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We carried out a systematic high-precision relativistic study of the forbidden magnetic-dipole
and electric-quadrupole transitions in Ca+, Rb, Sr+, Cs, Ba+, Fr, Ra+, Ac2+ and Th3+. This
work is motivated by the importance of these transitions for tests of fundamental physics and
precision measurements. The relative importance of the relativistic, correlation, Breit correction
and contributions of negative-energy states is investigated. Recommended values of reduced matrix
elements are presented together with their uncertainties. The matrix elements and resulting lifetimes
are compared with other theoretical values and with experiment where available.
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I. INTRODUCTION

Forbidden transitions have been of much interest in re-
cent years due to their applications in optical clocks [1],
tests of fundamental physics [2–7] and quantum informa-
tion [8]. These applications require long-lived metastable
states and, therefore, knowledge of their atomic prop-
erties including various multipolar transition rates and
branching ratios. While many accurate measurements of
the electric-dipole matrix elements exist, there are much
fewer precision benchmarks for the M1 and E2 transi-
tions.

The interest in forbidden transitions is further moti-
vated by the emergence of the highly charged ions (HCI)
as potential candidates for the development of ultra-
precise atomic clocks and tests of variation of fundamen-
tal constants [3–5, 9, 10]. Highly charged ions with op-
tical transitions suitable for metrology exhibit a particu-
larly rich variety of low-lying multipolar transitions, even
including the metastable levels that can decay only via
the M3 decay channel. Until recently, the HCI proposals
remained a theoretical possibility, but the first proof-of-
principle demonstration of sympathetic cooling of Ar13+

with laser cooled Be+ [11] paved the way toward the ex-
perimental realization of the HCI clock proposals. The
experimental work toward these new applications of HCIs
has already started [12] and reliable predictions of tran-
sition properties are urgently needed. While this paper
deals with ions of lower degree of ionization, up to Th3+,
the general conclusions concerning the computational ac-
curacy and the importance of various contributions are
also applicable for HCI with a few valence electrons.

We consider examples of the forbidden transitions in
Rb, Cs and Fr alkali-metal atoms and monovalent Ca+,
Sr+, Ba+, Ra+, Ac2+ and Th3+ ions with similar elec-
tronic structure owing to their particular interest in the
applications described above as well as the availability
of some experimental measurements. M1 transitions in
Rb, Cs, Ba+, Fr and Fr-like ions are of particular interest
due to studies of parity violation [6, 7, 13–15]. The M1
and E2 transitions in Rb, Cs, Ba+, Yb+, Ra+, Ac2+ and
Th3+ ions were recently studied by Gossel et al. [16], rais-
ing the issue of the accuracy of the M1 transition matrix
elements.

The goals of parity violation studies with heavy atoms
are to test the Standard Model of particle physics and to
study the weak interaction inside the nucleus. In addi-
tion, atomic parity violation is uniquely sensitive to pos-
sible “dark forces” which are motivated by the intriguing
possibility of a “dark sector” extension to the Standard
Model [17].

The most accurate, to 0.3%, atomic parity violation
measurement was carried out in 6s− 7s transition is Cs
[2]. The analysis of this experiment in the terms of a
comparison with the standard model, which required a
theoretical calculation of the parity-violating amplitude,
was carried out in [18, 19].

Here, we carry out the calculations of the E2 and M1
matrix elements for monovalent atoms and ions using a
form-independent many-body perturbation theory and a
relativistic linearized coupled-cluster methods. Previous
calculations of the M1 transitions, [20–22], generally as-
sumed that there are no significant corrections beyond
the random-phase approximation (RPA). Both of the
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methods employed in this work allow us to include correc-
tions beyond RPA. We find that the corrections beyond
RPA are large enough to modify the results by a factor of
two or more for heavier systems. We also find very strong
cancelations of the various corrections beyond RPA for
the s−s (but not the s−d) transitions, causing numerical
problems in the calculations, associated with the incom-
plete cancelation of large contributions. We found a way
to resolve these problem by using a form-independent
perturbation theory as described in the paper. We have
also considered the contributions of other effects on the
M1 transitions, including the two-body Breit and neg-
ative energy state contributions. We have included the
study E2 transitions due to their interest of atomic clock
and quantum information applications as well as avail-
ability of the experimental lifetimes for benchmark tests
of the theory. We have conducted a systematic study of
our theoretical uncertainties for the E2 matrix elements
to provide recommended values for these quantities and
compare them with the experimental and other theoret-
ical values.
We start with a review of previous experimental and

theoretical studies of the E2 transitions for the systems
of interest. The s−d E2 transition in monovalent ions are
used in clock and quantum information applications and
lifetimes of nd states have been the subject of numerous
studies described below.

II. SUMMARY OF PRIOR RESULTS FOR THE

E2 TRANSITIONS

Ca
+ − Lifetime measurements of the metastable 3d

levels of Ca+ were reported by Knoop et al. [23] using
the Ca+ ions stored in a Paul trap. The natural life-
times were determined to be 1111(46) ms and 994(38) ms,
for the 3d3/2 and 3d5/2 states, respectively, in agreement
with previous experiments. An improved measurement of
the 3d5/2 lifetime, 1168(7) ms, was carried out by Barton
et al. [24] using quantum jumps of a single cold calcium
ion in a linear Paul trap. An experimental and theoreti-
cal study of the 3d lifetimes was reported by Kreuter et
al. [25]. This work introduced a measurement technique
based on a high-efficiency quantum state detection after
coherent excitation to the 3d5/2 state or incoherent shelv-
ing in the 3d3/2 state and subsequent free, unperturbed
spontaneous decay, yielding the value of 1168(9) ms, in
agreement with the value reported in Ref. [24]. The life-
time of the 3d3/2 state, 1176(11) ms, was measured with
a single ion, improving the statistical uncertainty of pre-
vious best result by a factor of four. The experimental
lifetimes were found to be in excellent agreement with the
high-precision ab initio all-order calculations, [τ(3d3/2)=
1196(11) ms and τ(3d5/2)= 1165(11) ms], reported in
the same work [25]. Sahoo et al. [26] used the relativis-
tic coupled-cluster theory to calculate the 3d lifetimes. A
large-scale study of the Ca+ properties, motivated by the
development of an atomic clock based on the 4s− 3d5/2

transition in a Ca+ single ion, was carried out in [27]. It
included the calculation of the blackbody radiation shift
of the clock transition, multipole polarizabilities, oscilla-
tor strengths, lifetimes, hyperfine constants and excita-
tion energies.

Sr
+− A lifetime measurement of the metastable

4d3/2 level in Sr+ was carried out by Mannervik et al. [28]
using optical pumping of a stored ion beam. Collinear
laser excitation in the storage ring transferred the main
part of the ion beam into the metastable 4d3/2 level. Sub-
sequent observation of the forbidden electric quadrupole
transition to the ground state yielded information about
the radiative lifetime of the metastable state, 435(4) ms.
The lifetimes of the 4d levels were determined both exper-
imentally and theoretically by Biemont et al. [29]. The
experiment was performed at an ion storage ring utilizing
collinear laser excitation. The calculation was performed
by the Hartree-Fock method including relativistic effects
and core polarization. The 4d5/2 lifetime was measured
to be 390(1.6) ms with a single laser-cooled, trapped ion
by Letchumanan et al. [30] using Dehmelt’s electron
shelving method to monitor the ions electronic state. Sa-
hoo et al. [26] used the relativistic coupled-cluster theory
to calculate the 4d lifetimes. A systematic study of Sr+

atomic properties was carried out in [31] motivated by
the development of the Sr+ clock and the need for the
evaluation of the blackbody radiation shift of the clock
transitions. Safronova [31] used the relativistic linearized
coupled-cluster approach, which included single, double
and partial triple excitations, to obtain 441(3) ms and
394(2) ms for the lifetimes of the 4d3/2 and 4d5/2 states,
respectively, in excellent agreement with the experimen-
tal values [29, 30].

Ba
+ − Lifetimes of the 5d states of Ba+ are much

longer than the corresponding values in Ca+ and Sr+,
making their accurate measurement particulary difficult.
A single Ba+ atom was confined in a radio-frequency ion
trap and cooled by near-resonant laser light by Madej and
Sankey [32]. A measurement of quantum-jump distribu-
tions together with careful measurements of the absolute
partial pressures of all residual gas species enabled ac-
curate measurements of the quenched 5d5/2 lifetime as a
function of quenching gas pressure, 34.5±3.5 s [32]. The
measurement of the Ba+ 5d3/2 lifetime was carried out
by Nagourney and Dehmelt [33] using a single trapped
Ba+ ion in ultrahigh vacuum. The colisional quench-
ing was found insignificant in the experiment, but there
were indications of a non-negligible fine-structure mixing
effect [33]. The resulting value of 79.8±4.6 s resolved the
discrepancy existing at that time. Laser-probing mea-
surements and calculations of lifetimes of the 5d lev-
els were reported by Gurell et al. [34]. The lifetimes,
89.4 ± 15.6 s for the 5d3/2 level and 32.0 ± 4.6 s for
the 5d5/2 level, were measured in a beam-laser experi-
ment performed at the ion storage ring CRYRING. The
electric-quadrupole transition amplitudes for Ba+ were
evaluated by Gopakumar et al. [35] using the relativistic
coupled-cluster method, giving the lifetimes of the 5d3/2
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TABLE I: Recommended values of the reduced electric-quadrupole matrix elements in atomic units. Dirac-Fock DF, third-
order many-body perturbation theory MBPT3 and all-order SD are listed. Final recommended values are given in the “Final”
column. The relative uncertainties of the final values are given in percent. The rows labeled NBR and BR contain results
excluding and including the Breit interaction, respectively. Absolute values are given.

Transition DF MBPT3 SD Final (%) Transition DF MBPT3 SD Final (%)
Th3+ NBr 7s − 6d3/2 7.781 6.918 7.063 7.110 0.66 7s− 6d5/2 10.008 8.986 9.153 9.211 0.64

Br 7s − 6d3/2 7.781 6.917 7.062 7.109 0.66 7s− 6d5/2 10.002 8.979 9.145 9.204 0.64

Ac2+ NBr 7s − 6d3/2 10.682 9.218 9.515 9.585 0.28 7s− 6d5/2 13.655 11.956 12.281 12.366 0.22
Br 7s − 6d3/2 10.679 9.216 9.512 9.585 0.25 7s− 6d5/2 13.644 11.944 12.270 12.362 0.15

Ra+ NBr 7s − 6d3/2 17.263 13.744 14.587 14.736 0.81 7s− 6d5/2 21.771 17.802 18.689 18.859 0.70
Br 7s − 6d3/2 17.252 13.734 14.578 14.737 0.74 7s− 6d5/2 21.749 17.778 18.667 18.855 0.61

Fr NBr 7s − 6d3/2 43.096 30.292 31.976 33.427 0.58 7s− 6d5/2 52.740 37.632 40.017 41.582 0.43
Br 7s − 6d3/2 43.092 30.241 31.937 33.431 0.59 7s− 6d5/2 52.729 37.567 39.963 41.582 0.54

Cs NBr 6s − 5d3/2 43.846 30.815 31.548 33.612 0.83 6s− 5d5/2 53.712 38.087 39.147 41.464 0.57
Br 6s − 5d3/2 43.830 30.763 31.505 33.620 1.01 6s− 5d5/2 53.686 38.013 39.082 41.515 0.85

Ba+ NBr 6s − 5d3/2 14.763 11.821 12.498 12.627 0.90 6s− 5d5/2 18.384 14.863 15.651 15.809 0.85
Br 6s − 5d3/2 14.753 11.813 12.489 12.627 0.83 6s− 5d5/2 18.362 14.844 15.632 15.800 0.79

Rb NBr 5s − 4d3/2 38.896 31.793 32.444 32.943 0.42 5s− 4d5/2 47.636 38.945 39.755 40.367 0.42
Br 5s − 4d3/2 38.901 31.788 32.156 32.883 0.24 5s− 4d5/2 47.642 38.938 39.414 40.295 0.24

Sr+ NBr 5s − 4d3/2 12.968 10.588 11.010 11.133 0.35 5s− 4d5/2 15.972 13.100 13.602 13.747 0.37
Br 5s − 4d3/2 12.961 10.581 11.003 11.133 0.30 5s− 4d5/2 15.957 13.088 13.588 13.745 0.29

Ca+ NBr 4s − 3d3/2 9.767 7.407 7.788 7.945 0.48 4s− 3d5/2 11.978 9.099 9.561 9.750 0.47
Br 4s − 3d3/2 9.761 7.401 7.782 7.945 0.47 4s− 3d5/2 11.967 9.088 9.552 9.750 0.47

and 5d5/2 levels equal to 81.4 s and 36.5 s, respectively.
Sahoo et al. [26] used the relativistic coupled-cluster the-
ory to obtain 80.0(7) s and 29.9(3) s for these levels,
respectively, followed by another calculation of the same
group [36]. Reduced electric-quadrupole matrix elements
were calculated using both many-body perturbation the-
ory and the all-order method including single, double and
partial triple excitations by Safronova [37]. The result-
ing lifetimes, 81.5(1.3) s and 30.3(0.4) s for the 5d3/2
and 5d5/2 levels, respectively, were found to be in good
agreement with the measured values [34].

Cs - While in alkaline-earth metal ions, the first nd
levels are metastable, this is not the case in neutral alkali-
metal atoms, where the first np levels are below the nd
levels and the E1 decay of the nd levels is allowed. Clab
and Nayfen [38] measured the transition probability of
the electric quadrupole 6s−5d transition Cs, 21±1.5 s−1,
by two-photon ionization of the ground 6s state, using
the 5d as an intermediate state. Previous measurements
of this quantity yielded conflicting results. The authors
of [38] noted that their measurement was in agreement
with a laser absorption-fluorescence measurement and in
disagreement with the results of anomalous dispersion,
emission, and electron impact techniques.

Fr and Fr-like ions - Theoretical studies of the E2
6d−7s transition rates were carried out in [39]. Safronova
et al. [40] calculated reduced matrix elements of the E2
6d − 7s transitions in Fr-like Ra and Ac ions using the
relativistic linearized coupled-cluster method.

The M1 and E2 transitions in Rb, Cs, Ba+, Yb+, Ra+,
Ac2+ and Th3+ ions were studied by Gossel et al. [16].

TABLE II: Recommended values of the reduced electric-
quadrupole matrix elements (in a.u.) are compared with ex-
perimental measurements and other theoretical values.

Transition Present Expt. Theory

Th3+ 7s− 6d3/2 7.110(47) 7.10 [16]
Ac2+ 7s− 6d3/2 9.585(27) 9.58 [16]
Ra+ 7s− 6d3/2 14.74(12) 14.77 [16]
Fr 7s− 6d3/2 33.43(19) 35.96(60)[39]

33.59 [16]
Cs 6s− 5d3/2 33.61(28) 34.2(1.2) [38] 33.60 [16]
Ba + 6s− 5d3/2 12.63(11) 12(1) [34] 12.74 [36]

12.76(35) [33] 12.63 [35]
Rb 5s− 4d3/2 32.94(14) 33.42 [16]
Sr+ 5s− 4d3/2 11.13(39) 11.21(5) [28] 11.33(10) [26]

11.21(5) [29] 11.13(4) [31]
Ca+ 4s− 3d3/2 7.94(4) 8.01(4) [25] 7.94(4) [25]

7.92(3) [24] 7.97(2) [26]

III. ELECTRIC-QUADRUPOLE TRANSITIONS

For electric-quadrupole transitions, we carried out all
calculations using four different variants of the linearized
coupled-cluster (all-order) method. A review of the all-
order method, which involves summing series of domi-
nant many-body perturbation terms to all orders, is given
in [41]. In the single-double (SD) all-order approach, sin-
gle and double excitations of the Dirac-Fock orbitals are
included and the SD state vector of a monovalent atom
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in state v:

|Ψv〉 =

[

1 +
∑

ma

ρmaa
†
maa +

1

2

∑

mnab

ρmnaba
†
ma†nabaa+

+
∑

m 6=v

ρmva
†
mav +

∑

mna

ρmnvaa
†
ma†naaav



 |Ψ(0)
v 〉, (1)

where |Ψ
(0)
v 〉 is the lowest-order atomic state vector and

a†i , aj are creation and annihilation operators. The quan-
tities ρma, ρmv are single-excitation coefficients for core
and valence electrons and ρmnab and ρmnva are double-
excitation coefficients for core and valence electrons, re-
spectively. In Eq. (1), the indices m and n range over all
possible virtual states while indices a and b range over
all occupied core states. The single, double, partial-triple
(SDpT) method also includes classes of the triple excita-
tions.
In either SD or SDpT all-order method, the matrix

elements of any one-body operators, such as M1 and E2,

Z =
∑

ij

zija
†
iaj, (2)

are obtained as

Zwv =
〈Ψw|Z|Ψv〉

√

〈Ψv|Ψv〉〈Ψw|Ψw〉
, (3)

where |Ψv〉 and |Ψw〉 are given by the expansion (1). The
numerator of Eq. (3) consists of the sum of the lowest-
order DF matrix element zwv and twenty other terms
that are linear or quadratic functions of the excitation
coefficients ρmv, ρma, ρmnva, and ρmnab.
The largest terms are frequently

Z(a) =
∑

ma

zamρ̃wmva +
∑

ma

zmaρ̃
∗
vmwa, (4)

Z(c) =
∑

m

zwmρmv +
∑

m

zmvρ
∗
mw. (5)

The first of these terms Z(a) is associated with the
random-phase approximation (RPA) corrections, while
the second Z(c) is associated with the Brueckner-orbital
corrections; however, there is not a one-to-one correspon-
dence to the many-body classification of corrections to
matrix elements.
Omitted higher excitations can also be estimated by

the scaling procedure described in [41], which corrects the
ρmv excitation coefficients and the corresponding terms
containing these quantities in Eq. (3), such as term (c).
The scaling procedure can be applied to either SD or
SDpT approximations. The resulting values are labeled
with the subscript sc, SDsc and SDpTsc. Comparing val-
ues obtained in different approximations, ab initio SD
and SDpT and scaled SD and SDpT allows us to evalu-
ate the uncertainty of the calculations in the cases where
the contributions that can be corrected by scaling are

TABLE III: Lifetimes τ of the nd states in Ca+, Sr+, Ba+,
Ra+ and Ac2+ in seconds.

Ion State Present Theory Experiment

Ca+ 3d3/2 1.194(11) 0.98 [42] 1.111(46) [23]
1.271 [43] 1.17(5) [44]
1.16 [45] 1.20(1) [24]
1.080 [46] 1.176(11) [25]
1.196(11)[25]
1.185(7) [26]

Sr+ 4d3/2 0.437(14) 0.454 [43] 0.435(4)[28]
0.422 [29] 0.435(4)[29]
0.426(7)[26] 0.455(29)[29]
0.441(3)[47]

Ba+ 5d3/2 81.4(1.4) 83.7 [43] 79.8(4.6) [33]
81.5 [48] 89(16) [34]
81.4 [35]
80.1(7)[26]
82.0 [34]
81.5(1.2)[49]
84.5[15]

Ra+ 6d3/2 0.6382(94) 0.638(10)[50]
0.627(4)[51]
0.642[48]
0.642[15]

Ac2+ 6d3/2 1.171(6)×106 1.19 ×106[15]

Ca+ 3d5/2 1.163(11) 0.95 [42] 0.994(38) [23]
1.236 [43] 1.064(17) [52]
1.14 [45] 0.969(21) [53]
1.045 [46] 1.09(5) [44]
1.165(11) [25] 1.100(18) [54]
1.110(9) [26] 1.168(7) [24]

1.168(9) [25]
1.174(10) [55]

Sr+ 4d5/2 0.3945(22) 0.405 [43] 0.372(25) [56]
0.384 [29] 0.408(22) [29]
0.357(12)[26] 0.3908(16) [30]
0.394(3)[47]

Ba+ 5d5/2 30.34(48) 37.2 [43] 32(5) [57]
30.3 [48] 34.5(3.5) [32]
36.5 [35] 32.0(4.6) [34]
29.9(3) [26] 31.2(09)[58]
31.6 [34]
30.4(4) [49]

Ra+ 6d5/2 0.3028(37) 0.303(4)[50] 0.232(4)[59]
0.297(4)[51] 0.232(4)[60]
0.302[48]

Ac2+ 6d5/2 2.326(34)

dominant. We find that this condition is satisfied for
the E2 transitions considered in the present work, where
term c given by Eq. (5) strongly dominates.

In Table I, we list our recommended values for the
s− d E2 reduced matrix elements in Fr and Fr-like ions,
Cs, Ba+, Rb, Sr+ and Ca+. The absolute values are
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TABLE IV: The M1 matrix elements evaluated in the second-order RMBPT approximation. The lowest-order matrix elements
without and with retardation, are listed in columns labeled “DF” and “DF(Ret)”. The second order Coulomb and Breit
contributions are listed in the “Cl” and “Brpos” columns. The second-order Breit correction calculated with the inclusion of the
negative energy (NEG) contributions is given in next column, Brneg. The final second-order results MBPT2=Cl+Brpos+Brneg
are listed in the last column. Units: 105µB .

Transition DF DF(ret) Cl Brpos Brneg MBPT2
Th3+ 7s− 8s1/2 14.44 11.78 -127.9 -0.232 3.177 -125.1
Ac2+ 7s− 8s1/2 10.07 8.336 -130.1 -0.136 2.304 -128.1
Ra+ 7s− 8s1/2 6.085 5.141 -129.8 0.142 1.252 -128.5
Fr 7s− 8s1/2 -2.559 -2.229 56.82 -0.277 -0.353 56.22
Cs 6s− 7s1/2 1.952 1.631 -5.001 0.236 0.171 -4.617
Ba+ 6s− 7s1/2 4.952 4.021 -12.710 0.140 0.821 -11.80
Rb 5s− 6s1/2 1.824 1.479 0.288 0.207 0.116 0.588
Sr+ 5s− 6s1/2 4.800 3.784 -2.123 0.057 0.730 -1.390
Ca+ 4s− 5s1/2 -4.395 -3.308 -0.063 -0.014 -0.530 -0.557

Th3+ 7s− 6d3/2 1.545 1.560 147.3 0.024 -1.127 146.3
Ac2+ 7s− 6d3/2 1.120 1.121 145.2 0.029 -1.266 144.1
Ra+ 7s− 6d3/2 -0.596 -0.641 -39.46 -0.099 1.380 -38.25
Fr 7s− 6d3/2 -0.063 0.074 26.53 0.159 -0.971 25.75
Cs 6s− 5d3/2 0.094 -0.026 -2.705 -0.091 0.732 -2.089
Ba+ 6s− 5d3/2 -0.551 -0.562 -14.52 0.036 0.736 -13.81
Rb 5s− 4d3/2 -0.289 -0.120 -0.731 0.054 -0.505 -1.165
Sr+ 5s− 4d3/2 0.155 0.206 2.612 -0.019 -0.713 1.945
Ca+ 4s− 3d3/2 -0.041 -0.090 -0.347 0.024 0.625 0.237

given in units of ea20, where a0 is the Bohr radius and e
is the elementary charge. Results of first-order Dirac-
Fock, third-order many-body perturbation theory and
the four all-order calculations described above are listed
in the columns labeled DF, MBPT3, SD, SDpT, SDsc and
SDpTsc. We also carried out the calculations using form-
independent third-order many-body perturbation theory
(MBPT3) method introduced in [61, 62]. The lowest-
order values, given in the DF column, illustrate the size of
the correlation corrections. The difference of the MBPT3
and the all-order results illustrates the size of the higher-
order corrections beyond random-phase approximation,
which are included to all orders in MBPT3. Final rec-
ommended values are given in the “Final” column. The
next column gives the absolute uncertainties. The eval-
uation of the uncertainty of the matrix elements in this
approach was described in detail in [63, 64]. The differ-
ences of the all-order values for each transition calculated
in different approximation were used to estimate uncer-
tainty in the final results based on the algorithm that
accounted for the importance of the specific dominant
contributions. The column labeled “Unc. %” of Table I
gives relative uncertainties of the final values in percent.
The uncertainties are small and range from 0.1% to 1%.

We also investigated the effect of the Breit interac-
tion on the E2 matrix elements. Table I lists the results
calculated with and without the Breit interaction. The
one-body part of the Breit interaction was included in
the construction of the finite basis set which was used in
all of the all-order calculations. The two-body Breit cor-
rection to matrix elements is small as discussed in detail
in [65]. The Breit contribution is very small, less than

0.01% for all cases. The relative uncertainties given in
the last column of Table I are less than 1%.
In Table II, our recommended values of the reduced

electric quadrupole matrix elements are compared with
recent theoretical calculations of Ref. [16]. Most of the
other theoretical and all of the experimental papers give
the results for the lifetimes of the nd states of ions levels
rather than the s − d matrix elements. For the nd3/2
lifetimes τ , the E2 matrix elements Z(nd3/2 − n′s) in
a.u. may be accurately extracted using

Z =

[

(2j + 1)λ5

1.11995× 1018 τ

]−1/2

,

where j = 3/2, λ is the wavelength of the ns − n′d3/2
transition in Åand lifetimes τ is in seconds. The contri-
bution of the ns− n′d3/2 transitions is negligibly small.
For the nd5/2 states, there is an additional contribu-

tion to the lifetime from the nd5/2−nd3/2 M1 transition.

In light ions, Ca+ and Sr+, the contribution of this M1
decay channel to the lifetime is very small, but it be-
comes significant for Ba+, with 18% branching ratio, i.e.
relative contribution of the M1 rate to the sum of the
M1 and the E2 transition rates. Our matrix elements
for the 6s− 5d3/2 transitions in Cs is in excellent agree-
ment with experimental measurements given in Ref. [38],
with the theoretical prediction having much smaller un-
certainty. Our values are in agreement with the experi-
ment for alkaline-earth ions within the uncertainties.
Table III gives the comparisons of the present lifetime

results with the experiment [23–26, 29, 33, 34, 44, 52–55]
and with other theory [15, 26, 28, 29, 35, 42, 42–51]. No
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TABLE V: Recommended values of the reduced magnetic M1 dipole matrix elements in 105µB . The first-order and all-order
SD values are listed; Final recommended values are given in the “Final” column. RPA includes lowest-order DF results, the
third-order MBPT results (MBPT3) includes both DF and RPA results. The results are compared with DF and RPA values
from [16].

Transition DF DF [16] RPA RPA [16] MBPT3 SD Final
Th3+ No Breit 7s − 6d3/2 1.545 214.4 111.9 121.9 121.9

Breit 7s − 6d3/2 4.394 4.432 216.0 212.2 123.8 123.1 123.1

Ac2+ No Breit 7s − 6d3/2 1.119 216.3 123.1 129.6 129.6
Breit 7s − 6d3/2 3.513 3.510 214.5 213.6 113.2 130.3 130.3

Ra+ No Breit 7s − 6d3/2 0.596 213.7 142.5 138.4 138.4
Breit 7s − 6d3/2 2.368 2.401 212.8 210.3 142.5 138.6 138.6

Fr No Breit 7s − 6d3/2 0.063 128.5 146.3 125.9 125.9
Breit 7s − 6d3/2 0.570 0.737 127.9 126.9 145.8 125.6 125.6

Cs No Breit 6s − 5d3/2 0.094 12.70 13.52 13.23 13.23
Breit 6s − 5d3/2 0.429 0.566 12.95 11.98 14.05 13.84 13.84

Ba+ No Breit 6s − 5d3/2 0.551 22.72 13.54 15.65 15.65
Breit 6s − 5d3/2 2.009 2.006 23.65 22.06 14.86 16.94 16.94

Rb No Breit 5s − 4d3/2 -0.289 1.214 0.849 1.553 1.553
Breit 5s − 4d3/2 0.017 0.245 1.448 1.019 1.238 2.006 2.006

Sr+ No Breit 5s − 4d3/2 0.155 4.125 1.853 3.380 3.380
Breit 5s − 4d3/2 1.463 5.210 3.193 4.693 4.693

Ca+ No Breit 4s − 3d3/2 0.041 -0.657 0.040 0.817 0.817
Breit 4s − 3d3/2 1.203 1.708 1.183 2.012 1.973

experimental lifetimes are available for the 6d levels of
the Fr-like ions.

In alkali-metal neutral atoms, nd states are not
metastable and E2 or M1 contributions to the lifetimes
are negligible.

IV. MAGNETIC DIPOLE MATRIX ELEMENTS

The M1 matrix elements for the s− s and s− d tran-
sitions are much more difficult to calculate accurately
than the E2 ones. For the E2 transitions, the correla-
tion contributes at most 25% to the total, while for the
M1 transitions the lowest-order values are very small and
the final result comes almost entirely from the correlation
corrections. The Breit interaction is more significant as
well. Moreover, the negative-energy states, εi < mc2,
may contribute.

The influence of the negative-energy states (NES) on
forbidden magnetic-dipole s−s transitions in alkali-metal
atoms was investigated by Savukov et al. in Ref. [66].
The NES contributions were significant in almost all
cases and, for rubidium, reduced the transition rate by
a factor of 8. Derevianko et al. [67] derived the leading
term in an αZ expansion for the negative-energy (vir-
tual electron-positron pair) contributions to the transi-
tion amplitudes of heliumlike ions, finding a strong de-
pendence on the choice of the zeroth-order Hamiltonian,
which defines the negative-energy spectrum. The ratio
of negative-energy contributions to the total transition
amplitudes for some nonrelativistically forbidden transi-

TABLE VI: Magnetic dipole (M1) matrix elements in units
of 105µB . Relative signs of the present results are adjusted so
that final matrix elements are positive. RPA includes lowest-
order DF results; the third-order MBPT results (MBPT3)
include both DF and RPA. The results are compared with
DF and RPA values from [16]

Tran DF DF [16] RPA RPA [16] MBPT3

Th3+ NBr 8s − 7s -14.44 158.8 64.68
Br 8s − 7s -15.78 -13.23 155.2 -2549 61.66

Ac2+ NBr 8s − 7s -10.07 172.8 86.97
Br 8s − 7s -11.13 -8.911 169.4 -2390 84.18

Ra+ NBr 8s − 7s -6.085 185.3 112.7
Br 8s − 7s -6.935 -5.744 182.0 185.1 110.0

Fr NBr 8s − 7s -2.559 177.1 139.9
Br 8s − 7s -3.000 -2.49 174.4 176.5 137.4

Cs NBr 7s − 6s -1.952 14.22 12.45
Br 7s − 6s -2.189 -1.652 13.66 14.13 11.83

Ba+ NBr 7s − 6s -4.952 13.24 8.042
Br 7s − 6s -5.366 -4.050 12.46 13.53 7.257

Rb NBr 6s − 5s -1.824 1.004 0.859
Br 6s − 5s -1.998 -1.473 0.740 1.216 0.553

Sr+ NBr 6s − 5s 4.800 1.706 2.392
Br 6s − 5s 5.099 2.099 2.828

Ca+ NBr 5s − 4s 4.395 4.400 4.579
Br 5s − 4s 4.570 4.579 4.791

tions was shown to be of order 1/Z. In the particular case
of the magnetic-dipole transition 3 3S1 − 2 3S1, authors
noted that neglecting of negative-energy contributions,
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in an otherwise exact no-pair calculation, would lead one
to underestimate the decay rate in helium by a factor of
1.5 in calculations using a Hartree basis and by a factor
of 2.9 using a Coulomb basis [67].

The contribution from the negative-energy states for
the M1 transitions in Be-like ions was studied by
Safronova et al.[68], demonstrating that the NES contri-
bution scales as α2Z for both Breit and Coulomb inter-
actions. The relative contribution of the NES was about
0.03% for transitions inside the 2l2l′ configuration space
and 3% for the 2l12l2 − 2l33l4 transition. Authors con-
cluded that the NES contributions were important for
the weakest transitions in a given transition array.

The E1, E2, M1 and M2 transitions in the nickel iso-
electronic sequence were investigated by Hamasha et al.

[69]. The contributions from negative-energy states were
included in the second-order E1, M1, E2 and M2 matrix
elements. In second-order matrix elements, such contri-
butions arise explicitly from those terms in the sum over
states for which εi < mc2. The NES contributions dras-
tically change the second-order Breit-Coulomb matrix el-
ements B(2). However, the second-order Breit-Coulomb
correction contributes only 2-5% to uncoupled M1 matrix
elements and, as a result, negative-energy states changed
the total values of M1 matrix elements by only a few
percent [69].

The contributions from negative-energy states were
included in the second-order E1, M1, E2 M2, E3 and
M3 matrix elements in [70]. The NES contributions to
the second-order Breit-Coulomb matrix elements for the
transition from 3d5/25d3/2(1) state in Ni-like ions weakly
increases with Z, however, the relative NES contribu-
tion for this transition decreases with Z (2% and 0.6%
for Z = 40 and Z = 90, respectively). Ref. [70] noted
that the NES contribution for this transition are of the
same order as the positive-energy state contribution to
the second-order Breit-Coulomb matrix elements caus-
ing severe cancelation and drastically reducing the B(2)

values in this case. Therefore, we include the contribu-
tions of the NES as well as retardation corrections and
correlation effects for the M1 transitions in detail in the
second-order MBPT calculation.

In Table IV, we list the M1 magnetic matrix elements
evaluated in second-order RMBPT approximation. We
employ customary units for reduced matrix elements as
given in the National Institute for Science and Technol-
ogy compendium on Atomic Spectroscopy [71], These
units are e2a20 for E2 transitions and µB for M1 tran-
sitions.

The lowest-order DF values are evaluated with the rel-
ativistic version of the M1 operator without retardation.
The DF(Ret) values include retardation. The table illus-
trates that the retardation corrections are particularly
large for the s − d transition in Rb, Cs and Fr. The
second-order Coulomb and Breit contributions are listed
in the “Cl” and “Brpos” columns. The second-order Breit
correction, which includes the negative energy (NEG)
contributions, is given in next column, Brneg. The final

second-order results MBPT2=Cl+Brpos+Brneg are listed
in the last column. We find that the NES effect on the
Coulomb correlation correction is negligible and can be
omitted without the loss of accuracy, and it is not shown
in the table. The contribution of the NES to the second-
order Breit correction is significant, as illustrated by the
significant differences of the Bpos and Bneg values. How-
ever, the table clearly indicates that the Coulomb corre-
lation correction dominates the final values and an accu-
rate calculation of this correction presents a significant
challenge. As noted above, the M1 transitions between
levels of different electronic configurations are extremely
sensitive to the correlation correction, since the lowest-
order M1 values are very small and the final result comes
almost entirely from the correlation correction.

While it was previously assumed that only RPA correc-
tions contribute significantly to the M1 matrix elements,
we find that it is not the case for the transitions studied
in this work.

In Table V, we list our values for the M1 s−d reduced
matrix elements in units of 105µB. The final results are
obtained using the same all-order approach as for the E2
matrix elements. The four variants of the all-order cal-
culations are carried out for the M1 transitions as for the
E2 transitions. We also carried out the calculations of
the M1 matrix elements using form-independent third-
order many-body perturbation theory (MBPT3) method
introduced in [61, 62]. The all-order values are taken as
final. We find that while using the form of the M1 oper-
ator that includes retardation changes the DF values, its
effect on the final result is negligible at the present level
of accuracy and is omitted in Table V. Results with and
without the inclusion of the Breit interaction are listed,
with the Breit contribution being more important for the
M1 transitions in comparison with the E2 transitions.

Comparing the third-order MBPT3 and RPA results
demonstrates that corrections beyond RPA are large for
all cases, in particulary Fr and Fr-like ions. The MBPT3
classification and formulas for such corrections, which in-
clude Brueckner-orbital (BO), structure radiation (SR),
and normalization is given in [72]. The form-independent
variant of the third-order used here includes further cor-
rections due to replacement of the DF matrix elements
by the “dressed” RPA values in all formulas. This ap-
proach is discussed in detail in [61, 62]. The all-order SD
calculations include all of the third-order and additional
higher-order correlation corrections. The comparison of
the MBPT3 and all-order SD values demonstrate that
the fourth and higher-order contributions are significant
for these M1 transitions.

The same calculations are carried out for the s − s
transitions. The results are presented in Table VI, where
DF, RPA and the MBPT3 final values are listed. Our
M1 values are compared with the theoretical results from
Ref. [16] obtained in the DF and RPA approximations.
Negative-energy and retardation corrections are omitted,
these contributions are smaller than the uncertainty in
the correlation corrections as demonstrated in Table IV.
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DF energies are used to define ω in all RPA calculations.
The MBPT3 values are taken as final.
We identified two issues in the calculations of these

matrix elements. First, we find that there are signifi-
cant numerical instabilities in Dirac-Fock computations
of the M1 s−smatrix elements (the effect is small for the
s−d case). The DF codes used for generation of the sev-
eral low-level orbitals do not usually orthonormalize the
resulting wave functions, since it is done by subsequent
basis set codes. In the relativistic case one expects the
accuracy of the M1 radial matrix element to be limited
by the size of the overlap matrix integral (gvgw+fvfw)dr,
where g and f are the large and small components of the
wave function and v and w indicate initial and final elec-
tron states. If the ns orbitals are not orthonormal to a
good numerical precision, the respective integral is not
numerically stable, leading to spurious errors, generally
of a few per cent. This problem does not arise in the
present RPA, MPBT3, and all-order calculations since
we do all computations with the orthonormalized basis
set wave functions. However, it explains the difference
with the DF and RPA results of [16], which used DF
functions in the RPA calculations. This issue is a po-
tential source of the drastic difference or our RPA values
with [16] for the Fr-like Ac and Th ions. The M1 matrix
elements for Fr-like Ac and Th ions are not expected to
be significantly different from the Fr and Fr-like Ra val-
ues and present RPA and final MBPT3 values for Fr-like
isoelectronic sequence shows smooth changes.
The second problem with the calculation of the s − s

transitions is a strong cancelation of the large Brueckner-
orbital (BO) and structure radiation (SR) corrections. In
the all-order case, the BO-type term c given by Eq.(5) is
very large but is strongly canceled by SR-type term

Z(p) =
∑

mnra

zmnρ̃
∗
rmwaρ̃rnva. (6)

Either of these terms is at least an order of magnitude
larger than the RPA. This issue makes the all-order com-
putation of the M1 s − s matrix elements unreliable in
its current implementation. Most likely, omission of the
triple- and higher-excitations leads to incomplete cance-
lations and full inclusion of the other high-order correc-
tions, such as those from non-perturbative triple exci-
tations, non-liner terms, and others is needed. An in-
clusion of the perturbative triples or scaling exacerbates
the problem instead of correcting it, since they directly

affect only BO-type terms but not the structural radia-
tion. The s−d transitions do not present such problems:
we find some significant contributions from the non-RPA
terms described above but no strong cancelations.
To improve upon the RPA results for the s − s tran-

sition, we use a form-independent third-order MBPT
method introduced in [61, 62]. This approach yields
electric-dipole transition amplitudes that are equal in
the length and velocity forms for transitions in atoms
with one valence electron within the framework of rela-
tivistic many-body perturbation theory starting from the
Dirac-Hartree-Fock approximation. For the M1 transi-
tions, where the matrix elements are in velocity form,
such an approach appears to provide more accurate can-
celations of the large BO and SR many-body corrections.
Even with the strong cancelations, the remaining correc-
tions are still significant for the s−sM1 matrix elements.
Further improvement of the theoretical accuracy may be
achieved with the development of the form-independent
all-order approach.

V. CONCLUSION

In summary, we carried out a systematic relativistic
study of s − s and s − d M1 transitions in Fr and Fr-
like ions, Cs, Ba+, Rb, Fr, Cs, Ba+, Rb, SR+, and Ca+

atomic systems. Benchmark comparisons of the nd life-
times are carried out. Relativistic, correlation, Breit and
negative-energy contributions are studied. The estimated
accuracy of the theoretical s − d E2 matrix elements is
very high, better than 1%. and is good for the s − d
M1 matrix elements. A rough estimate of the accuracy
of s − d M1 matrix elements is given by the difference
between the SD and MBPT3 values listed in Table IV
which can exceed 10%. We find that inclusion of the cor-
rection beyond RPA is essential for accurate calculations
of the M1 matrix elements considered in this work. New
high-precision experimental results are urgently needed
for the M1 transitions to test theoretical predictions.
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