2) can be pulled out of the
square brackets.

For the initial and final electronic states we take the
R-dependent adiabatic Potential-Energy Curves (PECs)
and electronic Transition Dipole Moments (TDMs) of the
low-lying Rb dimer states from Ref. [15]. These have
been calculated both without and with (intra)-atomic
spin-orbit coupling, leading to ΛΣ states and Ω states,
respectively. Here Λ, Σ and Ω are the projections of
the total electron orbital, spin, and total angular mo-
mentum along the internuclear axis, respectively. Inter-
atomic spin-orbit coupling is not taken into account (see
also Ref. [16–18]). In our case the choice between the
two types of states depends crucially on the range of
inter-atomic distances where the initial state is concen-
trated. In Fig. 2 we present the PEC for the initial
lowest triplet rovibrational state with quantum numbers
vt, l,ml = 0, 0, 0, together with the corresponding eigen-
function squared [φi(R)]2 with a Gaussian-like shape,
normalized according to

∫∞
0

[φi(R)]2dR = 1. It is con-
centrated in the interval from R = 10 to 14 a0, which
contributes dominantly to the transition from |Ψi〉 to the
final electronic states via intermediate states, while the
PECS for the (1)0−u and (1)1u initial Ω-states are virtu-
ally identical to those of the a3Σ+

u state (for R = 10 to
14 a0 in 6 of 8 decimals). For that reason we will only
make use of the Ω-type TDMs in Ref. [15]. In addition,
we only include them for sp final states and omit the sd
states, which are not admixed by V so.

In order to connect to the TDMs of Ref. ([15]) we now

expand the factor 1/r31B in the electric field ~E(~r1B) =
~r1B/r

3
1B (similarly for other electric fields in the previ-

ous equations) in inverse powers of R, using the short-
handed notations ρ = r1B/R, p = −2 cos θ1A r1A/R,
q = (r1A/R)2:

1/ρn = 1− n

2
(p+ q) +

n(n+ 2)

8
(p+ q)2 + . . . (5)

= 1 + n
z′1A
R
− n

2

(r1A
R

)2
+
n(n+ 2)

2

(
z′1A
R

)2

+ . . .

We use a nuclei-fixed right-handed coordinate system:
the origin halfway the nuclei [15], an internuclear z′ axis,
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and a perpendicular pair of x′ and y′ axes with an arbi-
trary orientation around the z′ direction. Furthermore,
we neglect cross-terms between the intra- and inter-
atomic spin-orbit couplings (both weak), so that the elec-
tronic momentum in Eq. (1) can be expressed as a com-
mutator of the Hamiltonian Hel for the two valence elec-
trons [15] with the position vector ~r1A: ~p1 = i[Hel, ~r1A].
As a consequence, we have

~E(~r1B)× ~p1 ∝ [Hel, ~r2B × ~r1A] = [Hel,−~R× ~r1A], (6)

i.e., only the component ~r1A⊥ = ~r1⊥ perpendicular to ~R
and only even orders in the 1/ρ3 expansion survive. The

0th order contribution to ~V1B can thus be dealt with in
terms of TDMs and the 2nd order term can be used to
estimate the relative error, which turns out to be roughly
(rvdW /R)2 ≈ 25% in the relevant range 10 < R < 14a0
(see Fig. 2). This conclusion is valid for other electron-
ion combinations too.

A. Symmetry aspects

The foregoing steps change the spatial operator mul-

tiplying Π1A,2B in Eq. (4) into ~V1B − ~V2A = − i
R3
~R ×

[Hel, (~r1A + ~r2B)]. A similar result is obtained for the
operator multiplying Π1B,2A. In total we obtain

V sofi =
1

8R2

(
λc
a0

)2

R̂× (Π1A,2B [Hel, ~r1 + ~r2]

+ Π1B,2A[Hel, ~r1 + ~r2]) · (~σ1 − ~σ2), (7)

with R̂ the unit vector ~R/R.
The symmetry properties of this expression determine

selection rules for the admixtures induced by V sofi . Split-

ting the electronic spatial part ~D = ~r1⊥ + ~r2⊥ of V sofi
into spherical components q = ±1 [19], D±1′ = ∓(Dx′ ±
iDy′)/

√
2, we find that they change parity u into g and

in addition change the z′ component M ′L of the total
electronic wave function by ±1, i.e., only a 1g part is
added to 0−u and only 0+g , 0

−
g , 2g parts to 1u. We also

find that each of the D±1′ terms changes σv reflection
parity [12] from + to - and vice versa. The foregoing
implies that we can use the ∆Ω = ±1 transition dipole
moments (TDMs) for E1 transitions published by Al-
louche et al. [15] to calculate the (~r1 + ~r2)±1′ spatial
matrix elements, in combination with the spin matrix el-
ements 〈(S,M ′S)f = 0, 0|(~σ1 − ~σ2)∓1′ |(S,M ′S)i = 1,±1〉.
The equality q = M ′S illustrates angular momentum con-
servation along the z′ symmetry axis: spin angular mo-
mentum is transferred to orbital angular momentum.

A necessary following step is to impose Kronig symme-
try [20]: we require invariance of the Hamilton operator
under the combination of a rotation of the nuclei over π
around the y′ axis (leaving the electrons alone) and space
inversion of the electronic position coordinates with re-
spect to the origin. Both Hel and each of the Π1A,2B

and Π1B,2A terms in Eq. (7) obey this invariance. Kronig

symmetry of the Hamiltonian implies that the eigenstates
have to be either symmetric or antisymmetric (Kronig
symmetry type c or d in Herzberg’s notation [12, 21]), or
can be chosen as such.

As a consequence transitions induced by V sofi take place
between states with equal Kronig symmetry only. To find
the c and d-type (1)0−u and (1)1u states we make use of
our earlier conclusion that in the R interval of interest
these Ω states are very close to 3Σ+

u states, i.e., ΛΣ states
with Λ = 0 and S = 1, Σ = 0,±1. We therefore equate
the latter to the corresponding Ω states:

|(1)0−u 〉 = |(1)3Σ+
u ,Ω = Σ = 0〉

= |c, (1)3Σ+
u , S = 1,Ω = 0〉 (8)

is a Kronig-symmetric state by itself, as indicated by the
symbol ’c’, whereas |(1)3Σ+

u ,Ω = 1〉 exists in two ver-
sions, one with c and one with d symmetry:

|cd, (1)1u〉 = [|Σ+, S = 1,Ω = 1,Σ = +1〉
± |Σ+, S = 1,Ω = 1,Σ = −1〉]/

√
2. (9)

We conclude that the above-mentioned selection rules
have to be further specified: allowed transitions are
(c, 0−u ) → (c, 1g), (c, 1u) → (c, 0+g ) or (c, 2g), and (d, 1u)

→ (d, 0−g ) or (d, 2g).
Each of the above c and d states (8) and (9), multiplied

by |S,MSz = 1,+1〉 with z-axis along the polarization
direction, is present initially with probability 1/3 before
the excitation by V sofi and has the total form

|Ψi,ni=1(~R)〉 = |ψi(ni = 1;R)〉 |L,ML = 0, 0〉
⊗ |S,MS = 1,+1〉. (10)

The state |ψi(ni;R)〉 stands for the R-dependent part of
the initial adiabatic state of the valence electrons (eigen-
states of Hel with serial number ni of the corresponding
eigenvalues counting from below) that defines their mo-
tion relative to the body-fixed axes. The states |L,ML〉
specify the rotational motion of these axes relative to the
space-fixed coordinate system. We leave out the nuclear
spin state |I,MI = iA + iB , iA + iB〉, which is not af-
fected in the excitation and subsequent decay process for
the present mechanism. As a further step we expand the
initial electronic spin state in states |1,M ′Sz′〉 quantized
along the direction of the z′ axis:

|S,MSz = 1,+1〉 =
∑
M ′

Sz′

D1∗

1,M ′
Sz′

(φR, θR, χR) |1,M ′Sz′〉,

(11)
where M ′Sz′ = 0,±1 and DS

1,M ′
Sz′

is a rotation matrix-

element[19].
Each of the final states has the form

|Ψf,nf
(~R)〉 = |ψf (nf ;R)〉

|L′ = 1,M ′Lz′ ; S
′,M ′Sz′ = 0, 0〉, (12)

with |ψf (nf ;R)〉 the final valence electron state and
L′,M ′Lz′ ; S′M ′Sz′ the rotational and spin angular mo-
mentum quantum numbers with components along the
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body-fixed z′-axis in the final state. For each R value
the states |ψi(ni;R)〉 and |ψf (nf ;R)〉 form both an or-
thonormal set of eigenstates of the Hamiltonian Hel for
the valence electrons.

B. Transition Amplitudes and Decay Rate

For given ~R and M ′S we now consider the transi-
tion amplitude induced by V sofi between an initial state

Ψi,ni
(~R) and a final state Ψf,nf

(~R), divided by their en-
ergy difference:

Afnf ,ini(M
′
S , R) =

〈Ψfnf
(~R)|V sofi |Ψi,ni

(~R)〉
Efnf

− Eini

. (13)

The energies E are R-dependent adiabatic potential-
energy values, (eigenvalues of Hel, see Potential Energy
Curves (PECS) in Ref. [15]). Substituting Eq. (4) for
V sofi and letting Hel operate to the left in one term of
the commutators and to the right in the other, we find
that this results in a factor Ef,nf

− Ei,ni
that cancels

out the denominator in the above equation. Using the
orthogonality of the D-functions we find

Afnf ,ini
(M ′S , R) =

1

4
√

3R2

(
λc
a0

)2

af,ibf,i, (14)

in which af,i and bf,i are spatial and spin matrix ele-
ments:

af,i = 〈ψf (nf ;R)|r1,+1|ψi(ni;R)〉 ≡ TDM(fnf , ini),

bf,i = 〈0, 0|(~σ1 − ~σ2)−1|1,+1〉 = −2. (15)

Like the previous PECs, the transition dipole moments
(TDMs) were tabulated by Allouche and Aubert-Frécon
[15]. For comparison reasons, we discuss now an alter-
native approach that we investigated, which is however
much less precise. We started from the full inter-atomic
spin-orbit interaction V so of Eq. (3) operating on the
initial state (10), in which we took the radial wave func-
tion of the Rb 5s valence electron from [22], leading to a
sum of ΛSΣπe = 100g and 11− 1g parts. Subsequently,

we followed [23] in describing the E1 decay. The sum
of the intra-atomic spin-orbit couplings and the inter-
atomic electric dipole-dipole interaction V dd, which are
valid for larger distances than considered up to now was
diagonalized in the 18 dimensional space, leading to a set
of 18 R-dependent eigenstates in the 5s5p space consid-
ered in Ref. [15], comparable to the final states ψf (nf ;R)
above. The main shortcoming of this approach is the role
of the interaction V dd in the radial range 10 - 14a0, where
it is a bad approximation. Due to the strong repulsion in
some of the final states and a strong attraction in the re-
maining ones the radial wave functions have small values.
This leads to a lifetime of the lowest-energy Rb2 triplet
state of about 25 hours, which is two orders of magnitude
larger than what we calculate below.

FIG. 2. Potential for lowest Rb20−
u and 1u states, where

the rovibrational ground state is located at -7.026 GHz
(solid black line). The corresponding squared wave function
[φi(R)]2 is indicated (dotted green line). Also indicated is the
local decay rate Γ(R) (dashed red line).

Continuing the present treatment based on Ref. [15],
we take the absolute square of the above amplitude A in
Eq. (13) and integrate over the Euler angles. We thus
find

|Afnf ,ini(M
′
S , R)|2 sin(θR)dφRdθRdχR =

1

4R4
.
8π2

3
.

(
λc
a0

)4

[TDM(f, nf ; i, ni;R)]
2
. (16)

In our notation the TDM matrix element in this equation
is given by

TDM(fnf , ini;R) = |〈ψf (nf ;R)|[~r1q + ~r2q]|ψi(ni;R)〉|,
(17)

with the spherical component q = Ωf − Ωi, the change
of the Ω-values from initial to final states. The actual

TDM values [15] show which final states are primarily
excited starting from the three initial states. For larger
R (beyond 40a0) only the three lowest-energy c, 1g states
are significantly excited from 0−u , as well as the (2)-(3)
0+g and (1) 2g state from 1u (for notation see [15]; (1)

0+g = absolute singlet ground state). More relevant for
our purpose, in the above-mentioned interval R = 10 to
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14 a0 the V sofi strength is distributed among transitions

from 0−u to the sp states (1)-(2) 1g, as well as from 1u to
(2)-(3) 0+g , to (1)-(2) 0−g , and to (1)2g. All of these sp
states undergo E1 decay back to the ss states.

Averaging over the three initial i, ni states (8), (9),
summing over the final f, nf states, and multiplying by
the average γ = 3.60 × 107s−1 of the Rb atomic first
excited 2P1/2 and 2P3/2 spontaneous E1 decay rates, we
find our estimate of the local decay rate Γ(R) of the low-
est triplet Rb2 state,

Γ(R) = γ
1

4R4
.
8π2

3
.

(
λc
a0

)4∑
ini

∑
fnf

(
1

3
δi,0−u

+
2

3
δi,1u

)
[TDM(fnf , ini;R)]

2
, (18)

displayed in Fig. 2, and the total decay rate for mecha-
nism I

ΓI =

∫ ∞
0

〈φi(R)|Γ(R)|φi(R)〉dR. (19)

Our result for the total decay rate is 0.78 × 10−3s−1,
corresponding to a lifetime of about 1200 s = 20 min.

II. MAGNETIC DIPOLE-DIPOLE
INTERACTION

A second decay mode is a relaxation process predicted
and evaluated, see [24, 25], after the first proposal of
a magnetic trap for wall-free confinement of ultracold
atoms by Pritchard [26] and specifically for spin-polarized
hydrogen atoms by Hess [27]. The latter trap was experi-
mentally realized by Hess et al [28]. The predicted decay
process is induced in two-body atomic atomic collisions.
It played a crucial role as a loss process in connection with
the first realization of Bose-Einstein condensation in an
ultracold gas of Rb rather than H by Wieman and Cor-
nell et al. [29] in 1995 after the prediction [30] that 87Rb
rather than the more easily available 85Rb isotope was
the preferable isotope because of its positive scattering
length in atom-atom scattering. Soon after that Ketterle
et al. [31] were successful in creating Bose-Einstein con-
densation in an ultracold gas of spin-polarized Na atoms.

Bose-Einstein condensates in magnetic traps have
macroscopic linear dimensions (0.01 - 1 mm). In this pa-
per, however, we discuss the stability of pairs of Rb atoms
bound in Rb2 molecules and thus confined to a spatial
region with linear size roughly a factor 106 smaller (see
probability distribution displayed in Fig. 2). Due to this
compact nature of the Rb2 molecule in the lowest triplet
states the influence of the above-mentioned long-range
(R−3) magnetic dipole-dipole interaction V dd (as well as
in the radiative decay to be discussed later) is reduced
to a considerable extent. Moreover, for Rb2 molecules
doubly-polarized along an axis z the stronger part of this
interaction, V dd(e,e), among the valence electrons does

not lead to a final state that contains an excited singlet
component giving rise to decay. However, turning to the
weaker part V dd(e,n), acting between the spin magnetic
moment µe of the electron of one atom and the nuclear
spin magnetic moment µn at the nucleus in the other
atom, the situation is different.

Consider for instance the pair 1, B in Fig. 1. The cor-
responding term in V dd(e,n) is

C
3(~σ1.~r1B)(~σB .~r1B)− r21B~σ1.~σB

r51B
, (20)

with C = (µ0/4π)µeµn. We now follow the procedure
of expansion Eq. (6), but now for n = 5. In the present
case only even terms contribute to the final result. For
our estimate we keep only the 0th-order term, implying

that we simply replace ~r1B by ~rAB = −~R. This leads to
the expression:

C
3(~σ1.R̂)(~σB .R̂)− ~σ1.~σB

R3
, (21)

with the unit vector R̂ = ~R/R as in Eq. (7). The total
expression is

V dd(e,n) = C
3(~σ1. ~̂R)(~σB . ~̂R)− ~σ1.~σB + (1B → 2A)

R3

+ C
(1B2A→ 1A2B)

R3
. (22)

Here (1B → 2A) and (1B2A → 1A2B) stand for their
preceding term but with the replacements indicated. The
vectors ~σJ (J = A,B) are dimensionless spin-vectors, de-
fined by the expression for the nuclear spin magnetic mo-
ments: ~µn = µn~σJ . The latter expression for V dd(e,n) is
identical to the 0th order expression for the interatomic
magnetic-dipole coupling between the spins of two va-
lence electrons in diatomic molecules given in Eq. (3-2-
34) on page 108 of Ref. [12]. In that paper the expression
is worked out for the S = 1→ 1 transition, whereas our
interest is in the S = 1 → 0 transition to singlet states
which finally decay radiatively to the singlet 5s2 ground
state.

Our initial state is again that given in Eq. (10),
but now completed with the nuclear spin factor
|I,MI,MIz=3,+3〉, which in this second mechanism plays
a role too:

|Ψi,ni=1(~R)〉 = |ψi(ni = 1;R)〉 ⊗
|L,ML = 0, 0;S,MS = 1,+1; I,MIz = 3,+3〉. (23)

The operator V dd(e,n) does indeed admix excited elec-
tronic singlet states in this initial spin-polarized Rb2

triplet state, via a term antisymmetric in the valence
electron spins proportional to the difference of Pauli spin
vectors ∆~σ12 = ~σ1 − ~σ2, which is automatically also nu-
clear spin antisymmetric and proportional to ∆~σAB =
~σA−~σB . Only their -1 spherical components contribute.
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We refer to this part as V
dd(e,n)
fi , because it couples spin-

symmetric initial triplet states to final singlet states be-
fore the decay. To simplify the notation we make use of
the previous projection operators Π and introduce the
rank 2 spherical tensors S(2) and R(2), each built from
products of two spherical vectors:

R(2)(R̂ R̂)2, S
(2) = (∆~σ12 ∆~σAB)2 . (24)

Then V
dd(e,n)
fi can be expressed in terms of the product

R
(2)
+2.S

(2)
(−2). We thus obtain the expression

V
dd(e,n)
fi = − C

R3
(Π1A,2B −Π1B,2A)R

(2)
2 .S

(2)
−2 (25)

for the magnetic dipole-dipole coupling inducing the
transition to the final singlet states before the radiative
decay.

In analogy to Eq. (12), the possible final states are

|Ψf,nf
(~R)〉 = |ψf (nf ;R)〉.

|L′,M ′L = +2,+2;S′,M ′S = 0, 0; I ′,M ′I = 2,+2〉,(26)

with |ψf 〉 one of the 5s2 states. Contrary to the situa-
tion for mechanism I, it is preferable in this case to use
magnetic quantum numbers for the final states along the
prepared polarization direction z. In Eq. (26) f is equal
to 0−u (automatically of Kronig symmetry-type c) or to
c, 1u, whereas the serial number nf is any positive in-
teger value in the discrete spectrum of the 0−u potential
(continuum states will play a negligible role). The corre-
sponding rotational angular momentum matrix-elements
are

〈L′,M ′L = 2,+2|R(2)
+2|L,ML = 0, 0〉 =

√
8

15
. (27)

Splitting the S(2) spin matrix element in two, we have

〈S′,M ′S = 0, 0|(∆~σ12)−1|S,MS = 1,+1〉 = −4,

〈I ′,M ′I = 2,+2|(∆~σAB)−1|I,MI = 3,+3〉 = − 2

iA

= −4

3
. (28)

We apply the previous Eqns. (27) and (28) to calculate
the transition amplitude A:

Afnf ,ini
(R) =

〈Ψf,nf
(~R)|V dd(e,n)fi |Ψi,ni(

~R)〉
Ef,nf

− Ei,ni

(29)

= −32

3

√
2

15

C

R3

〈ψf (nf ;R)|ψi(ni;R)〉
Ef,nf

− Ei,ni

.

The result no longer depends on the direction of ~R. Note

also that V
dd(e,n)
fi in Eq. (25) does not affect the initial

radial function ψi(ni;R). Thence the inner product of ψ
states in Eq. (29).

The next step is to derive the radiative decay rate for
each of the states |Ψfnf

〉 to the states of c, 0+g symmetry

type. Only the c, 1u states can decay electromagneti-
cally: the 0−u state and the other 1u state have Kronig
symmetry-type d. The multipole that is responsible for
this decay has to satisfy several conditions. The spa-
tial electronic part (5s)2 of the Ψf,nf

states should not
be changed, nor should the spin part S = 0: both are
already identical to the corresponding parts in the Rb2

ground state. The only degrees of freedom susceptible to
change are those of the ions, i.e., in particular the nuclei:
in Eq. (26) the nuclear spin part I ′,M ′I = 2,+2 and the
rotational part L′,M ′L = 2,+2. The multipole that will
lead to the required intervention should also be symmet-
rical in the nuclei. The foregoing conditions are satisfied
by the spherical component along the (body-fixed) z′-axis
of a magnetic quadrupole:

(M2)2µz′ =
3

2
δµz′ ,0 µnRz′(σAz′ − σBz′). (30)

This component of a molecular magnetic quadrupole mo-
ment is indeed symmetrical in the nuclei, since Rz′ =
z′B − z′A (see Fig. 1). It arises from the distribution of
nuclear magnetization in the Rb2 molecule relative to
the total center of mass and relative to the body-fixed
axes. While the structure of the above expression (30)
can be understood from the foregoing conditions, its nor-
malization can be obtained from the analogous expres-
sion for the electron spin quadrupole moment in diatomic
molecules given in Ref. [32], Eq. (39).

The local decay rate Γ(R) and the total decay rate Γ
are therefore proportional to µ4

n, which already suggests
an extremely small value for the total decay rate Γ. In
more detail we have, using Eq. (27) in the same paper
[32]:

Γf,nf
(R) = |Afnf ,ini=1|2

1

30

µ0

4π~
(31)∑

L′′M ′′L ,I
′′M ′′I ,n

′′
f

[
∆EL′I′n′f ,L′′I′′n′′f (R)/(~c)

]5
×|〈L′′,M ′′L; I ′′,M ′′I | (M2)2,0z′ |L

′,M ′L; I ′,M ′I〉|2,

with L′,M ′L = 2,+2, I ′,M ′I = 2,+2, n′′f = n′f , and

∆EL′I′n′f ,L′′I′′n′′f (R) = EL′I′n′f (R)− EL′′I′′n′′f (R).

For our purpose it suffices to derive an upper
limit. Our strategy is to overestimate all factors
on the right-hand side of Eq. (31), including the
1/[Ef,nf

− Ei,1]2 factor in |A|2, but excluding the fac-

tor |〈ψf (nf ;R)|ψi(ni;R)〉|2 with ni = 1 in |A|2. The
latter factor would have been the most difficult to eval-
uate, but can now be dealt with easily as will be shown
below. We overestimate the energy numerator and un-
derestimate the denominator. The former can be equated
to the 5th power of the dissociation energy DeS of the
singlet ground state and the denominator to the square
of half the energy difference of the nearest pair of sub-
sequent L = 2 vibrational singlet levels. We denote the
latter as ∆Enf

, which is estimated in terms of the clas-
sical relative radial velocity (expressed in the maximum
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kinetic energy) and twice the radial distance R covered
by the atoms during one period as hνvib = 3.2× 10−21J .
A strong magnetic field could in principle be helpful via
the downward Zeeman shift of the triplet levels, but is too
weak in practice (1.855 × 10−23BJ for all alkali species
with B in Tesla. Finally, taking into account that the
R-interval of interest is between 10 and 14a0 we replace
the factor (1/R4) a−40 by choosing R0 = 10a0 to be its
maximum value 10−4 in atomic units. This implies that
the local and the total decay rates become equal. We
thus find

ΓII = ΓII(R0) =
∑
nf

|Afnf ,ini=1(R0)|2.Pfnf
(R0).(32)

Here, Pfnf
(R) is the decay rate for the state |Ψf,nf

〉 as if
that were the initial state. We use Eq. (27) of Ref. ([32])
for the decay rate induced by a magnetic quadrupole mo-
ment. Substituting the above expression, we find

ΓII =
∑
nf

〈Ψf,nf
|M†2,0z′ M2,0z′ |Ψf,nf

〉. (33)

The product M†2,0z′ M2,0z′ can be simplified using
σAz′σAz′ = σBz′σBz′ = 1 and the anti-commutation re-
lation of the σAz′ and σBz′ matrices, [σAz′ , σBz′ ]+ = 0.

The result is M†2,0M2,0 = 2( 3
2µnR0)2. Finally, the re-

maining summation over nf can be handled by means of
the completeness relation

∑
nf

|ψf (nf ;R0)〉〈ψf (nf ;R0)| = 1, (34)

leading to:

ΓII <
2910−4

152~

(
DeS

~c

)5
(
µ0

4πµeµnµn
1
2∆Enf

)2

= 0.4× 10−68s−1, (35)

corresponding to a lifetime of 2.5× 1068s.

III. CONCLUSION

We conclude that isolated rubidium molecules in the
lowest-energy triplet state have a finite lifetime. This is
due to a radiative mechanism involving an inter-atomic
spin-orbit interaction and inducing decay to the singlet
state. The lifetime is about 20 min., which is much
longer than typical experimental time scales needed to
study these ultracold molecules, created in an optical
lattice starting from two atoms on each lattice site. We
also studied a second mechanism induced by a magnetic
dipole coupling between the valence electron spin of one
atom and the nuclear spin of the other, followed by an
magnetic quadrupole (M2) radiative transition to the
(1)c, 0+g groundstate with a probability containing an ad-

ditional factor µ2
n. This second mechanism leads to a

lifetime that exceeds the earlier lifetime by at least a
factor 1 × 1065, and can therefore be completely disre-
garded. Other decay mechanisms resulting in a transi-
tion to deeper-bound singlet states involve collisions, for
instance with other triplet ground-state molecules [11].
Future experiments should be able to investigate this
mechanism, and shed more light on the collisional life-
time.
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